19 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order...

We recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of...

We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes...

We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D...

We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving...

The weak gravity conjecture (WGC) asserts that an Abelian gauge theory coupled to gravity is inconsistent unless it contains a particle of charge q and mass m such that q≥m/m Pl. This criterion is obeyed by all known ultraviolet completions and is needed to evade pathologies from stable black hole remnants. In this paper, we explore the WGC from the perspective of low-energy...

On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we...

**Clifford** **Cheung**
0
0
Department of Physics, University of California
,
Berkeley, CA 94720
,
U.S.A. Theoretical Physics Group, Lawrence Berkeley National Laboratory
,
Berkeley, CA 94720, U.S.A
The

We show that on-shell recursion relations hold for tree amplitudes in generic two derivative theories in an arbitrary number of dimensions with multiple particle species and diverse spins. For example, in a gauge theory coupled to scalars and fermions, any amplitude with at least one gluon obeys a recursion relation. In (super)gravity coupled to scalars and fermions, the same...

Ultraviolet physics typically induces a kinetic mixing between gauge singlets which is marginal and hence non-decoupling in the infrared. In singlet extensions of the minimal supersymmetric standard model, e.g. the next-to-minimal supersymmetric standard model, this furnishes a well motivated and distinctive portal connecting the visible sector to any hidden sector which contains...

We demonstrate that all tree-level string theory amplitudes can be computed using the BCFW recursion relations. Our proof utilizes the pomeron vertex operator introduced by Brower, Polchinski, Strassler, and Tan. Surprisingly, we find that in a particular large complex momentum limit, the asymptotic expansion of massless string amplitudes is identical in form to that of the...

A dual formulation of the S Matrix for \( \mathcal {N} \) = 4 SYM has recently been presented, where all leading singularities of n-particle Nk−2MHV amplitudes are given as an integral over the Grassmannian G(k, n), with cyclic symmetry, parity and superconformal invariance manifest. In this short note we show that the dual superconformal invariance of this object is also...

Supersymmetric phenomenology has been largely bound to the hypothesis that supersymmetry breaking originates from a single source. In this paper, we relax this underlying assumption and consider a multiplicity of sectors which independently break supersymmetry, thus yielding a corresponding multiplicity of goldstini. While one linear combination of goldstini is eaten via the...

We present a systematic cosmological study of a universe in which the visible sector is coupled, albeit very weakly, to a hidden sector comprised of its own set of particles and interactions. Assuming that dark matter (DM) resides in the hidden sector and is charged under a stabilizing symmetry shared by both sectors, we determine all possible origins of weak-scale DM allowed...

We consider a broad class of supersymmetric theories in which dark matter (DM) is the lightest superpartner (LSP) of a hidden sector that couples very weakly to visible sector fields. Portal interactions connecting visible and hidden sectors mediate the decay of the lightest observable superpartner (LOSP) into the LSP, allowing the LHC to function as a spectacular probe of the...

If the lightest observable-sector supersymmetric particle (LOSP) is charged and long-lived, then it may be possible to indirectly measure the Planck mass at the LHC and provide a spectacular confirmation of supergravity as a symmetry of nature. Unfortunately, this proposal is only feasible if the gravitino is heavy enough to be measured at colliders, and this condition is in...

We consider some of the recent proposals in which weak-scale dark matter is accompanied by a GeV scale dark sector that could produce spectacular lepton-rich events at the LHC. Since much of the collider phenomenology is only weakly model dependent it is possible to arrive at generic predictions for the discovery potential of future experimental searches. We concentrate on the...