5 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

We show that with suitable choices of parametrization, gauge fixing and cutoff, the anomalous variation of the effective action under global rescalings of the background metric is identical to the derivative with respect to the cutoff, i.e. to the beta functional, as defined by the exact RG equation. The Ward identity and the RG equation can be combined, resulting in a modified...

We extend our prescription for the construction of a covariant and background-independent effective action for scalar quantum field theories to the case where momentum modes below a certain scale are suppressed by the presence of an infrared regulator. The key step is an appropriate choice of the infrared cutoff for which the Ward identity, capturing the information from single...

We consider the family of renormalizable scalar QFTs with self-interacting potentials of highest monomial ϕ m below their upper critical dimensions \( {d}_c=\frac{2m}{m-2} \), and study them using a combination of CFT constraints, Schwinger-Dyson equation and the free theory behavior at the upper critical dimension. For even integers m ≥ 4 these theories coincide with the Landau...

We employ the exponential parametrization of the metric and a “physical” gauge fixing procedure to write a functional flow equation for the gravitational effective average action in an f(R) truncation. The background metric is a four-sphere and the coarse-graining procedure contains three free parameters. We look for scaling solutions, i.e. non-Gaussian fixed points for the...

We write new functional renormalization group equations for a scalar nonminimally coupled to gravity. Thanks to the choice of the parametrization and of the gauge fixing they are simpler than older equations and avoid some of the difficulties that were previously present. In three dimensions these equations admit, at least for sufficiently small fields, a solution that may be...