Advanced search    

Search: authors:"Guangyuan Zhang"

5 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer

Though androgen deprivation therapy is the standard treatment for prostate cancer (PCa), most patients would inevitably progress to castration-resistant prostate cancer (CRPC) which is the main cause of PCa death. Therefore, the identification of novel molecular mechanism regulating cancer progression and achievement of new insight into target therapy would be necessary for...

In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles

Bletilla striata polysaccharides (BSPs) have been used in pharmaceutical and biomedical industry, the aim of the present study was to explore a BSPs amphiphilic derivative to overcome its application limit as poorly water-soluble drug carriers due to water-soluble polymers. Stearic acid (SA) was selected as a hydrophobic block to modify B. striata polysaccharides (SA-BSPs...

Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1

Introduction Studies have demonstrated that mesenchymal stromal cells (MSCs) could reverse acute and chronic kidney injury by a paracrine or endocrine mechanism, and microvesicles (MVs) have been regarded as a crucial means of intercellular communication. In the current study, we focused on the therapeutic effects of human Wharton-Jelly MSCs derived microvesicles (hWJMSC-MVs) in...

Microvesicles Derived from Human Wharton's Jelly Mesenchymal Stem Cells Promote Human Renal Cancer Cell Growth and Aggressiveness through Induction of Hepatocyte Growth Factor

In our previous study, microvesicles (MVs) released from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) retard the growth of bladder cancer cells. We would like to know if MVs have a similar effect on human renal cell carcinoma (RCC). By use of cell culture and the BALB/c nu/nu mice xeno-graft model, the influence of MVs upon the growth and aggressiveness of RCC (786-0...

The Anti-Oxidative Role of Micro-Vesicles Derived from Human Wharton-Jelly Mesenchymal Stromal Cells through NOX2/gp91(phox) Suppression in Alleviating Renal Ischemia-Reperfusion Injury in Rats

Oxidative stress is known as one of the main contributors in renal ischemia/reperfusion injury (IRI). Here we hypothesized that Micro-vesicles (MVs) derived from human Wharton Jelly mesenchymal stromal cells (hWJMSCs) could protect kidney against IRI through mitigating oxidative stress. MVs isolated from hWJMSCs conditioned medium were injected intravenously in rats immediately...