Advanced search    

Search: authors:"Henner F. Farin"

8 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development

The epicardium, the outermost layer of the heart, is an essential source of cells and signals for the formation of the cardiac fibrous skeleton and the coronary vasculature, and for the maturation of the myocardium during embryonic development. The molecular factors that control epicardial mobilization and differentiation, and direct the epicardial-myocardial cross-talk are...

Retromer Dependent Recycling of the Wnt Secretion Factor Wls Is Dispensable for Stem Cell Maintenance in the Mammalian Intestinal Epithelium

In C. elegans and Drosophila, retromer mediated retrograde transport of Wntless (Wls) from endosomes to the trans-Golgi network (TGN) is required for Wnt secretion. When this retrograde transport pathway is blocked, Wls is missorted to lysosomes and degraded, resulting in reduced Wnt secretion and various Wnt related phenotypes. In the mammalian intestine, Wnt signaling is...

Generation of L Cells in Mouse and Human Small Intestine Organoids

Upon a nutrient challenge, L cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate functional L cells from three-dimensional cultures of mouse and human intestinal crypts...

Tbx2 Terminates Shh/Fgf Signaling in the Developing Mouse Limb Bud by Direct Repression of Gremlin1

Vertebrate limb outgrowth is driven by a positive feedback loop that involves Sonic hedgehog (Shh) and Gremlin1 (Grem1) in the posterior limb bud mesenchyme and Fibroblast growth factors (Fgfs) in the overlying epithelium. Proper spatio-temporal control of these signaling activities is required to avoid limb malformations such as polydactyly. Here we show that, in Tbx2-deficient...

Tbx2 Controls Lung Growth by Direct Repression of the Cell Cycle Inhibitor Genes Cdkn1a and Cdkn1b

Vertebrate organ development relies on the precise spatiotemporal orchestration of proliferation rates and differentiation patterns in adjacent tissue compartments. The underlying integration of patterning and cell cycle control during organogenesis is insufficiently understood. Here, we have investigated the function of the patterning T-box transcription factor gene Tbx2 in lung...

Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme

Congenital ureter anomalies, including hydroureter, affect up to 1% of the newborn children. Despite the prevalence of these developmental abnormalities in young children, the underlying molecular causes are only poorly understood. Here, we show that the high mobility group domain transcription factor Sox9 plays an important role in ureter development in the mouse. Transient Sox9...

Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation

A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that...