Advanced search    

Search: authors:"Ho Seong Seo"

5 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Expression and Mutational Analysis of DinB-Like Protein DR0053 in Deinococcus radiodurans

In order to understand the mechanism governing radiation resistance in Deinococcus radiodurans, current efforts are aimed at identifying potential candidates from a large repertoire of unique Deinococcal genes and protein families. DR0053 belongs to the DinB/YfiT protein family, which is an over-represented protein family in D. radiodurans. We observed that dr0053 transcript levels ...

Role of the Serine-Rich Surface Glycoprotein Srr1 of Streptococcus agalactiae in the Pathogenesis of Infective Endocarditis

The binding of bacteria to fibrinogen and platelets are important events in the pathogenesis of infective endocarditis. Srr1 is a serine-rich repeat glycoprotein of Streptococcus agalactiae that binds directly to the Aα chain of human fibrinogen. To assess the impact of Srr1 on the pathogenesis of endocarditis due to S. agalactiae, we first examined the binding of this organism to ...

Group B Streptococcal Serine-Rich Repeat Proteins Promote Interaction With Fibrinogen and Vaginal Colonization

Group B streptococcus (GBS) can cause severe disease in susceptible hosts, including newborns, pregnant women, and the elderly. GBS serine-rich repeat (Srr) surface glycoproteins are important adhesins/invasins in multiple host tissues, including the vagina. However, exact molecular mechanisms contributing to their importance in colonization are unknown. We have recently determined ...

Binding of Glycoprotein Srr1 of Streptococcus agalactiae to Fibrinogen Promotes Attachment to Brain Endothelium and the Development of Meningitis

The serine-rich repeat glycoprotein Srr1 of Streptococcus agalactiae (GBS) is thought to be an important adhesin for the pathogenesis of meningitis. Although expression of Srr1 is associated with increased binding to human brain microvascular endothelial cells (hBMEC), the molecular basis for this interaction is not well defined. We now demonstrate that Srr1 contributes to GBS ...

Bacteriophage Lysin Mediates the Binding of Streptococcus mitis to Human Platelets through Interaction with Fibrinogen

The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with ...