Advanced search    

Search: authors:"Iain W. Stewart"

10 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

A subleading operator basis and matching for gg → H

The Soft Collinear Effective Theory (SCET) is a powerful framework for studying factorization of amplitudes and cross sections in QCD. While factorization at leading power has been well studied, much less is known at subleading powers in the λ ≪ 1 expansion. In SCET subleading soft and collinear corrections to a hard scattering process are described by power suppressed operators, ...

Soft functions for generic jet algorithms and observables at hadron colliders

We introduce a method to compute one-loop soft functions for exclusive N - jet processes at hadron colliders, allowing for different definitions of the algorithm that determines the jet regions and of the measurements in those regions. In particular, we generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates the dependence on the jet boundary ...

An effective field theory for forward scattering and factorization violation

Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward ...

Factorization for jet radius logarithms in jet mass spectra at the LHC

To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production ...

Building blocks for subleading helicity operators

On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading ...

Hard matching for boosted tops at two loops

Cross sections for top quarks provide very interesting physics opportunities, being both sensitive to new physics and also perturbatively tractable due to the large top quark mass. Rigorous factorization theorems for top cross sections can be derived in several kinematic scenarios, including the boosted regime in the peak region that we consider here. In the context of the ...

Jet Vetoes interfering with H → WW

Ian Moult 0 Iain W. Stewart 0 0 Center for Theoretical Physics, Massachusetts Institute of Technology , Cambridge, MA 02139, U.S.A Far off-shell Higgs production in H W W, ZZ, is a particularly

Soft theorems from effective field theory

The singular limits of massless gauge theory amplitudes are described by an effective theory, called soft-collinear effective theory (SCET), which has been applied most successfully to make all-orders predictions for observables in collider physics and weak decays. At tree-level, the emission of a soft gauge boson at subleading order in its energy is given by the Low-Burnett-Kroll ...

Analytic calculation of 1-jettiness in DIS at \( \mathcal{O}\left({\alpha}_s\right) \)

We present an analytic \( \mathcal{O}\left({\alpha}_s\right) \) calculation of cross sections in deep inelastic scattering (DIS) dependent on an event shape, 1-jettiness, that probes final states with one jet plus initial state radiation. This is the first entirely analytic calculation for a DIS event shape cross section at this order. We present results for the differential and ...

XCone: N-jettiness as an exclusive cone jet algorithm

We introduce a new jet algorithm called XCone, for eXclusive Cone, which is based on minimizing the event shape N -jettiness. Because N -jettiness partitions every event into N jet regions and a beam region, XCone is an exclusive jet algorithm that always returns a fixed number of jets. We use a new “conical geometric” measure for which well-separated jets are bounded by circles of ...