Advanced search    

Search: authors:"J Peter W Young"

9 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Characterization of Arbuscular Mycorrhizal Fungus Communities of Aquilaria crassna and Tectona grandis Roots and Soils in Thailand Plantations

Aquilaria crassna Pierre ex Lec. and Tectona grandis Linn.f. are sources of resin-suffused agarwood and teak timber, respectively. This study investigated arbuscular mycorrhizal (AM) fungus community structure in roots and rhizosphere soils of A. crassna and T. grandis from plantations in Thailand to understand whether AM fungal communities present in roots and rhizosphere soils...

Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors

Background The species Neorhizobium galegae comprises two symbiovars that induce nodules on Galega plants. Strains of both symbiovars, orientalis and officinalis, induce nodules on the same plant species, but fix nitrogen only in their own host species. The mechanism behind this strict host specificity is not yet known. In this study, genome sequences of representatives of the...

Slipins: ancient origin, duplication and diversification of the stomatin protein family

Background Stomatin is a membrane protein that was first isolated from human red blood cells. Since then, a number of stomatin-like proteins have been identified in all three domains of life. The conservation among these proteins is remarkable, with bacterial and human homologs sharing 50 % identity. Despite being associated with a variety of diseases such as cancer, kidney...

Rhizobia with 16S rRNA and nifH Similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC Genes Are Symbionts of New Zealand Carmichaelinae

New Zealand became geographically isolated about 80 million years ago and this separation gave rise to a unique native flora including four genera of legume, Carmichaelia, Clianthus and Montigena in the Carmichaelinae clade, tribe Galegeae, and Sophora, tribe Sophoreae, sub-family Papilionoideae. Ten bacterial strains isolated from NZ Carmichaelinae growing in natural ecosystems...

Complete Genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly...

The Glutamine Synthetases of Rhizobia: Phylogenetics and Evolutionary Implications

Glutamine synthetase exists in at least two related forms, GSI and GSII, the sequences of which have been used in evolutionary molecular clock studies. GSI has so far been found exclusively in bacteria, and GSII has been found predominantly in eukaryotes. To date, only a minority of bacteria, including rhizobia, have been shown to express both forms of GS. The sequences of...

A Diverse Population of Introns in the Nuclear Ribosomal Genes of Ericoid Mycorrhizal Fungi Includes Elements with Sequence Similarity to Endonuclease-Coding Genes

Ericoid mycorrhizal fungi form symbioses with the roots of members of the Ericales. Although only two genera have been identified in culture, the taxonomic diversity of ericoid symbionts is certainly wider. Genetic variation among 40 ericoid fungal isolates was investigated in this study. PCR amplification of the nuclear small-subunit ribosomal DNA (SSU rDNA) and of the internal...

A Common Genomic Framework for a Diverse Assembly of Plasmids in the Symbiotic Nitrogen Fixing Bacteria

This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are...

The genome of Rhizobium leguminosarum has recognizable core and accessory components

Background Rhizobium leguminosarum is an α-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae...