7 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion masses m ∼ 10−22 eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain ...

In a previous work, we analyzed collapsing axion stars using the low-energy instanton potential, showing that the total energy is always bounded and that collapsing axion stars do not form black holes. In this paper, we provide a proof that the conclusions are unchanged when using instead the more general chiral potential for QCD axions.

If QCD axions form a large fraction of the total mass of dark matter, then axion stars could be very abundant in galaxies. As a result, collisions with each other, and with other astrophysical bodies, can occur. We calculate the rate and analyze the consequences of three classes of collisions, those occurring between a dilute axion star and: another dilute axion star, an ordinary ...

Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Heavier states are susceptible to gravitational ...

We study the possibility that self-interacting bosonic dark matter forms star-like objects. We study both the case of attractive and repulsive self-interactions, and we focus particularly in the parameter phase space where self-interactions can solve well standing problems of the collisionless dark matter paradigm. We find the mass radius relations for these dark matter bosonic ...

Following Ruffini and Bonazzola, we use a quantized boson field to describe condensates of axions forming compact objects. Without substantial modifications, the method can only be applied to axions with decay constant, f a , satisfying δ = (f a /M P )2 ≪ 1, where M P is the Planck mass. Similarly, the applicability of the Ruffini-Bonazzola method to axion stars also requires that ...