We study a holographic superconductor model with momentum relaxation due to massless scalar fields linear to spatial coordinates(ψ I = βδ Ii x i ), where β is the strength of momentum relaxation. In addition to the original superconductor induced by the chemical potential(μ) at β = 0, there exists a new type of superconductor induced by β even at μ = 0. It may imply a new...
Glutamate excitotoxicity-induced oxidative stress have been linked to mitochondrial dysfunction in retinal ischemia and optic neuropathies including glaucoma. Brimonindine (BMD), an alpha 2-adrenergic receptor agonist, contributes to the neuroprotection of retinal ganglion cells (RGCs) against glutamate excitotoxicity or oxidative stress. However, the molecular mechanisms of BMD...
protein expression in ischemic retina. In addition, the CoQ10 significantly blocked activation of astroglial and Dongwook Lee and Keun-Young Kim have contributed equally to this work. - Elevated
We study AC electric (σ), thermoelectric (α), and thermal \( \left(\overline{\kappa}\right) \) conductivities in a holographic model, which is based on 3+1 dimensional Einstein-Maxwell-scalar action. There is momentum relaxation due to massless scalar fields linear to spatial coordinate. The model has three field theory parameters: temperature (T), chemical potential (μ), and...
Summary: This application note describes a new scalable semi-automatic approach, the Dual Point Decision Process, for segmentation of 3D structures contained in 3D microscopy. The segmentation problem is distributed to many individual workers such that each receives only simple questions regarding whether two points in an image are placed on the same object. A large pool of micro...
We study diffusion and butterfly velocity (v B ) in two holographic models, linear axion and axion-dilaton model, with a momentum relaxation parameter (β) at finite density or chemical potential (μ). Axion-dilaton model is particularly interesting since it shows linear-T -resistivity, which may have something to do with the universal bound of diffusion. At finite density, there...
Homes’ law, ρ s = Cσ DC T c , is an empirical law satisfied by various superconductors with a material independent universal constant C, where ρ s is the superfluid density at zero temperature, T c is the critical temperature, and σ DC is the electric DC conductivity in the normal state close to T c . We study Homes’ law in holographic superconductor with Q-lattices and find that...
The D3/D7 system holographically describes an \( \mathcal{N} = 2 \) gauge theory which spontaneously breaks a chiral symmetry by the formation of a quark condensate in the presence of a magnetic field. At finite temperature it displays a first order phase transition. We study out of equilibrium dynamics associated with this transition by placing probe D7 branes in a geometry...
Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration...
The holographic complexity is UV divergent. As a finite complexity, we propose a “regularized complexity” by employing a similar method to the holographic renor-malization. We add codimension-two boundary counterterms which do not contain any boundary stress tensor information. It means that we subtract only non-dynamic back-ground and all the dynamic information of holographic...
We study the effective geometry felt by the fluctuations of open strings living on the worldvolume of probe D-branes in the presence of background electromagnetic fields. This is captured by an effective action consisting of a Maxwell term and a topological term, with the role of the metric played by the open string metric. Studying generalized Eddington-Finkelstein coordinates...
We study the thermoelectric conductivities of a strongly correlated system in the presence of a magnetic field by the gauge/gravity duality. We consider a class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum relaxation. General analytic formulas for the direct current (DC) conductivities and the Nernst signal are derived in terms of the black hole...
We study three properties of a holographic superconductor related to conductivities, where momentum relaxation plays an important role. First, we find that there are constraints between electric, thermoelectric and thermal conductivities. The constraints are analytically derived by the Ward identities regarding diffeomorphism from field theory perspective. We confirm them by...