The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated ...
The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have ...
The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK ...
The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms ...
H. Charles J. Godfray Tjeerd Blacquire Linda M. Field Rosemary S. Hails Gillian Petrokofsky Simon G. Potts Nigel E. Raine Adam J. Vanbergen Angela R. McLean 0 Rothamsted Research , Harpenden, Herts
DEET (N,N-Diethyl-m-toluamide) is one of the most widely used mosquito repellents. Although DEET has been shown to be extremely effective, recent studies have revealed that certain individual insects are unaffected by its presence. A genetic basis for this has been shown in Aedes aegypti mosquitoes and the fruit fly Drosophila melanogaster, but, for the triatomine bug, Rhodnius ...
Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses that are central to their interaction with their environment and to communication between individuals. Understanding the molecular bases of ...
The Mediterranean fruit fly, Ceratitis capitata (medfly), is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats. Chemosensory behaviour plays an important role in many crucial stages in the life of this insect, such as the detection of pheromone cues during mate pursuit and ...
Background One of the challenges in insect chemical ecology is to understand how insect pheromones are synthesised, detected and degraded. Genome wide survey by comparative sequencing and gene specific expression profiling provide rich resources for this challenge. A. ipsilon is a destructive pest of many crops and further characterization of the genes involved in pheromone ...
Insects interact with their environment and respond to the changes in host plant conditions using semiochemicals. Such ecological interactions are facilitated by the olfactory sensilla and the use of olfactory recognition proteins. The cotton aphid Aphis gossypii can change its phenotype in response to ecological conditions. They reproduce mainly as wingless asexual morphs but ...
Background The malaria vector and non-vector species of the Anopheles funestus group are morphologically very similar and accurate identification is required as part of effective control strategies. In the past, this has relied on morphological and cytogenetic methods but these have been largely superseded by a robust allele-specific PCR (AS-PCR). One disadvantage of AS-PCR is the ...
Background The Anopheles gambiae sensu lato species complex comprises seven sibling species of mosquitoes that are morphologically indistinguishable. Rapid identification of the two main species which vector malaria, Anopheles arabiensis and An. gambiae sensu stricto, from the non-vector species Anopheles quadriannulatus is often required as part of vector control programmes. ...
The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a ...
Odorant-binding proteins (OBPs) play an important role in insect olfaction by mediating interactions between odorants and odorant receptors. We report for the first time 20 OBP genes in the tsetse fly Glossina morsitans morsitans. qRT-PCR revealed that 8 of these genes were highly transcribed in the antennae. The transcription of these genes in the antennae was significantly lower ...
Background Detection of the four malaria-causing Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae) within their mosquito hosts is an essential component of vector control programmes. Several PCR protocols have been developed for this purpose. Many of these methods, while sensitive, require multiple PCR reactions to detect and ...
Background Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong ...
Odorant-binding proteins (OBPs) are thought to be responsible for the transport of semiochemicals across hydrophobic interfaces to olfactory receptors. In insects, a second class of OBPs with four conserved cysteines has been variously named as sensory appendage proteins, olfactory segment-D proteins, and chemosensory proteins (CSPs). The physiological functions of these proteins ...
Background Knockdown resistance (kdr) is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular ...