5 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Let f be a generically finite polynomial map \(f: \mathbb {C}^n\rightarrow \mathbb {C}^m\) of algebraic degree d. Motivated by the study of the Jacobian Conjecture, we prove that the set \(S_f\) of non-properness of f is covered by parametric curves of degree at most \(d-1\). This bound is best possible. Moreover, we prove that if \(X\subset \mathbb {R}^n\) is a closed algebraic ...

We prove that if a pure simplicial complex \(\Delta \) of dimension \(d\) with \(n\) facets has the least possible number of \((d-1)\)-dimensional faces among all complexes with \(n\) faces of dimension \(d\), then it is vertex decomposable. This answers a question of J. Herzog and T. Hibi. In fact, we prove a generalization of their theorem using combinatorial methods.

A family of sets in the plane is simple if the intersection of any subfamily is arc-connected, and it is pierced by a line \(L\) if the intersection of any member with \(L\) is a nonempty segment. It is proved that the intersection graphs of simple families of compact arc-connected sets in the plane pierced by a common line have chromatic number bounded by a function of their ...

We investigate full strongly exceptional collections on smooth, complete toric varieties. We obtain explicit results for a large family of varieties with Picard number three, containing many of the families already known. We also describe the relations between the collections and the split of the push forward of the trivial line bundle by the toric Frobenius morphism.

Several classical constructions illustrate the fact that the chromatic number of a graph may be arbitrarily large compared to its clique number. However, until very recently no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set \(X\) in \(\mathbb{R }^2\) that is not an ...