15 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

We study the effect of inhomogeneity, which is induced by the graviton mass in massive gravity, on the mutual information and the chaotic behavior of a 2+1-dimensional field theory from the gauge/gravity duality. When the system is near-homogeneous, the mutual information increases as the graviton mass grows. However, when the system is far from homogeneity, the mutual information ...

We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the ...

In this note we first review the degenerate vacua arising from the BMS symmetries. According to the discussion in [1] one can define BMS-analogous supertranslation and superrotation for spacetime with black hole in Gaussian null coordinates. In the leading and subleading orders of near horizon approximation, the infinitely degenerate black hole solutions are derived by considering ...

Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the ...

We study the Schwinger mechanism by a uniform electric field in dS2 and AdS2 and the curvature effect on the Schwinger effect, and further propose a thermal interpretation of the Schwinger formula in terms of the Gibbons-Hawking temperature and the Unruh temperature for an accelerating charge in dS2 and an analogous expression in AdS2. The exact one-loop effective action is found ...

In a previous paper (Nie et al. in JHEP 1311:087, arXiv:1309.2204 [hep-th], 2013), we presented a holographic s \(+\) p superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. We also study the competition and coexistence of the s-wave and p-wave orders in the probe limit. In this work we continue to study the model by considering the full ...

In this paper we investigate in some detail the holographic ferromagnetic phase transition in an AdS4 black brane background by introducing a massive 2-form field coupled to the Maxwell field strength in the bulk. In two probe limits, one is to neglect the back reaction of the 2-form field to the background geometry and to the Maxwell field, and the other to neglect the back ...

We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS 5 × S 5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole ...

Recently the Petrov type I condition is introduced to reduce the degrees of freedom of the extrinsic curvature of a timelike hypersurface to the degrees of freedom in the dual Rindler fluid in Einstein gravity. In this paper we show that the Petrov type I condition holds for the solutions of vacuum Einstein-Gauss-Bonnet gravity up to the second order in the relativistic ...

We continue to study the holographic p-wave superconductor model in the Einstein-Maxwell-complex vector field theory with a non-minimal coupling between the complex vector field and the Maxwell field. In this paper we work in the AdS soliton background which describes a conformal field theory in the confined phase and focus on the probe approximation. We find that an applied ...

We construct a holographic model of superconducting quantum interference device (SQUID) in the Einstein-Maxwell-complex scalar theory with a negative cosmological constant. The SQUID ring consists of two Josephson junctions which sit on two sides of a compactified spatial direction of a Schwarzschild-AdS black brane. These two junctions interfere with each other and then result in ...

We study a holographic p-wave superconductor model in a four dimensional Einstein-Maxwell-complex vector field theory with a negative cosmological constant. The complex vector field is charged under the Maxwell field. We solve the full coupled equations of motion of the system and find black hole solutions with the vector hair. The vector hairy black hole solutions are dual to a ...

We study competition between s-wave order and d-wave order through two holographic superconductor models. We find that once the coexisting phase appears, it is always thermodynamically favored, and that the coexistence phase is narrow and one condensate tends to kill the other. The phase diagram is constructed for each model in terms of temperature and the ratio of charges of two ...

We study in detail the phase structure of a holographic p-wave superconductor model in a five dimensional Einstein-Maxwell-complex vector field theory with a negative cosmological constant. To construct complete phase diagrams of the model, we consider both the soliton and black hole backgrounds. In both two cases, there exist second order, first order and zeroth order phase ...

We discuss the properties of the bound state (F1, D1, D3) in IIB supergravity in three different scaling limits and the SL(2,Z) transformation of the resulting theories. In the simple decoupling limit with finite electric and magnetic components of NS B field, the worldvolume theory is the N = 4 super Yang-Mills (SYM) and the supergravity dual is still the AdS5 × S5. In the large ...