Advanced search    

Search: authors:"Saakshi Jalali"

9 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Navigating the dynamic landscape of long noncoding RNA and protein-coding gene annotations in GENCODE

Background Our understanding of the transcriptional potential of the genome and its functional consequences has undergone a significant change in the last decade. This has been largely contributed by the improvements in technology which could annotate and in many cases functionally characterize a number of novel gene loci in the human genome. Keeping pace with advancements in this ...

Computational approaches towards understanding human long non-coding RNA biology

Long non-coding RNAs (lncRNAs) form the largest class of non-protein coding genes in the human genome. While a small subset of well-characterized lncRNAs has demonstrated their significant role in diverse biological functions like chromatin modifications, post-transcriptional regulation, imprinting etc., the functional significance of a vast majority of them still remains an ...

Screening Currency Notes for Microbial Pathogens and Antibiotic Resistance Genes Using a Shotgun Metagenomic Approach

Fomites are a well-known source of microbial infections and previous studies have provided insights into the sojourning microbiome of fomites from various sources. Paper currency notes are one of the most commonly exchanged objects and its potential to transmit pathogenic organisms has been well recognized. Approaches to identify the microbiome associated with paper currency notes ...

Integrative transcriptome analysis suggest processing of a subset of long non-coding RNAs to small RNAs

Background The availability of sequencing technology has enabled understanding of transcriptomes through genome-wide approaches including RNA-sequencing. Contrary to the previous assumption that large tracts of the eukaryotic genomes are not transcriptionally active, recent evidence from transcriptome sequencing approaches have revealed pervasive transcription in many genomes of ...

MitoLSDB: A Comprehensive Resource to Study Genotype to Phenotype Correlations in Human Mitochondrial DNA Variations

Human mitochondrial DNA (mtDNA) encodes a set of 37 genes which are essential structural and functional components of the electron transport chain. Variations in these genes have been implicated in a broad spectrum of diseases and are extensively reported in literature and various databases. In this study, we describe MitoLSDB, an integrated platform to catalogue disease ...

Dynamic Expression of Long Non-Coding RNAs (lncRNAs) in Adult Zebrafish

Long non-coding RNAs (lncRNA) represent an assorted class of transcripts having little or no protein coding capacity and have recently gained importance for their function as regulators of gene expression. Molecular studies on lncRNA have uncovered multifaceted interactions with protein coding genes. It has been suggested that lncRNAs are an additional layer of regulatory switches ...

Systematic Transcriptome Wide Analysis of lncRNA-miRNA Interactions

Background Long noncoding RNAs (lncRNAs) are a recently discovered class of non-protein coding RNAs, which have now increasingly been shown to be involved in a wide variety of biological processes as regulatory molecules. The functional role of many of the members of this class has been an enigma, except a few of them like Malat and HOTAIR. Little is known regarding the regulatory ...

lncRNome: a comprehensive knowledgebase of human long noncoding RNAs

The advent of high-throughput genome scale technologies has enabled us to unravel a large amount of the previously unknown transcriptionally active regions of the genome. Recent genome-wide studies have provided annotations of a large repertoire of various classes of noncoding transcripts. Long noncoding RNAs (lncRNAs) form a major proportion of these novel annotated noncoding ...

The Zebrafish GenomeWiki: a crowdsourcing approach to connect the long tail for zebrafish gene annotation

A large repertoire of gene-centric data has been generated in the field of zebrafish biology. Although the bulk of these data are available in the public domain, most of them are not readily accessible or available in nonstandard formats. One major challenge is to unify and integrate these widely scattered data sources. We tested the hypothesis that active community participation ...