5 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on ...

It is known from the work in [1] of Lu et al. that the non-supersymmetric charged D3-brane (with anisotropies in time as well as one of the spatial directions of D3-brane) of type IIB string theory is characterized by five independent parameters. By fixing one of the parameters and zooming into a particular region of space-time we construct a four parameter family of solution in ...

We study the graviton scattering in the background of non-susy Dp branes of type II string theories consisting of a metric, a dilaton and a (p + 1) form gauge field. We show numerically that in these backgrounds graviton experiences a scattering potential which takes the form of an infinite barrier in the low energy (near brane) limit for p ≤ 5 and therefore is never able to reach ...

We consider the space-like Dp brane solutions of type II string theories having isometries ISO(p + 1) × SO(8 − p, 1). These are asymptotically flat solutions or in other words, the metrics become flat at the time scale τ ≫ τ 0. On the other hand, when τ ∼ τ 0, we get (p + 1) + 1 dimensional flat FLRW metrics upon compactification on a (8 − p) dimensional hyperbolic space with time ...

A class of (2+1)-dimensional quantum many body system characterized by an anisotropic scaling symmetry (Lifshitz symmetry) near their quantum critical point can be described by a (3+1)-dimensional dual gravity theory with negative cosmological constant along with a massive vector field, where the scaling symmetry is realized by the metric as an isometry. We calculate the ...