10 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

We present a framework that describes the energy distribution of subjets of radius r within a jet of radius R. We consider both an inclusive sample of subjets as well as subjets centered around a predetermined axis, from which the jet shape can be obtained. For r ≪ R we factorize the physics at angular scales r and R to resum the logarithms of r/R. For central subjets, we consider ...

We study the transverse momentum spectrum of hadrons in jets. By measuring the transverse momentum with respect to a judiciously chosen axis, we find that this observable is insensitive to (the recoil of) soft radiation. Furthermore, for small transverse momenta we show that the effects of the jet boundary factorize, leading to a new transverse-momentum-dependent (TMD) ...

We introduce a broad class of fractal jet observables that recursively probe the collective properties of hadrons produced in jet fragmentation. To describe these collinear-unsafe observables, we generalize the formalism of fragmentation functions, which are important objects in QCD for calculating cross sections involving identified final-state hadrons. Fragmentation functions are ...

We introduce a method to compute one-loop soft functions for exclusive N - jet processes at hadron colliders, allowing for different definitions of the algorithm that determines the jet regions and of the measurements in those regions. In particular, we generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates the dependence on the jet boundary ...

To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production ...

Jets are an important probe to identify the hard interaction of interest at the LHC. They are routinely used in Standard Model precision measurements as well as in searches for new heavy particles, including jet substructure methods. In processes with several jets, one typically encounters hierarchies in the jet transverse momenta and/or dijet invariant masses. Large logarithms of ...

We present an efficient way to calculate the effect of soft QCD radiation at one loop, which is needed for predictions at next-to-next-to-leading logarithmic accuracy. We use rapidity coordinates and isolate the divergences in the integrand. By performing manipulations with cumulative variables, we avoid complications from plus distributions. We address rapidity divergences, ...

Several searches for new physics at the LHC require a fixed number of signal jets, vetoing events with additional jets from QCD radiation. As the probed scale of new physics gets much larger than the jet-veto scale, such jet vetoes strongly impact the QCD perturbative series, causing nontrivial theoretical uncertainties. We consider slepton pair production with 0 signal jets, for ...

LHC measurements involve cuts on several observables, but resummed calculations are mostly restricted to single variables. We show how the resummation of a class of double-differential measurements can be achieved through an extension of Soft-Collinear Effective Theory (SCET). A prototypical application is pp → Z + 0 jets, where the jet veto is imposed through the beam thrust event ...

Discriminating quark jets from gluon jets is an important but challenging problem in jet substructure. In this paper, we use the concept of mutual information to illuminate the physics of quark/gluon tagging. Ideal quark/gluon separation requires only one bit of truth information, so even if two discriminant variables are largely uncorrelated, they can still share the same “truth ...