Advanced search    

Search: authors:"Yo Mabuchi"

10 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Isolation of dental pulp stem cells with high osteogenic potential

Dental pulp stem cells/progenitor cells (DPSCs) can be easily obtained and can have excellent proliferative and mineralization potentials. Therefore, many studies have investigated the isolation and bone formation of DPSCs. In most previous reports, human DPSCs were traditionally isolated by exploiting their ability to adhere to plastic tissue culture dishes. DPSCs isolated by...

Notch2 Signaling Regulates the Proliferation of Murine Bone Marrow-Derived Mesenchymal Stem/Stromal Cells via c-Myc Expression

Mesenchymal stem/stromal cells (MSCs) reside in the bone marrow and maintain their stemness under hypoxic conditions. However, the mechanism underlying the effects of hypoxia on MSCs remains to be elucidated. This study attempted to uncover the signaling pathway of MSC proliferation. Under low-oxygen culture conditions, MSCs maintained their proliferation and differentiation...

Loss of the Homeodomain Transcription Factor Prep1 Perturbs Adult Hematopoiesis in the Bone Marrow

Prep1, a TALE-family homeodomain transcription factor, has been demonstrated to play a critical role in embryonic hematopoiesis, as its insufficiency caused late embryonic lethality associated with defective hematopoiesis and angiogenesis. In the present study, we generated hematopoietic- and endothelial cell-specific Prep1-deficient mice and demonstrated that expression of Prep1...

Purified Human Synovium Mesenchymal Stem Cells as a Good Resource for Cartilage Regeneration

Mesenchymal stem cells (MSCs) have the ability to differentiate into a variety of lineages and to renew themselves without malignant changes, and thus hold potential for many clinical applications. However, it has not been well characterized how different the properties of MSCs are depending on the tissue source in which they resided. We previously reported a novel technique for...

MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model

Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα+ Sca-1+ BMSCs expressed MHC class II following...

Adipose Stromal Cells Contain Phenotypically Distinct Adipogenic Progenitors Derived from Neural Crest

Recent studies have shown that adipose-derived stromal/stem cells (ASCs) contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate...

Homeodomain Transcription Factor Meis1 Is a Critical Regulator of Adult Bone Marrow Hematopoiesis

Hematopoietic stem cells in the bone marrow have the capacity to both self-renew and to generate all cells of the hematopoietic system. The balance of these two activities is controlled by hematopoietic stem cell-intrinsic regulatory mechanisms as well as extrinsic signals from the microenvironment. Here we demonstrate that Meis1, a TALE family homeodomain transcription factor...

RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways

Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared...

Purified Mesenchymal Stem Cells Are an Efficient Source for iPS Cell Induction

Background Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by the forced expression of defined transcription factors. Although most somatic cells are capable of acquiring pluripotency with minimal gene transduction, the poor efficiency of cell reprogramming and the uneven quality of iPS cells are still important problems. In particular, the...