Protein Engineering Design and Selection

http://peds.oxfordjournals.org

List of Papers (Total 2,066)

Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation

G protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent...

Circumventing the stability-function trade-off in an engineered FN3 domain

The favorable biophysical attributes of non-antibody scaffolds make them attractive alternatives to monoclonal antibodies. However, due to the well-known stability-function trade-off, these gains tend to be marginal after functional selection. A notable example is the fibronectin Type III (FN3) domain, FNfn10, which has been previously evolved to bind lysozyme with 1 pM affinity...

A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation...

Revisiting antibody modeling assessment for CDR-H3 loop

The antigen-binding site of antibodies, also known as complementarity-determining region (CDR), has hypervariable sequence properties. In particular, the third CDR loop of the heavy chain, CDR-H3, has such variability in its sequence, length, and conformation that ordinary modeling techniques cannot build a high-quality structure. At Stage 2 of the Second Antibody Modeling...

TetraMabs: simultaneous targeting of four oncogenic receptor tyrosine kinases for tumor growth inhibition in heterogeneous tumor cell populations

Monoclonal antibody-based targeted tumor therapy has greatly improved treatment options for patients. Antibodies against oncogenic receptor tyrosine kinases (RTKs), especially the ErbB receptor family, are prominent examples. However, long-term efficacy of such antibodies is limited by resistance mechanisms. Tumor evasion by a priori or acquired activation of other kinases is...

Elastic properties of dynein motor domain obtained from all-atom molecular dynamics simulations

Dyneins are large microtubule motor proteins that convert ATP energy to mechanical power. High-resolution crystal structures of ADP-bound cytoplasmic dynein have revealed the organization of the motor domain, comprising the AAA+ ring, the linker, the stalk/strut and the C sequence. Recently, the ADP.vanadate-bound structure, which is similar to the ATP hydrolysis transition state...

Influenza evolution and H3N2 vaccine effectiveness, with application to the 2014/2015 season

Influenza A is a serious disease that causes significant morbidity and mortality, and vaccines against the seasonal influenza disease are of variable effectiveness. In this article, we discuss the use of the pepitope method to predict the dominant influenza strain and the expected vaccine effectiveness in the coming flu season. We illustrate how the effectiveness of the 2014/2015...

Consensus protein design

A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review...

Overcoming a species-specificity barrier in development of an inhibitory antibody targeting a modulator of tumor stroma

The secreted disulfide catalyst Quiescin sulfhydryl oxidase-1 (QSOX1) affects extracellular matrix organization and is overexpressed in various adenocarcinomas and associated stroma. Inhibition of extracellular human QSOX1 by a monoclonal antibody decreased tumor cell migration in a cell co-culture model and hence may have therapeutic potential. However, the species specificity...

Structural features determining thermal adaptation of esterases

The adaptation of microorganisms to extreme living temperatures requires the evolution of enzymes with a high catalytic efficiency under these conditions. Such extremophilic enzymes represent valuable tools to study the relationship between protein stability, dynamics and function. Nevertheless, the multiple effects of temperature on the structure and function of enzymes are...

Directed evolution of human scFvs in DT40 cells

Cells that constitutively diversify their immunoglobulin genes can be used for selection of novel antibodies and for refining existing affinities and specificities. Here, we report an adaptation of the chicken DT40 system wherein its capacity for somatic hypermutation is harnessed to evolve human antibodies expressed as single-chain variable fragments (scFvs). Expression of...

Defining thermostability of membrane proteins by western blotting

Membrane proteins are relatively challenging targets for structural and other biophysical studies. Insufficient expression in various expression systems, inherent flexibility, and instability in the detergents that are required for membrane extraction are the main reasons for this limited success. Therefore, identification of suitable conditions and membrane protein variants that...

Development and characterization of cyclodextrin glucanotransferase as a maltoheptaose-producing enzyme using site-directed mutagenesis

Cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19) mainly produces cyclodextrins (CDs) using linear maltooligosaccharides. We performed site-directed saturation mutagenesis on the +1 substrate-binding residue, H233, of CGTase from alkalophilic Bacillus sp. I-5 to prepare specific-length oligosaccharides. The obtained mutant CGTase, H233Y, primarily produced maltoheptaose (G7...

An Escherichia coli system for evolving improved light-controlled DNA-binding proteins

Light-switchable proteins offer numerous opportunities as tools for manipulating biological systems with exceptional degrees of spatiotemporal control. Most designed light-switchable proteins currently in use have not been optimised using the randomisation and selection/screening approaches that are widely used in other areas of protein engineering. Here we report an approach for...

Polypeptide modification: an improved proglycinin design to stabilise oil-in-water emulsions†

β-Conglycinin and glycinin are soybean major seed storage proteins. Previous studies have shown that adding the extension region of β-conglycinin α subunit improves the emulsifying properties of proglycinin and confers more favourable characteristics than fusing the extension region of β-conglycinin α′ subunit or the hypervariable regions (A4IV) of glycinin A1aB1b subunit. To...

Directed evolution of anti-HER2 DARPins by SNAP display reveals stability/function trade-offs in the selection process

In vitro display technologies have proved to be powerful tools for obtaining high-affinity protein binders. We recently described SNAP display, an entirely in vitro DNA display system that uses the SNAP-tag to link protein with its encoding DNA in water-in-oil emulsions. Here, we apply SNAP display for the affinity maturation of a designed ankyrin repeat proteins (DARPin) that...

Discriminating between stabilizing and destabilizing protein design mutations via recombination and simulation

Accuracy of current computational protein design (CPD) methods is limited by inherent approximations in energy potentials and sampling. These limitations are often used to qualitatively explain design failures; however, relatively few studies provide specific examples or quantitative details that can be used to improve future CPD methods. Expanding the design method to include a...

Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity

Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2′-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary–secondary alcohol dehydrogenase from Clostridium autoethanogenum, a...

Studying protein fold evolution with hybrids of differently folded homologs

To study the sequence determinants governing protein fold evolution, we generated hybrid sequences from two homologous proteins with 40% identity but different folds: Pfl 6 Cro, which has a mixed α + β structure, and Xfaso 1 Cro, which has an all α-helical structure. First, we first examined eight chimeric hybrids in which the more structurally conserved N-terminal half of one...

Structure-based directed evolution of a monomeric triosephosphate isomerase: toward a pentose sugar isomerase

Through structure-based and directed evolution approaches, a new catalytic activity has been established on the (β/α)8 barrel enzyme triosephosphate isomerase (TIM). This work started from ml8bTIM, a monomeric variant of TIM, in which the phosphate-binding loop (loop-8) had been shortened. Structure analysis suggested an additional point mutation (V233A), converting ml8bTIM into...

Improvement of the soy formate dehydrogenase properties by rational design

Previous experiments on substitution of the residue Phe290 to Asp, Asn and Ser in NAD+-dependent formate dehydrogenase from soya Glycine max (SoyFDH) showed important role of the residue in enzyme thermal stability and catalytic properties (Alekseeva et al. Prot. Eng. Des. Sel., 2012a;25:781–88). In this work, we continued site-directed mutagenesis experiments of the Phe290 and...

Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design

Neopullulanase, a glycosyl hydrolase from Bacillus stearothermophilus (bsNpl), is a potentially valuable enzyme for starch and detergent industries. However, as the protein is not active at elevated temperatures and high surfactant concentrations, we aimed to increase its stability by rational enzyme design. Nine potentially destabilizing cavities were identified in the crystal...

Modulating the thermostability of Endoglucanase I from Trichoderma reesei using computational approaches

In the last decades, effective cellulose degradation became a major point of interest due to the properties of cellulose as a renewable energy source and the widespread application of cellulases (the cellulose degrading enzymes) in many industrial processes. Effective bioconversion of lignocellulosic biomass into soluble sugars for ethanol production requires use of thermostable...

Use of a genetically encoded hydrogen peroxide sensor for whole cell screening of enzyme activity

We report the use of HyPer, a genetically encoded, fluorescent sensor that reacts with hydrogen peroxide (H2O2), in a novel screen to engineer enzymes for enhanced production of H2O2. We co-expressed HyPer with cytochrome P450 BM3 variants and, using HyPer's ratiometric signal, found variants that produce greater amounts of H2O2 than the wild-type enzyme through the leakage...