Frontiers of Information Technology & Electronic Engineering

http://link.springer.com/journal/11714

List of Papers (Total 59)

A new hierarchical software architecture towards safety-critical aspects of a drone system

A new hierarchical software architecture is proposed to improve the safety and reliability of a safety-critical drone system from the perspective of its source code. The proposed architecture uses formal verification methods to ensure that the implementation of each module satisfies its expected design specification, so that it prevents a drone from crashing due to unexpected...

Development of a novel autonomous lower extremity exoskeleton robot for walking assistance

Today, exoskeletons are widely applied to provide walking assistance for patients with lower limb motor incapacity. Most existing exoskeletons are under-actuated, resulting in a series of problems, e.g., interference and unnatural gait during walking. In this study, we propose a novel intelligent autonomous lower extremity exoskeleton (Auto-LEE), aiming at improving the user...

Attention shifting during child—robot interaction: a preliminary clinical study for children with autism spectrum disorder

There is an increasing need to introduce socially interactive robots as a means of assistance in autism spectrum disorder (ASD) treatment and rehabilitation, to improve the effectiveness of rehabilitation training and the diversification of treatment, and to alleviate the shortage of medical personnel in mainland China and other places in the world. In this preliminary clinical...

Task planning in robotics: an empirical comparison of PDDL- and ASP-based systems

Robots need task planning algorithms to sequence actions toward accomplishing goals that are impossible through individual actions. Off-the-shelf task planners can be used by intelligent robotics practitioners to solve a variety of planning problems. However, many different planners exist, each with different strengths and weaknesses, and there are no general rules for which...

Active fault-tolerant tracking control of a quadrotor with model uncertainties and actuator faults

This paper presents a reliable active fault-tolerant tracking control system (AFTTCS) for actuator faults in a quadrotor unmanned aerial vehicle (QUAV). The proposed AFTTCS is designed based on a well-known model reference adaptive control (MRAC) framework that guarantees the global asymptotic stability of a QUAV system. To mitigate the negative impacts of model uncertainties and...

Disturbance rejection via iterative learning control with a disturbance observer for active magnetic bearing systems

Although standard iterative learning control (ILC) approaches can achieve perfect tracking for active magnetic bearing (AMB) systems under external disturbances, the disturbances are required to be iteration-invariant. In contrast to existing approaches, we address the tracking control problem of AMB systems under iteration-variant disturbances that are in different channels from...

Steering motion control of a snake robot via a biomimetic approach

We propose a biomimetic approach for steering motion control of a snake robot. Inspired by a vertebrate biological motor system paradigm, a hierarchical control scheme is adopted. In the control scheme, an artificial central pattern generator (CPG) is employed to generate serpentine locomotion in the robot. This generator outputs the coordinated desired joint angle commands to...

Autonomous flying blimp interaction with human in an indoor space

We present the Georgia Tech Miniature Autonomous Blimp (GT-MAB), which is designed to support human-robot interaction experiments in an indoor space for up to two hours. GT-MAB is safe while flying in close proximity to humans. It is able to detect the face of a human subject, follow the human, and recognize hand gestures. GT-MAB employs a deep neural network based on the single...

An execution control method for the Aerostack aerial robotics framework

Execution control is a critical task of robot architectures which has a deep impact on the quality of the final system. In this study, we describe a general method for execution control, which is a part of the Aerostack software framework for aerial robotics, and present technical challenges for execution control and design decisions to develop the method. The proposed method has...

Safe navigation of quadrotors with jerk limited trajectory

Many aerial applications require unmanned aerial systems operate in safe zones because of the presence of obstacles or security regulations. It is a non-trivial task to generate a smooth trajectory satisfying both dynamic constraints and motion limits of the unmanned vehicles while being inside the safe zones. Then the task becomes even more challenging for real-time applications...

Time-varying formation tracking for uncertain second-order nonlinear multi-agent systems

Our study is concerned with the time-varying formation tracking problem for second-order multi-agent systems that are subject to unknown nonlinear dynamics and external disturbance, and the states of the followers form a predefined time-varying formation while tracking the state of the leader. The total uncertainty lumps the unknown nonlinear dynamics and the external disturbance...

Distribution system state estimation: an overview of recent developments

In the envisioned smart grid, high penetration of uncertain renewables, unpredictable participation of (industrial) customers, and purposeful manipulation of smart meter readings, all highlight the need for accurate, fast, and robust power system state estimation (PSSE). Nonetheless, most real-time data available in the current and upcoming transmission/distribution systems are...

A-STC: auction-based spanning tree coverage algorithm formotion planning of cooperative robots

The multi-robot coverage motion planning (MCMP) problem in which every reachable area must be covered is common in multi-robot systems. To deal with the MCMP problem, we propose an efficient, complete, and off-line algorithm, named the “auction-based spanning tree coverage (A-STC)” algorithm. First, the configuration space is divided into mega cells whose size is twice the...

On robustness of an AMB suspended energy storage flywheel platform under characteristic model based all-coefficient adaptive control laws

A characteristic model based all-coefficient adaptive control law was recently implemented on an experimental test rig for high-speed energy storage flywheels suspended on magnetic bearings. Such a control law is an intelligent control law, as its design does not rely on a pre-established mathematical model of a plant but identifies its characteristic model while the plant is...

Aprojected gradient based game theoretic approach for multi-user power control in cognitive radio network

The fifth generation (5G) networks have been envisioned to support the explosive growth of data demand caused by the increasing traditional high-rate mobile users and the expected rise of interconnections between human and things. To accommodate the ever-growing data traffic with scarce spectrum resources, cognitive radio (CR) is considered a promising technology to improve...

Embracing non-orthogonalmultiple access in future wireless networks

This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless...

A tutorial on 5G and the progress in China

5G has been developing at high speed since 2012 and has become a global economic driver. In this paper, we offer a survey of 5G covering visions, requirements, roadmap, key technologies, standardization, frequency management, technology trials, industrial ecology, and a list of main 5G contributors. We also point out the contributions to 5G from China, aiming to be ‘globally...