LIPICS - Leibniz International Proceedings in Informatics

http://drops.dagstuhl.de/opus/institut_lipics.php

List of Papers (Total 6,494)

RT-CASEs: Container-Based Virtualization for Temporally Separated Mixed-Criticality Task Sets

This paper presents the notion of real-time containers, or rt-cases, conceived as the convergence of container-based virtualization technologies, such as Docker, and hard real-time operating systems. The idea is to allow critical containers, characterized by stringent timeliness and reliability requirements, to cohabit with traditional non real-time containers on the same...

The Delta-calculus: Syntax and Types

We present the Delta-calculus, an explicitly typed lambda-calculus with strong pairs, projections and explicit type coercions. The calculus can be parametrized with different intersection type theories T, e.g. the Coppo-Dezani, the Coppo-Dezani-Sall´┐Ż, the Coppo-Dezani-Venneri and the Barendregt-Coppo-Dezani ones, producing a family of Delta-calculi with related intersection typed...

Homotopy Canonicity for Cubical Type Theory

Cubical type theory provides a constructive justification of homotopy type theory and satisfies canonicity: every natural number is convertible to a numeral. A crucial ingredient of cubical type theory is a path lifting operation which is explained computationally by induction on the type involving several non-canonical choices. In this paper we show by a sconing argument that if...

Quasi-Linear-Time Algorithm for Longest Common Circular Factor

We introduce the Longest Common Circular Factor (LCCF) problem in which, given strings S and T of length at most n, we are to compute the longest factor of S whose cyclic shift occurs as a factor of T. It is a new similarity measure, an extension of the classic Longest Common Factor. We show how to solve the LCCF problem in O(n log^4 n) time using O(n log^2 n) space.

Cartesian Tree Matching and Indexing

We introduce a new metric of match, called Cartesian tree matching, which means that two strings match if they have the same Cartesian trees. Based on Cartesian tree matching, we define single pattern matching for a text of length n and a pattern of length m, and multiple pattern matching for a text of length n and k patterns of total length m. We present an O(n+m) time algorithm...

Approximating Approximate Pattern Matching

Given a text T of length n and a pattern P of length m, the approximate pattern matching problem asks for computation of a particular distance function between P and every m-substring of T. We consider a (1 +/- epsilon) multiplicative approximation variant of this problem, for l_p distance function. In this paper, we describe two (1+epsilon)-approximate algorithms with a runtime...

Stringology Combats Microbiological Threats (Invited Talk)

A major concern worldwide is the acquisition of antibiotic resistance by pathogenic bacteria. Genomic elements carrying resistance and virulence function can be acquired through horizontal gene transfer, yielding a broad spread of evolutionary successful elements, both within and in between species, with devastating effect. Recent advances in pyrosequencing techniques, combined...

Packing Geometric Objects with Optimal Worst-Case Density (Multimedia Exposition)

We motivate and visualize problems and methods for packing a set of objects into a given container, in particular a set of {different-size} circles or squares into a square or circular container. Questions of this type have attracted a considerable amount of attention and are known to be notoriously hard. We focus on a particularly simple criterion for deciding whether a set can...

Efficient Algorithms for Ortho-Radial Graph Drawing

Orthogonal drawings, i.e., embeddings of graphs into grids, are a classic topic in Graph Drawing. Often the goal is to find a drawing that minimizes the number of bends on the edges. A key ingredient for bend minimization algorithms is the existence of an orthogonal representation that allows to describe such drawings purely combinatorially by only listing the angles between the...

Preprocessing Ambiguous Imprecise Points

Let R = {R_1, R_2, ..., R_n} be a set of regions and let X = {x_1, x_2, ..., x_n} be an (unknown) point set with x_i in R_i. Region R_i represents the uncertainty region of x_i. We consider the following question: how fast can we establish order if we are allowed to preprocess the regions in R? The preprocessing model of uncertainty uses two consecutive phases: a preprocessing...

Packing Disks into Disks with Optimal Worst-Case Density

We provide a tight result for a fundamental problem arising from packing disks into a circular container: The critical density of packing disks in a disk is 0.5. This implies that any set of (not necessarily equal) disks of total area delta <= 1/2 can always be packed into a disk of area 1; on the other hand, for any epsilon>0 there are sets of disks of area 1/2+epsilon that...

Counting Polygon Triangulations is Hard

We prove that it is #P-complete to count the triangulations of a (non-simple) polygon.

Cubic Planar Graphs That Cannot Be Drawn On Few Lines

For every integer l, we construct a cubic 3-vertex-connected planar bipartite graph G with O(l^3) vertices such that there is no planar straight-line drawing of G whose vertices all lie on l lines. This strengthens previous results on graphs that cannot be drawn on few lines, which constructed significantly larger maximal planar graphs. We also find apex-trees and cubic bipartite...

Dual Circumference and Collinear Sets

We show that, if an n-vertex triangulation T of maximum degree Delta has a dual that contains a cycle of length l, then T has a non-crossing straight-line drawing in which some set, called a collinear set, of Omega(l/Delta^4) vertices lie on a line. Using the current lower bounds on the length of longest cycles in 3-regular 3-connected graphs, this implies that every n-vertex...

Maintaining the Union of Unit Discs Under Insertions with Near-Optimal Overhead

We present efficient data structures for problems on unit discs and arcs of their boundary in the plane. (i) We give an output-sensitive algorithm for the dynamic maintenance of the union of n unit discs under insertions in O(k log^2 n) update time and O(n) space, where k is the combinatorial complexity of the structural change in the union due to the insertion of the new disc...

On the Metric Distortion of Embedding Persistence Diagrams into Separable Hilbert Spaces

Persistence diagrams are important descriptors in Topological Data Analysis. Due to the nonlinearity of the space of persistence diagrams equipped with their diagram distances, most of the recent attempts at using persistence diagrams in machine learning have been done through kernel methods, i.e., embeddings of persistence diagrams into Reproducing Kernel Hilbert Spaces, in...

Preconditioning for the Geometric Transportation Problem

In the geometric transportation problem, we are given a collection of points P in d-dimensional Euclidean space, and each point is given a supply of mu(p) units of mass, where mu(p) could be a positive or a negative integer, and the total sum of the supplies is 0. The goal is to find a flow (called a transportation map) that transports mu(p) units from any point p with mu(p) > 0...

Connecting the Dots (with Minimum Crossings)

We study a prototype Crossing Minimization problem, defined as follows. Let F be an infinite family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in the Euclidean plane, a collection L subseteq Lines(P)={l: l is a line segment with both endpoints in P}, and a non-negative integer k, decide if there is a subcollection L'subseteq L such...

Some Geometric and Computational Challenges Arising in Structural Molecular Biology (Invited Talk)

Computational protein design is a transformative field with exciting prospects for advancing both basic science and translational medical research. New algorithms blend discrete and continuous geometry to address the challenges of creating designer proteins. I will discuss recent progress in this area and some interesting open problems. I will motivate this talk by discussing how...

Approximate Unitary n^2/3-Designs Give Rise to Quantum Channels with Super Additive Classical Holevo Capacity

In a breakthrough, Hastings [2009] showed that there exist quantum channels whose classical Holevo capacity is superadditive i.e. more classical information can be transmitted by quantum encoding strategies entangled across multiple channel uses as compared to unentangled quantum encoding strategies. Hastings' proof used Haar random unitaries to exhibit superadditivity. In this...

From Graph Theory to Network Science: The Natural Emergence of Hyperbolicity

Network science is driven by the question which properties large real-world networks have and how we can exploit them algorithmically. In the past few years, hyperbolic graphs have emerged as a very promising model for scale-free networks. The connection between hyperbolic geometry and complex networks gives insights in both directions: (1) Hyperbolic geometry forms the basis of...

Fine-Grained Complexity Theory

Suppose the fastest algorithm that we can design for some problem runs in time O(n^2). However, we want to solve the problem on big data inputs, for which quadratic time is impractically slow. We can keep searching for a faster algorithm, but maybe none exists. Is there any reasoning that provides evidence against significantly faster algorithms, and thus allows us to stop...

Algorithmic Data Science

The area of algorithmic data science provides new opportunities for researchers in the algorithmic community. In this paper we will see examples that demonstrate that algorithm engineering is the perfect basis for algorithmic data science. But there are also many open interesting questions for purely theoretically interested computer scientists. In my opinion, these opportunities...

The Many Facets of String Transducers

Regular word transductions extend the robust notion of regular languages from a qualitative to a quantitative reasoning. They were already considered in early papers of formal language theory, but turned out to be much more challenging. The last decade brought considerable research around various transducer models, aiming to achieve similar robustness as for automata and...

Computational Complexity and Partition Functions

This paper is an extended abstract of my STACS 2019 talk "Computational Complexity and Partition Functions".