LIPICS - Leibniz International Proceedings in Informatics

http://drops.dagstuhl.de/opus/institut_lipics.php

List of Papers (Total 3,016)

Coq Support in HAHA

HAHA is a tool that helps in teaching and learning Hoare logic. It is targeted at an introductory course on software verification. We present a set of new features of the HAHA verification environment that exploit Coq. These features are (1) generation of verification conditions in Coq so that they can be explored and proved interactively and (2) compilation of HAHA programs into...

Parametricity, Automorphisms of the Universe, and Excluded Middle

It is known that one can construct non-parametric functions by assuming classical axioms. Our work is a converse to that: we prove classical axioms in dependent type theory assuming specific instances of non-parametricity. We also address the interaction between classical axioms and the existence of automorphisms of a type universe. We work over intensional Martin-L�f dependent...

Realizability at Work: Separating Two Constructive Notions of Finiteness

We elaborate in detail a realizability model for Martin-L�f dependent type theory with the purpose to analyze a subtle distinction between two constructive notions of finiteness of a set A. The two notions are: (1) A is Noetherian: the empty list can be constructed from lists over A containing duplicates by a certain inductive shortening process; (2) A is streamless: every...

On Natural Deduction for Herbrand Constructive Logics II: Curry-Howard Correspondence for Markov's Principle in First-Order Logic and Arithmetic

Intuitionistic first-order logic extended with a restricted form of Markov's principle is constructive and admits a Curry-Howard correspondence, as shown by Herbelin. We provide a simpler proof of that result and then we study intuitionistic first-order logic extended with unrestricted Markov's principle. Starting from classical natural deduction, we restrict the excluded middle...

A Normalizing Computation Rule for Propositional Extensionality in Higher-Order Minimal Logic

The univalence axiom expresses the principle of extensionality for dependent type theory. However, if we simply add the univalence axiom to type theory, then we lose the property of canonicity - that every closed term computes to a canonical form. A computation becomes "stuck" when it reaches the point that it needs to evaluate a proof term that is an application of the...

Intersection Types and Denotational Semantics: An Extended Abstract (Invited Paper)

This is a short survey of the use of intersection types for reasoning in a finitary way about terms interpretations in various models of lambda-calculus.

Mechanized Metatheory Revisited: An Extended Abstract (Invited Paper)

Proof assistants and the programming languages that implement them need to deal with a range of linguistic expressions that involve bindings. Since most mature proof assistants do not have built-in methods to treat this aspect of syntax, many of them have been extended with various packages and libraries that allow them to encode bindings using, for example, de Bruijn numerals...

A Population Protocol for Exact Majority with O(log5/3 n) Stabilization Time and Theta(log n) States

A population protocol is a sequence of pairwise interactions of n agents. During one interaction, two randomly selected agents update their states by applying a deterministic transition function. The goal is to stabilize the system at a desired output property. The main performance objectives in designing such protocols are small number of states per agent and fast stabilization...

A Population Protocol for Exact Majority with O(log5/3 n) Stabilization Time and Theta(log n) States

A population protocol is a sequence of pairwise interactions of n agents. During one interaction, two randomly selected agents update their states by applying a deterministic transition function. The goal is to stabilize the system at a desired output property. The main performance objectives in designing such protocols are small number of states per agent and fast stabilization...

Brief Announcement: Loosely-stabilizing Leader Election with Polylogarithmic Convergence Time

We present a fast loosely-stabilizing leader election protocol in the population protocol model. It elects a unique leader in a poly-logarithmic time and holds the leader for a polynomial time with arbitrarily large degree in terms of parallel time, i.e, the number of steps per the population size.

Brief Announcement: Effects of Topology Knowledge and Relay Depth on Asynchronous Consensus

Consider an asynchronous incomplete directed network. We study the feasibility and efficiency of approximate crash-tolerant consensus under different restrictions on topology knowledge and relay depth, i.e., the maximum number of hops any message can be relayed.

Brief Announcement: On the Impossibility of Detecting Concurrency

We identify a general principle of distributed computing: one cannot force two processes running in parallel to see each other. This principle is formally stated in the context of asynchronous processes communicating through shared objects, using trace-based semantics. We prove that it holds in a reasonable computational model, and then study the class of concurrent...

Brief Announcement: Fast and Scalable Group Mutual Exclusion

The group mutual exclusion (GME) problem is a generalization of the classical mutual exclusion problem in which every critical section is associated with a type or session. Critical sections belonging to the same session can execute concurrently, whereas critical sections belonging to different sessions must be executed serially. The well-known read-write mutual exclusion problem...

Brief Announcement: On Simple Back-Off in Unreliable Radio Networks

In this paper, we study local broadcast in the dual graph model, which describes communication in a radio network with both reliable and unreliable links. Existing work proved that efficient solutions to these problems are impossible in the dual graph model under standard assumptions. In real networks, however, simple back-off strategies tend to perform well for solving these...

Brief Announcement: A Tight Lower Bound for Clock Synchronization in Odd-Ary M-Toroids

In this paper we show a tight closed-form expression for the optimal clock synchronization in k-ary m-cubes with wraparound, where k is odd. This is done by proving a lower bound of 1/4um (k-1/k), where k is the (odd) number of processes in each of the m dimensions, and u is the uncertainty in delay on every link. Our lower bound matches the previously known upper bound.

Brief Announcement: Exact Size Counting in Uniform Population Protocols in Nearly Logarithmic Time

We study population protocols: networks of anonymous agents whose pairwise interactions are chosen uniformly at random. The size counting problem is that of calculating the exact number n of agents in the population, assuming no leader (each agent starts in the same state). We give the first protocol that solves this problem in sublinear time. The protocol converges in O(log n...

Brief Announcement: Generalising Concurrent Correctness to Weak Memory

Correctness conditions like linearizability and opacity describe some form of atomicity imposed on concurrent objects. In this paper, we propose a correctness condition (called causal atomicity) for concurrent objects executing in a weak memory model, where the histories of the objects in question are partially ordered. We establish compositionality and abstraction results for...

Brief Announcement: Deterministic Contention Resolution on a Shared Channel

A shared channel, also called multiple-access channel, is one of the fundamental communication models. Autonomous entities communicate over a shared medium, and one of the main challenges is how to efficiently resolve collisions occurring when more than one entity attempts to access the channel at the same time. In this work we explore the impact of asynchrony, knowledge (or...

Brief Announcement: Randomized Blind Radio Networks

Radio networks are a long-studied model for distributed system of devices which communicate wirelessly. When these devices are mobile or have limited capabilities, the system is best modeled by the ad-hoc variant, in which the devices do not know the structure of the network. Much work has been devoted to designing algorithms for the ad-hoc model, particularly for fundamental...

Brief Announcement: Local Distributed Algorithms in Highly Dynamic Networks

We define a generalization of local distributed graph problems to (synchronous round-based) dynamic networks and present a framework for developing algorithms for these problems. We require two properties from our algorithms: (1) They should satisfy non-trivial guarantees in every round. The guarantees should be stronger the more stable the graph has been during the last few...

Lattice Agreement in Message Passing Systems

This paper studies the lattice agreement problem and the generalized lattice agreement problem in distributed message passing systems. In the lattice agreement problem, given input values from a lattice, processes have to non-trivially decide output values that lie on a chain. We consider the lattice agreement problem in both synchronous and asynchronous systems. For synchronous...

Congested Clique Algorithms for Graph Spanners

Graph spanners are sparse subgraphs that faithfully preserve the distances in the original graph up to small stretch. Spanner have been studied extensively as they have a wide range of applications ranging from distance oracles, labeling schemes and routing to solving linear systems and spectral sparsification. A k-spanner maintains pairwise distances up to multiplicative factor...

Fault-Tolerant Consensus with an Abstract MAC Layer

In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we produce two new randomized algorithms that solve this problem in the abstract MAC layer model, which captures the basic interface and communication guarantees provided by most wireless MAC layers. Our algorithms work for any number of failures, require no advance knowledge of the...

Broadcast and Minimum Spanning Tree with o(m) Messages in the Asynchronous CONGEST Model

We provide the first asynchronous distributed algorithms to compute broadcast and minimum spanning tree with o(m) bits of communication, in a sufficiently dense graph with n nodes and m edges. For decades, it was believed that Omega(m) bits of communication are required for any algorithm that constructs a broadcast tree. In 2015, King, Kutten and Thorup showed that in the KT1...

Strong Separations Between Broadcast and Authenticated Channels

In the theory of distributed systems and cryptography one considers a setting with n parties, (often) connected via authenticated bilateral channels, who want to achieve a certain goal even if some fraction of the parties is dishonest. A classical goal of this type is to construct a broadcast channel. A broadcast channel guarantees that all honest recipients get the same value v...