Cell Death & Disease

http://www.nature.com/cddis

List of Papers (Total 2,063)

Elevation of O-GlcNAc and GFAT expression by nicotine exposure promotes epithelial‐mesenchymal transition and invasion in breast cancer cells

Cigarette smoking has been shown to be a carcinogenic factor in breast cancer. Nicotine (Nic), an active component of tobacco, has been found to induce epithelial-mesenchymal transition (EMT) in breast cancer cells. However, the alterations in protein O-GlcNAcylation in Nic-mediated tumorigenesis and malignization mechanisms are less well studied. Herein, we found that cellular O...

B7-H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2

Accumulating evidence suggests that aerobic glycolysis is important for colorectal cancer (CRC) development. However, the underlying mechanisms have yet to be elucidated. B7-H3, an immunoregulatory protein, is broadly overexpressed by multiple tumor types and plays a vital role in tumor progression. In this study, we found that overexpression of B7-H3 effectively increased the...

AID modulates carcinogenesis network via DNA demethylation in bladder urothelial cell carcinoma

Bladder cancer is one of the most common malignant diseases in the urinary system, with poor survival after metastasis. Activation-induced cytidine deaminase (AID), a versatile enzyme involved in antibody diversification, is an oncogenic gene that induces somatic hypermutation and class-switch recombination (CSR). However, the contribution of AID-mediated DNA demethylation to...

Inhibiting 4E-BP1 re-activation represses podocyte cell cycle re-entry and apoptosis induced by adriamycin

Podocyte loss is one of the determining factors for the progression toward glomerulosclerosis. Podocyte is terminally differentiated and does not typically proliferate following injury and loss. However, recent evidence suggested that during renal injury, podocyte could re-enter the cell cycle, sensitizing the cells to injury and death, but the molecular mechanisms underlying it...

The classical NLRP3 inflammasome controls FADD unconventional secretion through microvesicle shedding

Fas-associated death domain (FADD) is a key adaptor molecule involved in numerous physiological processes including cell death, proliferation, innate immunity and inflammation. Therefore, changes in FADD expression have dramatic cellular consequences. In mice and humans, FADD regulation can occur through protein secretion. However, the molecular mechanisms accounting for human...

circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis

More and more evidence indicates that circular RNAs (circRNAs) have important roles in several diseases, especially in cancers. However, their involvement remains to be investigated in breast cancer. Through screening circRNA profile, we identified 235 differentially expressed circRNAs in breast cancer. Subsequently, we explored the clinical significance of two circTADA2As in a...

ZFP57 suppress proliferation of breast cancer cells through down-regulation of MEST-mediated Wnt/β-catenin signalling pathway

Activation of oncogenes by promoter hypomethylation plays an important role in tumorigenesis. Zinc finger protein 57 (ZFP57), a member of KRAB-ZFPs, could maintain DNA methylation in embryonic stem cells (ESCs), although its role and underlying mechanisms in breast cancer are not well understood. In this study, we found that ZFP57 had low expression in breast cancer, and...

lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial–mesenchymal transition by competitively binding miR-141-3p

Long non-coding RNAs (lncRNAs) have been reported to be involved in various pathophysiological processes in many diseases. However, the role and mechanism of lncRNAs in pulmonary fibrosis have not been explicitly delineated. In the present study, we found that lncRNA ZEB1 antisense RNA 1 (ZEB1-AS1) is upregulated in the lungs of BLM-induced rats and TGF-β1-induced RLE-6TN cells...

Targeting KPNB1 overcomes TRAIL resistance by regulating DR5, Mcl-1 and FLIP in glioblastoma cells

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with potential anticancer effect, but innate and adaptive TRAIL resistance in majority of cancers limit its clinical application. Karyopherin β1 (KPNB1) inhibition in cancer cells has been reported to abrogate the nuclear import of TRAIL receptor DR5 and facilitate its localization on the cell surface...

Altered mitochondrial quality control in Atg7-deficient VSMCs promotes enhanced apoptosis and is linked to unstable atherosclerotic plaque phenotype

Vascular smooth muscle cells (VSMCs) are one of the main cellular determinants in arterial pathology. A large body of evidence indicates that death of VSMCs is associated with features of high-risk/vulnerable atherosclerotic plaques. Mitochondrial turnover is an essential aspect of the mitochondrial quality control in which dysfunctional mitochondria are selectively eliminated...

Downregulation of G2/mitotic-specific cyclinB1 triggers autophagy via AMPK-ULK1-dependent signal pathway in nasopharyngeal carcinoma cells

CyclinB1 is a regulatory protein involved in mitosis. Multiple lines of evidence indicate that cyclinB1 depletion constrains proliferation and induces apoptosis in human tumor cells. The cells become susceptible to suffer a critical situation when cyclinB1 is downregulated. Autophagy is a major intracellular degradation system that recycles nutrients, removes damaged organelles...

sPIF promotes myoblast differentiation and utrophin expression while inhibiting fibrosis in Duchenne muscular dystrophy via the H19/miR-675/let-7 and miR-21 pathways

Duchenne muscular dystrophy (DMD) is a progressive, lethal, X-linked disease of skeletal and cardiac muscles caused by mutations in the dystrophin gene. Loss of dystrophin leads to muscle fiber damage and impairment of satellite cell asymmetric division, which are essential for muscle regeneration. These processes ultimately result in muscle wasting and the replacement of the...

Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells

The mevalonate pathway has emerged as a promising target for several solid tumors. Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of this pathway, and are commonly used to treat patients with hypercholesterolemia. Pleiotropic antitumor mechanisms of statins have been demonstrated for several human cancer types. However...

Cereblon attenuates DNA damage-induced apoptosis by regulating the transcription-independent function of p53

Cereblon (CRBN) is the substrate receptor of the cullin 4-RING E3 ligase complex and has been employed for targeted protein degradation in the treatment of cancers. However, its normal physiological functions and molecular mechanism in the regulation of DNA damage response are largely unknown. Here we find that CRBN plays a protective role against DNA damage-induced apoptosis in...

miR-34a: a new player in the regulation of T cell function by modulation of NF-κB signaling

NF-κB functions as modulator of T cell receptor-mediated signaling and transcriptional regulator of miR-34a. Our in silico analysis revealed that miR-34a impacts the NF-κB signalosome with miR-34a binding sites in 14 key members of the NF-κB signaling pathway. Functional analysis identified five target genes of miR-34a including PLCG1, CD3E, PIK3CB, TAB2, and NFΚBIA...

Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma

CD47 monoclonal antibodies (mAbs) activate tumor-associated macrophages (TAMs) in sarcomas to phagocytose and eliminate cancer cells. Though CD47 mAbs have entered clinical trials, diagnostic tests for monitoring therapy response in vivo are currently lacking. Ferumoxytol is an FDA-approved iron supplement which can be used “off label” as a contrast agent: the nanoparticle-based...

Wnt3a disrupts GR-TEAD4-PPARγ2 positive circuits and cytoskeletal rearrangement in a β-catenin-dependent manner during early adipogenesis

Adipogenesis is a process which induces or represses many genes in a way to drive irreversible changes of cell phenotypes; lipid accumulation, round cell-shape, secreting many adipokines. As a master transcription factor (TF), PPARγ2 induces several target genes to orchestrate these adipogenic changes. Thus induction of Pparg2 gene is tightly regulated by many adipogenic and also...

Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity

Transcription factor EB (TFEB) is a master transcriptional regulator playing a key role in lysosomal biogenesis, autophagy and lysosomal exocytosis. TFEB activity is inhibited following its phosphorylation by mammalian target of rapamycin complex 1 (mTORC1) on the surface of the lysosome. Phosphorylated TFEB is bound by 14-3-3 proteins, resulting in its cytoplasmic retention in...

miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer that lacks effective targets for therapy. Alteration of epidermal growth factor (EGF) expression has been recognized as an essential molecular event in pancreatic carcinogenesis. Accumulating studies have demonstrated that miRNAs play critical roles in EGF signaling regulation, tumor initiation, cell...

Placental mitochondrial adaptations in preeclampsia associated with progression to term delivery

Preeclampsia is a devastating pregnancy disorder. Severity varies widely, and while severe preeclampsia often requires pre-term delivery, women with mild preeclampsia may reach term with minor interventions. The mechanisms that mediate disease severity are poorly understood, but may include adaptive processes by the placenta. We aimed to establish whether in pregnancies that...

Ribosomal protein S27-like regulates autophagy via the β-TrCP-DEPTOR-mTORC1 axis

RPS27L (Ribosomal protein S27-like), an evolutionarily conserved ribosomal protein, is a p53 target and a physiological p53 regulator. We previously reported that Rps27l disruption enhanced lymphomagenesis in Trp53+/− mice by triggering genome instability and sensitized Trp53+/− mice to radiation by blocking DNA damage response. Whether and how RPS27L modulates autophagy is...

Tubeimoside I induces accumulation of impaired autophagolysosome against cervical cancer cells by both initiating autophagy and inhibiting lysosomal function

Cervical cancer is one of the most aggressive human cancers with poor prognosis due to constant chemoresistance and repeated relapse. Tubeimoside I (TBM) has been identified as a potent antitumor agent that inhibits cancer cell proliferation by triggering apoptosis and inducing cell cycle arrest. Nevertheless, the detailed mechanism remains unclear and needs to be further...

Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer

Sialyltransferases transfer sialic acid to nascent oligosaccharides and are upregulated in cancer. The inhibition of sialyltransferases is emerging as a potential strategy to prevent metastasis in several cancers, including ovarian cancer. ST3GAL1 is a sialyltransferase that catalyzes the transfer of sialic acid from cytidine monophosphate-sialic acid to galactose-containing...

CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with different roles in tumour progression

Human glioma-associated mesenchymal stem cells (gbMSCs) are the stromal cell components that contribute to the tumourigenesis of malignant gliomas. Recent studies have shown that gbMSCs consist of two distinct subpopulations (CD90+ and CD90− gbMSCs). However, the different roles in glioma progression have not been expounded. In this study, we found that the different roles of...