Tree Physiology

https://academic.oup.com/treephys

List of Papers (Total 1,368)

Limitations to using phloem sap to assess tree water and nutrient status

Rapid, reliable tools are needed to infer physiological and nutritional health for managing forest systems. Understanding the processes governing tree health is central to the development of these tools. Non-foliar approaches such as the collection of phloem sap reflect processes governing both the use and acquisition of plant water and nutrients at a wide range of temporal...

Estimation of phloem carbon translocation belowground at stand level in a hinoki cypress stand

At stand level, carbon translocation in tree stems has to match canopy photosynthesis and carbohydrate requirements to sustain growth and the physiological activities of belowground sinks. This study applied the Hagen–Poiseuille equation to the pressure-flow hypothesis to estimate phloem carbon translocation and evaluate what percentage of canopy photosynthate can be transported...

Diurnal dynamics of phloem loading: theoretical consequences for transport efficiency and flow characteristics

Phloem transport is the process by which plants internally distribute assimilates. The loading of assimilates near the photosynthetic source is responsible for generating enough osmotic pressure to drive sap flow towards the sink tissues where assimilates are consumed. Phloem loading is variable and subject to a diurnal cycle. It is dominated by photosynthesis during the day and...

Seasonal changes of sucrose transporter expression and sugar partitioning in common European tree species

In temperate woody species, carbon transport from source to sink tissues is a striking physiological process, particularly considering seasonal changes. The functions of different tissues can also alternate across the seasons. In this regard, phloem loading and sugar distribution are important aspects of carbon partitioning, and sucrose uptake transporters (SUTs) play a key role...

Xylem functioning, dysfunction and repair: a physical perspective and implications for phloem transport

Xylem and phloem are the two main conveyance systems in plants allowing exchanges of water and carbohydrates between roots and leaves. While each system has been studied in isolation for well over a century, the coupling and coordination between them remains the subject of inquiry and active research and frames the scope of the review here. Using a set of balance equations...

The impact of prolonged drought on phloem anatomy and phloem transport in young beech trees

Phloem failure has recently been recognized as one of the mechanisms causing tree mortality under drought, though direct evidence is still lacking. We combined 13C pulse-labelling of 8-year-old beech trees (Fagus sylvatica L.) growing outdoors in a nursery with an anatomical study of the phloem tissue in their stems to examine how drought alters carbon transport and phloem...

Repeated summer drought delays sugar export from the leaf and impairs phloem transport in mature beech

Phloem sustains maintenance and growth processes through transport of sugars from source to sink organs. Under low water availability, tree functioning is impaired, i.e., growth/photosynthesis decline and phloem transport may be hindered. In a 3-year throughfall exclusion (TE) experiment on mature European beech (Fagus sylvatica L.) we conducted 13CO2 branch labeling to...

Drought impacts on tree phloem: from cell-level responses to ecological significance

On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non...

Lack of acclimation of leaf area:sapwood area ratios in piñon pine and juniper in response to precipitation reduction and warming

The leaf area to sapwood area ratios of trees (Al:AS) can shift to maintain homeostatic gas exchange per unit leaf area in response to climate variability. We tested the hypothesis that trees alter their Al:AS ratios in response to long-term warming and reduced precipitation in order to maintain leaf-specific gas exchange rates under more stressful conditions. Whole-tree Al:AS...

Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): a global data set reveals coordination and trade-offs among water transport traits

Plants operate along a continuum of stringency of regulation of plant water potential from isohydry to anisohydry. However, most metrics and proxies of plant iso/anisohydric behavior have been developed from limited sets of site-specific experiments. Understanding the underlying mechanisms that determine species’ operating ranges along this continuum, independent of site and...

Linking stem growth respiration to the seasonal course of stem growth and GPP of Scots pine

Current methods to study relations between stem respiration and stem growth have been hampered by problems in quantifying stem growth from dendrometer measurements, particularly on a daily time scale. This is mainly due to the water-related influences within these measurements that mask growth. A previously published model was used to remove water-related influences from measured...

Variations in xylem embolism susceptibility under drought between intact saplings of three walnut species

A germplasm collection containing varied Juglans genotypes holds potential to improve drought resistance of plant materials for commercial production. We used X-ray computed microtomography to evaluate stem xylem embolism susceptibility/repair in relation to vessel anatomical features (size, arrangement, connectivity and pit characteristics) in 2-year-old saplings of three...

Liana and tree below-ground water competition—evidence for water resource partitioning during the dry season

To date, reasons for the increase in liana abundance and biomass in the Neotropics are still unclear. One proposed hypothesis suggests that lianas, in comparison with trees, are more adaptable to drought conditions. Moreover, previous studies have assumed that lianas have a deeper root system, which provides access to deeper soil layers, thereby making them less susceptible to...

Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees

Methods to estimate xylem embolism resistance generally rely on hydraulic measurements, which can be far from straightforward. Recently, a pneumatic method based on air flow measurements of terminal branch ends was proposed to construct vulnerability curves by linking the amount of air extracted from a branch with the degree of embolism. We applied this novel technique for 10...

Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits

Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of...

Does winter desiccation account for seasonal increases in supercooling capacity of Norway spruce bud primordia?

Bud primordia of Picea abies (L.) H. Karst. remain ice free at subzero temperatures by supercooling. Once ice forms inside the primordium, it is immediately injured. Supercooling capacity increases seasonally from ~−5 °C to as much as −50 °C by currently unknown mechanisms. Among other prerequisites, dehydration of tissues over the winter months has been considered to play a key...

An extended model of heartwood secondary metabolism informed by functional genomics

The development of heartwood (HW) and the associated accumulation of secondary metabolites, which are also known as ‘specialized metabolites’ or ‘extractives’, is an important feature of tree biology. Heartwood development can affect tree health with broader implications for forest health. Heartwood development also defines a variety of wood quality traits that are important in...

Coexisting oak species, including rear-edge populations, buffer climate stress through xylem adjustments

The ability of trees to cope with climate change is a pivotal feature of forest ecosystems, especially for rear-edge populations facing warm and dry conditions. To evaluate current and future forests threats, a multi-proxy focus on the growth, anatomical and physiological responses to climate change is needed. We examined the long-term xylem adjustments to climate variability of...