Brain Structure and Function

http://link.springer.com/journal/429

List of Papers (Total 364)

Local-to-distant development of the cerebrocerebellar sensorimotor network in the typically developing human brain: a functional and diffusion MRI study

Sensorimotor function is a fundamental brain function in humans, and the cerebrocerebellar circuit is essential to this function. In this study, we demonstrate how the cerebrocerebellar circuit develops both functionally and anatomically from childhood to adulthood in the typically developing human brain. We measured brain activity using functional magnetic resonance imaging...

Reconstructing imagined letters from early visual cortex reveals tight topographic correspondence between visual mental imagery and perception

Visual mental imagery is the quasi-perceptual experience of “seeing in the mind’s eye”. While a tight correspondence between imagery and perception in terms of subjective experience is well established, their correspondence in terms of neural representations remains insufficiently understood. In the present study, we exploit the high spatial resolution of functional magnetic...

Cerebral torque is human specific and unrelated to brain size

The term “cerebral torque” refers to opposing right–left asymmetries of frontal and parieto-occipital regions. These are assumed to derive from a lateralized gradient of embryological development of the human brain. To establish the timing of its evolution, we computed and compared the torque, in terms of three principal features, namely petalia, shift, and bending of the inter...

Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain

The D2 dopamine receptor (Drd2) is implicated in several brain disorders such as schizophrenia, Parkinson’s disease, and drug addiction. Drd2 is also the primary target of both antipsychotics and Parkinson’s disease medications. Although the expression pattern of Drd2 is relatively well known in mouse brain, the temporal and spatial distribution of Drd2 is lesser clear in rat...

Concurrent analysis of white matter bundles and grey matter networks in the chimpanzee

Understanding the phylogeny of the human brain requires an appreciation of brain organization of our closest animal relatives. Neuroimaging tools such as magnetic resonance imaging (MRI) allow us to study whole-brain organization in species which can otherwise not be studied. Here, we used diffusion MRI to reconstruct the connections of the cortical hemispheres of the chimpanzee...

Aggression in BALB/cJ mice is differentially predicted by the volumes of anterior and midcingulate cortex

Anterior cingulate cortex (ACC) and midcingulate cortex (MCC) have been implicated in the regulation of aggressive behaviour. For instance, patients with conduct disorder (CD) show increased levels of aggression accompanied by changes in ACC and MCC volume. However, accounts of ACC/MCC changes in CD patients have been conflicting, likely due to the heterogeneity of the studied...

Gradients of connectivity distance in the cerebral cortex of the macaque monkey

Cortical connectivity conforms to a series of organizing principles that are common across species. Spatial proximity, similar cortical type, and similar connectional profile all constitute factors for determining the connectivity between cortical regions. We previously demonstrated another principle of connectivity that is closely related to the spatial layout of the cerebral...

Deficiency of the clock gene Bmal1 affects neural progenitor cell migration

We demonstrate the impact of a disrupted molecular clock in Bmal1-deficient (Bmal1−/−) mice on migration of neural progenitor cells (NPCs). Proliferation of NPCs in rostral migratory stream (RMS) was reduced in Bmal1−/− mice, consistent with our earlier studies on adult neurogenesis in hippocampus. However, a significantly higher number of NPCs from Bmal1−/− mice reached the...

Cadherin 8 regulates proliferation of cortical interneuron progenitors

Cortical interneurons are born in the ventral forebrain and migrate tangentially in two streams at the levels of the intermediate zone (IZ) and the pre-plate/marginal zone to the developing cortex where they switch to radial migration before settling in their final positions in the cortical plate. In a previous attempt to identify the molecules that regulate stream specification...

Linking structural and effective brain connectivity: structurally informed Parametric Empirical Bayes (si-PEB)

Despite the potential for better understanding functional neuroanatomy, the complex relationship between neuroimaging measures of brain structure and function has confounded integrative, multimodal analyses of brain connectivity. This is particularly true for task-related effective connectivity, which describes the causal influences between neuronal populations. Here, we assess...

Ex vivo visualization of the trigeminal pathways in the human brainstem using 11.7T diffusion MRI combined with microscopy polarized light imaging

Classic anatomical atlases depict a contralateral hemispheral representation of each side of the face. Recently, however, a bilateral projection of each hemiface was hypothesized, based on animal studies that showed the coexistence of an additional trigeminothalamic tract sprouting from the trigeminal principal sensory nucleus that ascends ipsilaterally. This study aims to...

Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey

Until the late twentieth century, it was believed that different sensory modalities were processed by largely independent pathways in the primate cortex, with cross-modal integration only occurring in specialized polysensory areas. This model was challenged by the finding that the peripheral representation of the primary visual cortex (V1) receives monosynaptic connections from...

Topological principles and developmental algorithms might refine diffusion tractography

The identification and reconstruction of axonal pathways in the living brain or “ex-vivo” is promising a revolution in connectivity studies bridging the gap from animal to human neuroanatomy with extensions to brain structural–functional correlates. Unfortunately, the methods suffer from juvenile drawbacks. In this perspective paper we mention several computational and...

Structural and functional identification of two distinct inspiratory neuronal populations at the level of the phrenic nucleus in the rat cervical spinal cord

The diaphragm is driven by phrenic motoneurons that are located in the cervical spinal cord. Although the anatomical location of the phrenic nucleus and the function of phrenic motoneurons at a single cellular level have been extensively analyzed, the spatiotemporal dynamics of phrenic motoneuron group activity have not been fully elucidated. In the present study, we analyzed the...

Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula)

Radial glial cells (RGCs) are the first cell populations of glial nature to appear during brain ontogeny. They act as primary progenitor (stem) cells as well as a scaffold for neuronal migration. The proliferative capacity of these cells, both in development and in adulthood, has been subject of interest during past decades. In contrast with mammals where RGCs are restricted to...

Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells

The striatum is critically involved in execution of appropriate behaviors, but its internal structures remain unmapped due to its unique structural organization, leading to ambiguity when interpreting heterogeneous properties of striatal neurons that differ by location. We focused on site-specific diversity of striosomes/matrix compartmentalization to draw the striatum map. Five...

Cytoarchitecture, probability maps, and functions of the human supplementary and pre-supplementary motor areas

The dorsal  mesial frontal cortex contains the supplementary motor area (SMA) and the pre-supplementary motor area (pre-SMA), which play an important role in action and cognition. Evidence from cytoarchitectonic, stimulation, and functional studies suggests structural and functional divergence between the two subregions. However, a microstructural map of these areas obtained in a...

Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release

Heterozygous mutations of the Forkhead-box protein 2 (FOXP2) gene in humans cause childhood apraxia of speech. Loss of Foxp2 in mice is known to affect striatal development and impair motor skills. However, it is unknown if striatal excitatory/inhibitory balance is affected during development and if the imbalance persists into adulthood. We investigated the effect of reduced...

Expression and glucocorticoid-dependent regulation of the stress-inducible protein DRR1 in the mouse adult brain

Identifying molecular targets that are able to buffer the consequences of stress and therefore restore brain homeostasis is essential to develop treatments for stress-related disorders. Down-regulated in renal cell carcinoma 1 (DRR1) is a unique stress-induced protein in the brain and has been recently proposed to modulate stress resilience. Interestingly, DRR1 shows a prominent...

Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall

Development of the cerebral wall is characterized by partially overlapping histogenetic events. However, little is known with regards to when, where, and how growing axonal pathways interact with progenitor cell lineages in the proliferative zones of the human fetal cerebrum. We analyzed the developmental continuity and spatial distribution of the axonal sagittal strata (SS) and...

Mapping the intersection of language and reading: the neural bases of the primary systems hypothesis

The primary systems framework has been used to relate behavioural performance across many different language activities to the status of core underpinning domain-general cognitive systems. This study provided the first quantitative investigation of this account at both behavioural and neural levels in a group of patients with chronic post-stroke aphasia. Principal components...

Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone

The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing...

Visual brain plasticity induced by central and peripheral visual field loss

Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12...

The cognitive nuances of surprising events: exposure to unexpected stimuli elicits firing variations in neurons of the dorsal CA1 hippocampus

The ability to recognize novel situations is among the most fascinating and vital of the brain functions. A hypothesis posits that encoding of novelty is prompted by failures in expectancy, according to computation matching incoming information with stored events. Thus, unexpected changes in context are detected within the hippocampus and transferred to downstream structures...