Advances in Atmospheric Sciences

https://link.springer.com/journal/376

List of Papers (Total 94)

Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction

After decades of research and development, the WSR-88D (NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data (PRD) that have the potential to improve weather observations, quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual...

Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather

This study examines associations between California Central Valley (CCV) heat waves and the Madden Julian Oscillation (MJO). These heat waves have major economic impact. Our prior work showed that CCV heat waves are frequently preceded by convection over the tropical Indian and eastern Pacific oceans, in patterns identifiable with MJO phases. The main analysis method is lagged...

First Rocketsonde Launched from an Unmanned Semi-submersible Vehicle

The unmanned semi-submersible vehicle (USSV) developed by the unmanned surface vehicle team of the Institute of Atmospheric Physics is an unmanned, rugged, and high-endurance autonomous navigation vessel designed for the collection of long-term, continuous and real-time marine meteorological measurements, including atmospheric sounding in the lower troposphere. A series of river...

Characterizing the Relative Importance Assigned to Physical Variables by Climate Scientists when Assessing Atmospheric Climate Model Fidelity

Evaluating a climate model’s fidelity (ability to simulate observed climate) is a critical step in establishing confidence in the model’s suitability for future climate projections, and in tuning climate model parameters. Model developers use their judgement in determining which trade-offs between different aspects of model fidelity are acceptable. However, little is known about...

Comparison of a Manual and an Automated Tracking Method for Tibetan Plateau Vortices

Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) during the extended summer season (April–September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and...

On Northern HemisphereWave Patterns Associated with Winter Rainfall Events in China

During extended winter (November–April), 43% of the intraseasonal rainfall variability in China is explained by three spatial patterns of temporally coherent rainfall. These patterns were identified with empirical orthogonal teleconnection (EOT) analysis of observed 1982–2007 pentad rainfall anomalies and connected to midlatitude disturbances. However, examination of individual...

Different Asian Monsoon Rainfall Responses to Idealized Orography Sensitivity Experiments in the HadGEM3-GA6 and FGOALS-FAMIL Global Climate Models

Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon (ISM), perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air. Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only...

Reduced Sensitivity of Tropical Cyclone Intensity and Size to Sea Surface Temperature in a Radiative-Convective Equilibrium Environment

It has been challenging to project the tropical cyclone (TC) intensity, structure and destructive potential changes in a warming climate. Here, we compare the sensitivities of TC intensity, size and destructive potential to sea surface warming with and without a pre-storm atmospheric adjustment to an idealized state of Radiative-Convective Equilibrium (RCE). Without RCE, we find...

Further-Adjusted Long-Term Temperature Series in China Based on MASH

A set of homogenized monthly mean surface air temperature (SAT) series at 32 stations in China back to the 19th century had previously been developed based on the RHtest method by Cao et al., but some inhomogeneities remained in the dataset. The present study produces a further-adjusted and updated dataset based on the Multiple Analysis of Series for Homogenization (MASH) method...

Evaluation of Unified Model Microphysics in High-resolution NWP Simulations Using Polarimetric Radar Observations

The UK Met Office Unified Model (UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ∼1.5 km [e.g., at the UK Met Office and the...

Climate Change of 4°C GlobalWarming above Pre-industrial Levels

Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4◦C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4◦C global warming will occur is 2084. Based on the median...

Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate

We identify that the projected uncertainty of the pan-Arctic sea-ice concentration (SIC) is strongly coupled with the Eurasian circulation in the boreal winter (December–March; DJFM), based on a singular value decomposition (SVD) analysis of the forced response of 11 CMIP5 models. In the models showing a stronger sea-ice decline, the Polar cell becomes weaker and there is an...