Biophysical Reviews

http://link.springer.com/journal/12551

List of Papers (Total 91)

The rise of the distributions: why non-normality is important for understanding the transcriptome and beyond

The application of statistics has been instrumental in clarifying our understanding of the genome. While insights have been derived for almost all levels of genome function, most importantly, statistics has had the greatest impact on improving our knowledge of transcriptional regulation. But the drive to extract the most meaningful inferences from big data can often force us to...

Precision medicine review: rare driver mutations and their biophysical classification

How can biophysical principles help precision medicine identify rare driver mutations? A major tenet of pragmatic approaches to precision oncology and pharmacology is that driver mutations are very frequent. However, frequency is a statistical attribute, not a mechanistic one. Rare mutations can also act through the same mechanism, and as we discuss below, “latent driver...

Hi-C analysis: from data generation to integration

In the epigenetics field, large-scale functional genomics datasets of ever-increasing size and complexity have been produced using experimental techniques based on high-throughput sequencing. In particular, the study of the 3D organization of chromatin has raised increasing interest, thanks to the development of advanced experimental techniques. In this context, Hi-C has been...

Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention

Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed...

Riding the waves of the intercalated disc of the heart

Cardiomyocytes interact with each other at their ends through the specialised membrane complex, the intercalated disck (ID). It is a fascinating structure. It allows cardiomyocytes to interact with several neighbouring cells, thereby allowing the complex structure of the heart to develop. It acts as tension transducer, structural prop, and multi signalling domain as well as a...

Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits

Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology...

Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy

The linker of nucleoskeleton and cytoskeleton (LINC) complex couples the nuclear lamina to the cytoskeleton. The LINC complex and its associated proteins play diverse roles in cells, ranging from genome organization, nuclear morphology, gene expression, to mechanical stability. The importance of a functional LINC complex is highlighted by the large number of mutations in genes...

Ionic liquids: a brief history

There is no doubt that ionic liquids have become a major subject of study for modern chemistry. We have become used to ever more publications in the field each year, although there is some evidence that this is beginning to plateau at approximately 3500 papers each year. They have been the subject of several major reviews and books, dealing with different applications and aspects...

Computational solvation analysis of biomolecules in aqueous ionic liquid mixtures

Based on their tunable properties, ionic liquids attracted significant interest to replace conventional, organic solvents in biomolecular applications. Following a Gartner cycle, the expectations on this new class of solvents dropped after the initial hype due to the high viscosity, hydrolysis, and toxicity problems as well as their high cost. Since not all possible combinations...

Relaxation mode analysis for molecular dynamics simulations of proteins

Molecular dynamics simulation is a powerful method for investigating the structural stability, dynamics, and function of biopolymers at the atomic level. In recent years, it has become possible to perform simulations on time scales of the order of milliseconds using special hardware. However, it is necessary to derive the important factors contributing to structural change or...

Antimicrobial resistance (AMR) nanomachines—mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance...

Foreword to ‘Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines’, a special issue in Honour of Fumio Arisaka’s 70th birthday

This issue of Biophysical Reviews, titled ‘Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines’, is a collection of articles dedicated in honour of Professor Fumio Arisaka’s 70th birthday. Initially, working in the fields of haemocyanin and actin filament assembly, Fumio went on to publish important work on the...

Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins

Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we...

Single-molecule fluorescence-based analysis of protein conformation, interaction, and oligomerization in cellular systems

Single-molecule imaging (SMI) of proteins in operation has a history of intensive investigations over 20 years and is now widely used in various fields of biology and biotechnology. We review the recent advances in SMI of fluorescently-tagged proteins in structural biology, focusing on technical applicability of SMI to the measurements in living cells. Basic technologies and...

Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins

Photoreceptor proteins have been used to study how protein conformational changes are induced by alterations in their environments and how their signals are transmitted to downstream factors to dictate physiological responses. These proteins are attractive models because their signal transduction aspects and structural changes can be precisely regulated in vivo and in vitro based...

Anaerobic crystallization of proteins

Crystallization has been a bottleneck in the X-ray crystallography of proteins. Although many techniques have been developed to overcome this obstacle, the impurities caused by chemical reactions during crystallization have not been sufficiently considered. Oxidation of proteins, which can lead to poor reproducibility of the crystallization, is a prominent example. Protein...

Statistical description of the denatured structure of a single protein, staphylococcal nuclease, by FRET analysis

Structural characterization of fully unfolded proteins is essential for understanding not only protein-folding mechanisms, but also the structures of intrinsically disordered proteins. Because an unfolded protein can assume all possible conformations, statistical descriptions of its structure are most appropriate. For this purpose, we applied Förster resonance energy transfer...