The Effect of U Atom Adsorption on the Structural, Electronic and Magnetic Properties of Single-Walled Carbon Nanotubes

Journal of Electronic Materials, Jul 2018

We investigate the structural, electronic and magnetic properties of three types of single-walled carbon nanotubes (SWNTs, zigzag, armchair and chiral) with adsorption of a uranium (U) atom using density-functional theories. Structural analysis shows that the site on the top of the hexagonal ring is the most stable for the U atom adsorption on all the three types of SWNTs. Upon adsorption, chemical bonds are formed between C atoms and the U adatom, and the latter acts as a donor, resulting in a change of energy bands and increases the Fermi level of SWNTs. Interestingly, upon absorption of nonmagnetic U element, all types of the SWNTs become magnetic, and the induced magnetization is mainly contributed by the U adatom’s 6d and 5f orbitals, which may be useful for carbon-based spintronic applications.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2Fs11664-018-6482-4.pdf

The Effect of U Atom Adsorption on the Structural, Electronic and Magnetic Properties of Single-Walled Carbon Nanotubes

Journal of Electronic Materials October 2018, Volume 47, Issue 10, pp 5810–5815 | Cite as The Effect of U Atom Adsorption on the Structural, Electronic and Magnetic Properties of Single-Walled Carbon Nanotubes AuthorsAuthors and affiliations Ya NieMu LanXi ZhangDingyu YangGang Xiang Article First Online: 06 July 2018 46 Downloads Abstract We investigate the structural, electronic and magnetic properties of three types of single-walled carbon nanotubes (SWNTs, zigzag, armchair and chiral) with adsorption of a uranium (U) atom using density-functional theories. Structural analysis shows that the site on the top of the hexagonal ring is the most stable for the U atom adsorption on all the three types of SWNTs. Upon adsorption, chemical bonds are formed between C atoms and the U adatom, and the latter acts as a donor, resulting in a change of energy bands and increases the Fermi level of SWNTs. Interestingly, upon absorption of nonmagnetic U element, all types of the SWNTs become magnetic, and the induced magnetization is mainly contributed by the U adatom’s 6d and 5f orbitals, which may be useful for carbon-based spintronic applications. KeywordsMagnetism U atom carbon nanotubes adsorption spintronics  Download to read the full article text References 1. S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar 2. M. Ouyang, J.L. Huang, and C.M. Lieber, Acc. Chem. Res. 35, 1018 (2002).CrossRefGoogle Scholar 3. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart, Science 339, 535 (2013).CrossRefGoogle Scholar 4. H.R. Byon and H.C. Choi, J. Am. Chem. Soc. 128, 2188 (2006).CrossRefGoogle Scholar 5. S. Kumar, T.D. Dang, F.E. Arnold, A.R. Bhattacharyya, B.G. Min, X. Zhang, R.A. Vaia, C. Park, W.W. Adams, R.H. Hauge, R.E. Smalley, S. Ramesh, and P.A. Willis, Macromolecules 35, 9039 (2002).CrossRefGoogle Scholar 6. Ch Ban, Zh Wu, D.T. Gillaspie, L. Chen, Y. Yan, J.L. Blackburn, and A.C. Dillon, Adv. Mater. 22, E145 (2010).CrossRefGoogle Scholar 7. J. Kong, N.R. Franklin, C. Chou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).CrossRefGoogle Scholar 8. H. Chang, J.D. Lee, S.M. Lee, and Y.H. Lee, Appl. Phys. Lett. 79, 3863 (2001).CrossRefGoogle Scholar 9. J. Kong, M.G. Chapline, and H. Dai, Adv. Mater. 13, 1384 (2001).CrossRefGoogle Scholar 10. J.J. Davis, K.S. Coleman, B.R. Azamian, C.B. Bagshaw, and M.L.H. Green, Chem. Eur. J. 9, 3732 (2003).CrossRefGoogle Scholar 11. A. Qureshi, W.P. Kang, J.L. Davidson, and Y. Gurbuz, Diam. Relat. Mater. 18, 1401 (2009).CrossRefGoogle Scholar 12. S.J. Pearton, F. Ren, Y.L. Wang, B.H. Chu, K.H. Chen, C.Y. Chang, W. Lim, J. Lin, and D.P. Norton, Prog. Mater Sci. 55, 1 (2010).CrossRefGoogle Scholar 13. B.H. Son, J.Y. Park, S. Lee, and Y.H. Ahn, Nanoscale 7, 15421 (2015).CrossRefGoogle Scholar 14. U. Dettlaff-Weglikowska, V. Skakalova, R. Graupner, L. Ley, and S. Roth, Mater. Res. Soc. Symp. Proc. 772, 179 (2003).Google Scholar 15. L.G. Zhou and S.Q. Shi, Comput. Mater. Sci. 23, 166 (2002).CrossRefGoogle Scholar 16. Q.W. Li, J. Zhang, H. Yan, M.S. He, and Z.F. Liu, Carbon 42, 287 (2004).CrossRefGoogle Scholar 17. N. Tamura, A.A. MacDowell, R. Spolenak, B.C. Valek, J.C. Bravman, W.L. Brown, R.S. Celestre, H.A. Padmore, B.W. Batterman, and J.R. Patel, J. Synchrotron Radiat. 10, 137 (2003).CrossRefGoogle Scholar 18. A.S. Budiman, G. Lee, M.J. Burek, D. Jang, S.M. Han, N. Tamura, M. Kunz, J.R. Greer, and T.Y. Tsui, Mater. Sci. Eng. A 538, 89 (2012).CrossRefGoogle Scholar 19. C.Y. Khoo, H. Liu, W. Sasangka, R.I. Made, N. Tamura, M. Kunz, A.S. Budiman, C.V. Thompson, and C.L. Gan, J. Mater. Sci. 51, 1864 (2016).CrossRefGoogle Scholar 20. I. Radchenko, S.K. Tippabhotla, N. Tamura et al., J. Electr. Mater. 45, 6222 (2016).CrossRefGoogle Scholar 21. H.P.A. Ali, I. Radchenko, J. Zhao, L. Qing, and A.S. Budiman, J. Mater. Des. Appl. 1, 1 (2017). https://doi.org/10.1177/1464420717695354 22. H.-A.-S. Shin, B.-J. Kim, J.-H. Kim, S.-H. Hwang, A.S. Budiman, H.-Y. Son, K.-Y. Byun, N. Tamura, M. Kunz, D.-I. Kim, and Y.-C. Joo, J. Electron. Mater. 41, 712 (2012).CrossRefGoogle Scholar 23. V.K. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-Ghoshekandi, A.S.H. Makhlouf, M. Goodarzi, and A. Garshasbi, Crit. Rev. Environ. Sci. Technol. 46, 93 (2016).CrossRefGoogle Scholar 24. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar 25. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar 26. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar 27. V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar 28. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar 29. S.L. Dudarev, D. NguyenManh, and A.P. Sutton, Philos. Mag. B 75, 613 (1997).CrossRefGoogle Scholar 30. J. Schoenes, J. Chem. Soc. Faraday Trans. II 83, 1205 (1987).CrossRefGoogle Scholar 31. A. Kotani and T. Yamazaki, Prog. Theor. Phys. Suppl. 108, 117 (1992).CrossRefGoogle Scholar Copyright information © The Minerals, Metals & Materials Society 2018 Authors and Affiliations Ya Nie12Mu Lan12Xi Zhang12Dingyu Yang4Gang Xiang123Email authorView author's OrcID profile1.College of Physical Science and TechnologySichuan UniversityChengduChina2.Key Laboratory of High Energy Density Physics and Technology of Ministry of EducationSichuan UniversityChengduChina3.Key Laboratory of Radiation Physics and Technology of Ministry of EducationSichuan UniversityChengduChina4.College of Optoelectronic TechnologyChengdu University of Information TechnologyChengduChina


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2Fs11664-018-6482-4.pdf

Ya Nie, Mu Lan, Xi Zhang, Dingyu Yang, Gang Xiang. The Effect of U Atom Adsorption on the Structural, Electronic and Magnetic Properties of Single-Walled Carbon Nanotubes, Journal of Electronic Materials, 2018, 5810-5815, DOI: 10.1007/s11664-018-6482-4