Universal properties of pseudoscalar mediators in dark matter extensions of 2HDMs

Journal of High Energy Physics, Jul 2018

Abstract We discuss universal signals of consistent models of pseudoscalar mediators for collider searches for Dark Matter. Keeping only the degrees of freedom that can not be decoupled due to consistency conditions, we present a universality class of simplified models with pseudoscalar mediators and renormalizable couplings to Standard Model fields. We compute stability and perturbativity constraints, constraints from electroweak precision measurements, collider searches for new heavy particles as well as constraints from relic density measurements and indirect detection experiments searching for signals of Dark Matter annihilation into photons. We find that the mono-Z final state is the strongest, universal signal of this class of models, with additional signatures present in the different ultraviolet completions that can be used to distinguish between them.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP07%282018%29107.pdf

Universal properties of pseudoscalar mediators in dark matter extensions of 2HDMs

Journal of High Energy Physics July 2018, 2018:107 | Cite as Universal properties of pseudoscalar mediators in dark matter extensions of 2HDMs AuthorsAuthors and affiliations Martin BauerMartin KlassenValentin Tenorth Open Access Regular Article - Theoretical Physics First Online: 16 July 2018 Received: 09 January 2018 Revised: 22 May 2018 Accepted: 23 June 2018 15 Downloads Abstract We discuss universal signals of consistent models of pseudoscalar mediators for collider searches for Dark Matter. Keeping only the degrees of freedom that can not be decoupled due to consistency conditions, we present a universality class of simplified models with pseudoscalar mediators and renormalizable couplings to Standard Model fields. We compute stability and perturbativity constraints, constraints from electroweak precision measurements, collider searches for new heavy particles as well as constraints from relic density measurements and indirect detection experiments searching for signals of Dark Matter annihilation into photons. We find that the mono-Z final state is the strongest, universal signal of this class of models, with additional signatures present in the different ultraviolet completions that can be used to distinguish between them. Keywords Beyond Standard Model Higgs Physics  ArXiv ePrint: 1712.06597 Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a razor to dark matter parameter space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].ADSGoogle Scholar [2] P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar [3] S. Baek et al., Beyond the dark matter effective field theory and a simplified model approach at colliders, Phys. Lett. B 756 (2016) 289 [arXiv:1506.06556] [INSPIRE].ADSCrossRefGoogle Scholar [4] A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE]. [5] M. Bauer et al., Validity of dark matter effective theory, Phys. Rev. D 95 (2017) 075036 [arXiv:1611.09908] [INSPIRE].ADSGoogle Scholar [6] J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE]. [7] J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE]. [8] D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE]. [9] A. Albert et al., Recommendations of the LHC dark matter working group: comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels, arXiv:1703.05703 [INSPIRE]. [10] M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of dark matter: Flavour constraints on pseudoscalar mediators, JHEP 03 (2015) 171 [Erratum ibid. 07 (2015) 103] [arXiv:1412.5174] [INSPIRE]. [11] F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar [12] M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Z′ models from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].ADSCrossRefGoogle Scholar [13] N. Okada and S. Okada, Z BL′ portal dark matter and LHC run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE]. [14] N. Okada and S. Okada, Z′-portal right-handed neutrino dark matter in the minimal U(1)X extended standard model, Phys. Rev. D 95 (2017) 035025 [arXiv:1611.02672] [INSPIRE].ADSGoogle Scholar [15] Dark matter summary plots from CMS for LHCP 2017, https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM_summary_plots_LHCP_2017.pdf. [16] Summary plots from the ATLAS Exotic physics group, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/index.html. [17] J.-M. Zheng et al., Constraining the interaction strength between dark matter and visible matter: I. fermionic dark matter, Nucl. Phys. B 854 (2012) 350 [arXiv:1012.2022] [INSPIRE]. [18] K. Mimasu and V. Sanz, ALPs at colliders, JHEP 06 (2015) 173 [arXiv:1409.4792] [INSPIRE].ADSCrossRefGoogle Scholar [19] J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482 [arXiv:1509.00476] [INSPIRE].ADSCrossRefGoogle Scholar [20] I. Brivio et al., ALPs effective field theory and collider signatures, Eur. Phys. J. C 77 (2017) 572 [arXiv:1701.05379] [INSPIRE]. [21] M. Bauer, M. Neubert and A. Thamm, LHC as an axion factory: probing an axion explanation for (g − 2)μ with exotic Higgs decays, Phys. Rev. Lett. 119 (2017) 031802 [arXiv:1704.08207] [INSPIRE].ADSCrossRefGoogle Scholar [22] M. Bauer, M. Neubert and A. Thamm, Collider probes of axion-like particles, JHEP 12 (2017) 044 [arXiv:1708.00443] [INSPIRE]. [23] D. Goncalves, P.A.N. Machado and J.M. No, Simplified models for dark matter face their consistent completions, Phys. Rev. D 95 (2017) 055027 [arXiv:1611.04593] [INSPIRE].ADSGoogle Scholar [24] M. Bauer, U. Haisch and F. Kahlhoefer, Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators, JHEP 05 (2017) 138 [arXiv:1701.07427] [INSPIRE]. [25] S. Baek, P. Ko and J. Li, Minimal renormalizable simplified dark matter model with a pseudoscalar mediator, Phys. Rev. D 95 (2017) 075011 [arXiv:1701.04131] [INSPIRE].ADSGoogle Scholar [26] L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, Universal constraints on low-energy flavour models, JHEP 07 (2012) 004 [arXiv:1204.1275] [INSPIRE].ADSCrossRefGoogle Scholar [27] M. Bauer, M. Carena and K. Gemmler, Flavor from the electroweak scale, JHEP 11 (2015) 016 [arXiv:1506.01719] [INSPIRE].ADSCrossRefGoogle Scholar [28] M. Bauer, M. Carena and K. Gemmler, Creating the fermion mass hierarchies with multiple Higgs bosons, Phys. Rev. D 94 (2016) 115030 [arXiv:1512.03458] [INSPIRE].ADSGoogle Scholar [29] A. Berlin, S. Gori, T. Lin and L.-T. Wang, Pseudoscalar portal dark matter, Phys. Rev. D 92 (2015) 015005 [arXiv:1502.06000] [INSPIRE]. [30] ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE]. [31] ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE]. [32] CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7 \) , 8 and 13 TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE]. [33] N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent dark matter simplified models with an s-channel scalar mediator, JCAP 03 (2017) 015 [arXiv:1612.03475] [INSPIRE].ADSCrossRefGoogle Scholar [34] Belle collaboration, A. Abdesselam et al., Measurement of the inclusive B → X s+d γ branching fraction, photon energy spectrum and HQE parameters, arXiv:1608.02344 [INSPIRE]. [35] M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on M H± in the Two-Higgs-Doublet Model, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE].ADSCrossRefGoogle Scholar [36] C.Q. Geng and J.N. Ng, Charged Higgs Effect in \( {B}_d^0-{\overline{B}}_d^0 \) mixing, K → π neutrino anti-neutrino decay and rare decays of B mesons, Phys. Rev. D 38 (1988) 2857 [Erratum ibid. D 41 (1990) 1715] [INSPIRE]. [37] O. Deschamps et al., The two Higgs doublet of type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].ADSGoogle Scholar [38] J.M. Gerard and M. Herquet, A twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett. 98 (2007) 251802 [hep-ph/0703051] [INSPIRE]. [39] B. Grzadkowski, M. Maniatis and J. Wudka, The bilinear formalism and the custodial symmetry in the two-Higgs-doublet model, JHEP 11 (2011) 030 [arXiv:1011.5228] [INSPIRE].ADSCrossRefMATHGoogle Scholar [40] J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE]. [41] I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE]. [42] D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSCrossRefMATHGoogle Scholar [43] G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE]. [44] CMS collaboration, Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2017) 010 [arXiv:1707.07283] [INSPIRE]. [45] ATLAS collaboration, Search for heavy resonances decaying to a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36.1 fb −1 of pp collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-055 (2017). [46] CMS collaboration, Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 636 [arXiv:1707.01303] [INSPIRE]. [47] ATLAS collaboration, Search for heavy Higgs bosons A/H decaying to a top-quark pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2016-073 (2016). [48] ATLAS collaboration, Search for charged Higgs bosons produced in association with a top quark and decaying via H ± → τν using pp collision data recorded at \( \sqrt{s}=13 \) TeV by the ATLAS detector, Phys. Lett. B 759 (2016) 555 [arXiv:1603.09203] [INSPIRE]. [49] CMS collaboration, Search for charged Higgs bosons with the H± → τ ± ν τ decay channel in the fully hadronic final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-031 (2016). [50] ATLAS collaboration, Search for charged Higgs bosons in the H ± → tb decay channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, ATLAS-CONF-2016-089 (2016). [51] A. Arbey, F. Mahmoudi, O. Stal and T. Stefaniak, Status of the charged Higgs boson in two Higgs doublet models, Eur. Phys. J. C 78 (2018) 182 [arXiv:1706.07414] [INSPIRE].ADSCrossRefGoogle Scholar [52] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE]. [53] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar [54] W. Altmannshofer, S. Gori, S. Profumo and F.S. Queiroz, Explaining dark matter and B decay anomalies with an L μ -L τ model, JHEP 12 (2016) 106 [arXiv:1609.04026] [INSPIRE].ADSCrossRefGoogle Scholar [55] T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB constraints on WIMP annihilation: energy absorption during the recombination epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [INSPIRE].ADSGoogle Scholar [56] C. Balázs et al., Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments, Phys. Rev. D 96 (2017) 083002 [arXiv:1706.01505] [INSPIRE].ADSGoogle Scholar [57] XENON collaboration, E. Aprile et al., First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE]. [58] G. Arcadi et al., Pseudoscalar mediators: a WIMP model at the neutrino floor, JCAP 03 (2018) 042 [arXiv:1711.02110] [INSPIRE].ADSCrossRefGoogle Scholar [59] A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE]. [60] C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar [61] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE]. [62] C. Degrande, Automated two Higgs doublet model at NLO, PoS(Charged2014)024 [arXiv:1412.6955] [INSPIRE]. [63] C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar [64] J. Alwall et al., MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar [65] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar [66] P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].ADSCrossRefGoogle Scholar [67] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar [68] T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [69] DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE]. [70] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [71] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar [72] J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSCrossRefGoogle Scholar [73] ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, ATLAS-CONF-2017-060 (2017). [74] T. Ahmed et al., Pseudo-scalar Higgs boson production at threshold N 3 LO and N 3 LL QCD, Eur. Phys. J. C 76 (2016) 355 [arXiv:1510.02235] [INSPIRE].ADSCrossRefGoogle Scholar [75] L.M. Carpenter et al., Collider searches for dark matter in events with a Z boson and missing energy, Phys. Rev. D 87 (2013) 074005 [arXiv:1212.3352] [INSPIRE].ADSGoogle Scholar [76] CMS collaboration, Search for dark matter in Z + E Tmiss events using 12.9 fb −1 of 2016 data, CMS-PAS-EXO-16-038 (2016). [77] CMS collaboration, Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 845 [arXiv:1706.02581] [INSPIRE]. [78] R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE]. [79] F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the standard model effective field theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].ADSCrossRefGoogle Scholar [80] E. Izaguirre, G. Krnjaic and B. Shuve, The Galactic Center excess from the bottom up, Phys. Rev. D 90 (2014) 055002 [arXiv:1404.2018] [INSPIRE].ADSGoogle Scholar [81] P. Pani and G. Polesello, Dark matter production in association with a single top-quark at the LHC in a two-Higgs-doublet model with a pseudoscalar mediator, Phys. Dark Univ. 21 (2018)8 [arXiv:1712.03874] [INSPIRE]. [82] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar Copyright information © The Author(s) 2018 Authors and Affiliations Martin Bauer1Email authorView author's OrcID profileMartin Klassen1Valentin Tenorth121.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany2.Max-Planck-Institut für Kernphysik (MPIK)HeidelbergGermany


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP07%282018%29107.pdf

Martin Bauer, Martin Klassen, Valentin Tenorth. Universal properties of pseudoscalar mediators in dark matter extensions of 2HDMs, Journal of High Energy Physics, 2018, 107, DOI: 10.1007/JHEP07(2018)107