The Surface Modification Methods for Constructing Polymer-Coated Stents

International Journal of Polymer Science, Jun 2018

Implanting a metal stent plays a key role in treating cardiovascular diseases. However, the high corrosion rate of metal-based devices severely limits their practical applications. Therefore, how to control the corrosion rate is vital to take full advantages of metal-based materials in the treatment of cardiovascular diseases. This review details various methods to design and construct polymer-coated stents. The techniques are described and discussed including plasma deposition, electrospinning, dip coating, layer-by-layer self-assembly, and direct-write inkjet. Key point is provided to highlight current methods and recent advances in hindering corrosion rate and improving biocompatibility of stents, which greatly drives the rising of some promising techniques involved in the ongoing challenges and potential new trends of polymer-coated stents.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://downloads.hindawi.com/journals/ijps/2018/3891686.pdf

The Surface Modification Methods for Constructing Polymer-Coated Stents

The Surface Modification Methods for Constructing Polymer-Coated Stents Yanqin Fan, Xiang Li, and Ruijie Yang Department of the Cardiology, Beijing Geriatric Hospital, Beijing 100095, China Correspondence should be addressed to Yanqin Fan; moc.361@rs_rjn Received 25 January 2018; Revised 6 April 2018; Accepted 24 April 2018; Published 3 June 2018 Academic Editor: Shunsheng Cao Copyright © 2018 Yanqin Fan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Implanting a metal stent plays a key role in treating cardiovascular diseases. However, the high corrosion rate of metal-based devices severely limits their practical applications. Therefore, how to control the corrosion rate is vital to take full advantages of metal-based materials in the treatment of cardiovascular diseases. This review details various methods to design and construct polymer-coated stents. The techniques are described and discussed including plasma deposition, electrospinning, dip coating, layer-by-layer self-assembly, and direct-write inkjet. Key point is provided to highlight current methods and recent advances in hindering corrosion rate and improving biocompatibility of stents, which greatly drives the rising of some promising techniques involved in the ongoing challenges and potential new trends of polymer-coated stents. 1. Introduction Developing technologies is an urgent need to treat coronary artery diseases induced by generic factors and dietary habits [1, 2]. Among them, cardiovascular disease has being listed as a major cause of death and morbidity globally based on the status report of noncommunicable diseases in the world [1, 3–7]. Atherosclerosis, as a chronic inflammation with slow progressive buildup of lipids and macrophages within the arterial wall, is the primary contributor to myocardial infarctions and atherosclerotic plaque rupture [1, 8]. In comparison with an open-heart surgery, angioplasty exhibits more benefits to patients and has been extensively employed to treat atherosclerosis by implanting an antithrombogenic agent-coated stent into the infected lesion in order to maintain an artery open after balloon angioplasty [3, 9]; moreover, general anesthesia is unnecessary for patients. In the long run, however, the migration of smooth muscle cell will be stimulated under such a stent implantation, while the atheroma thin layer is subjected to rupture, leading to thrombosis and restenosis [9, 10]. Undoubtedly, an ideal cardiovascular implant should meet the good biocompatibility and high mechanical strength at least [11], in which undue host response or adverse clinical outcomes will not be happened [12, 13]. However, the enhanced incidences of thrombosis, restenosis, and fibromuscular proliferation are hard to be avoided in the face of vascular endothelium injury caused by stent implantation [14]. The premier arterial stents usually use bare metal as scaffolds. Even though the original bare metal stents are epoch-making at the time, their drawbacks are quick occurrence of restenosis and renarrowing of the lumen [3]. The experiments evidence that stents may be subjected to an event known as “late stent thrombosis” that happens one or more years of poststenting, where the blood clots inside the stent [3, 15]. To tackle these challenges, the concept of drug-eluting stents (DESs) was introduced to restrain the occurrence of restenosis and thrombosis by allowing the release of the drug to be gradual and permitting the drug delivery to be sustained over many weeks [3, 16]. Though DESs have achieved great success, material-related problems still exist in the treatment of cardiovascular diseases [17]. An outstanding problem is the lack of blood compatibility, in other words, when these stent implantation devices are confronted to blood directly, the accumulation of a blood clot or thrombus occurs on the surface of these devices [17, 18]. In some cases, the thrombus can directly impair the function of the device, or a piece of the thrombus can embolize and cause life-threatening problem downstream [17]. For these, many functional surfaces of implantation devices with nonfouling chemical groups [19] and/or anticoagulants [20] have been devoted to improve the blood compatibility of biomaterials, suppressing the protein and platelet deposition. As continued breakthroughs have been reported in polymer-based materials for cardiovascular diseases in the last several years, a new and comprehensive review is necessary for constructing polymer-based implantation materials, which will further strengthen the treatment of cardiovascular diseases we are currently facing. The main aim of this review is to demonstrate and share the recent advances in the construction of polymer-based coating for cardiovascular stent materials and tackle the major challe (...truncated)


This is a preview of a remote PDF: http://downloads.hindawi.com/journals/ijps/2018/3891686.pdf

Yanqin Fan, Xiang Li, Ruijie Yang. The Surface Modification Methods for Constructing Polymer-Coated Stents, International Journal of Polymer Science, 2018, 2018, DOI: 10.1155/2018/3891686