Search for third-generation scalar leptoquarks decaying to a top quark and a \(\tau \) lepton at \(\sqrt{s}=13\,\text {Te}\text {V} \)

The European Physical Journal C, Sep 2018

A search for pair production of heavy scalar leptoquarks (LQs), each decaying into a top quark and a \(\tau \) lepton, is presented. The search considers final states with an electron or a muon, one or two \(\tau \) leptons that decayed to hadrons, and additional jets. The data were collected in 2016 in proton–proton collisions at \(\sqrt{s}=13\,\text {Te}\text {V} \) with the CMS detector at the LHC, and correspond to an integrated luminosity of 35.9\(\,\text {fb}^{-1}\). No evidence for pair production of LQs is found. Assuming a branching fraction of unity for the decay \(\mathrm {LQ} \rightarrow \mathrm {t}\tau \), upper limits on the production cross section are set as a function of LQ mass, excluding masses below 900\(\,\text {Ge}\text {V}\) at 95% confidence level. These results provide the most stringent limits to date on the production of scalar LQs that decay to a top quark and a \(\tau \) lepton.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-018-6143-z.pdf

Search for third-generation scalar leptoquarks decaying to a top quark and a \(\tau \) lepton at \(\sqrt{s}=13\,\text {Te}\text {V} \)

The European Physical Journal C September 2018, 78:707 | Cite as Search for third-generation scalar leptoquarks decaying to a top quark and a \(\tau \) lepton at \(\sqrt{s}=13\,\text {Te}\text {V} \) AuthorsAuthors and affiliations A. M. SirunyanA. TumasyanW. AdamF. AmbrogiE. AsilarT. BergauerJ. BrandstetterE. BrondolinM. DragicevicJ. EröA. Escalante Del ValleM. FlechlM. FriedlR. FrühwirthV. M. GheteJ. GrossmannJ. HrubecM. JeitlerA. KönigN. KrammerI. KrätschmerD. LikoT. MadlenerI. MikulecE. PreeN. RadH. RohringerJ. SchieckR. SchöfbeckM. SpanringD. SpitzbartA. TaurokW. WaltenbergerJ. WittmannC.-E. WulzM. ZaruckiV. ChekhovskyV. MossolovJ. Suarez GonzalezE. A. De WolfD. Di CroceX. JanssenJ. LauwersM. PietersM. Van De KlundertH. Van HaevermaetP. Van MechelenN. Van RemortelS. Abu ZeidF. BlekmanJ. D’HondtI. De BruynJ. De ClercqK. DerooverG. FlourisD. LontkovskyiS. LowetteI. MarchesiniS. MoortgatL. MoreelsQ. PythonK. SkovpenS. TavernierW. Van DoninckP. Van MuldersI. Van ParijsD. BeghinB. BilinH. BrunB. ClerbauxG. De LentdeckerH. DelannoyB. DorneyG. FasanellaL. FavartR. GoldouzianA. GrebenyukA. K. KalsiT. LenziJ. LueticT. MaerschalkT. SevaE. StarlingC. Vander VeldeP. VanlaerD. VanneromR. YonamineF. ZenoniT. CornelisD. DoburA. FagotM. GulI. KhvastunovD. PoyrazC. RoskasD. TrocinoM. TytgatW. VerbekeM. VitN. ZaganidisH. BakhshiansohiO. BonduS. BrochetG. BrunoC. CaputoA. CaudronP. DavidS. De VisscherC. DelaereM. DelcourtB. FrancoisA. GiammancoG. KrintirasV. LemaitreA. MagitteriA. MertensM. MusichK. PiotrzkowskiL. QuertenmontA. SaggioM. Vidal MaronoS. WertzJ. ZobecW. L. Aldá JúniorF. L. AlvesG. A. AlvesL. BritoG. Correia SilvaC. HenselA. MoraesM. E. PolP. Rebello TelesE. Belchior Batista Das ChagasW. CarvalhoJ. ChinellatoE. CoelhoE. M. Da CostaG. G. Da SilveiraD. De Jesus DamiaoS. Fonseca De SouzaL. M. Huertas GuativaH. MalbouissonM. Medina JaimeM. Melo De AlmeidaC. Mora HerreraL. MundimH. NogimaL. J. Sanchez RosasA. SantoroA. SznajderM. ThielE. J. Tonelli ManganoteF. Torres Da Silva De AraujoA. Vilela PereiraS. AhujaC. A. BernardesT. R. Fernandez Perez TomeiE. M. GregoresP. G. MercadanteS. F. NovaesSandra S. PadulaD. Romero AbadJ. C. Ruiz VargasA. AleksandrovR. HadjiiskaP. IaydjievA. MarinovM. MishevaM. RodozovM. ShopovaG. SultanovA. DimitrovL. LitovB. PavlovP. PetkovW. FangX. GaoL. YuanM. AhmadJ. G. BianG. M. ChenH. S. ChenM. ChenY. ChenC. H. JiangD. LeggatH. LiaoZ. LiuF. RomeoS. M. ShaheenA. SpieziaJ. TaoC. WangZ. WangE. YazganH. ZhangJ. ZhaoY. BanG. ChenJ. LiQ. LiS. LiuY. MaoS. J. QianD. WangZ. XuY. WangC. AvilaA. CabreraC. A. Carrillo MontoyaL. F. Chaparro SierraC. FlorezC. F. González HernándezJ. D. Ruiz AlvarezM. A. Segura DelgadoB. CourbonN. GodinovicD. LelasI. PuljakP. M. Ribeiro CiprianoT. SculacZ. AntunovicM. KovacV. BrigljevicD. FerencekK. KadijaB. MesicA. StarodumovT. SusaM. W. AtherA. AttikisG. MavromanolakisJ. MousaC. NicolaouF. PtochosP. A. RazisH. RykaczewskiM. FingerM. FingerJr.E. Carrera JarrinA. A. AbdelalimS. ElgammalA. Ellithi KamelS. BhowmikR. K. DewanjeeM. KadastikL. PerriniM. RaidalC. VeelkenP. EerolaH. KirschenmannJ. PekkanenM. VoutilainenJ. HavukainenJ. K. HeikkiläT. JärvinenV. KarimäkiR. KinnunenT. LampénK. Lassila-PeriniS. LaurilaS. LehtiT. LindénP. LuukkaT. MäenpääH. SiikonenE. TuominenJ. TuominiemiT. TuuvaM. BesanconF. CoudercM. DejardinD. DenegriJ. L. FaureF. FerriS. GanjourS. GhoshA. GivernaudP. GrasG. Hamel de MonchenaultP. JarryC. LeloupE. LocciM. MachetJ. MalclesG. NegroJ. RanderA. RosowskyM. Ö. SahinM. TitovA. AbdulsalamC. AmendolaI. AntropovS. BaffioniF. BeaudetteP. BussonL. CadamuroC. CharlotR. Granier de CassagnacM. JoI. KucherS. LisniakA. LobanovJ. Martin BlancoM. NguyenC. OchandoG. OrtonaP. PaganiniP. PigardR. SalernoJ. B. SauvanY. SiroisA. G. Stahl LeitonY. YilmazA. ZabiA. ZghicheJ.-L. AgramJ. AndreaD. BlochJ.-M. BromM. ButtignolE. C. ChabertC. CollardE. ConteX. CoubezF. DrouhinJ.-C. FontaineD. GeléU. GoerlachM. JansováP. JuillotA.-C. Le BihanN. TononP. Van HoveS. GadratS. BeauceronC. BernetG. BoudoulN. ChanonR. ChiericiD. ContardoP. DepasseH. El MamouniJ. FayL. FincoS. GasconM. GouzevitchG. GrenierB. IlleF. LagardeI. B. LaktinehH. LattaudM. LethuillierL. MirabitoA. L. PequegnotS. PerriesA. PopovV. SordiniM. Vander DoncktS. ViretS. ZhangT. ToriashviliZ. TsamalaidzeC. AutermannL. FeldM. K. KieselK. KleinM. LipinskiM. PreutenC. SchomakersJ. SchulzM. TeroerdeB. WittmerV. ZhukovA. AlbertD. DuchardtM. EndresM. ErdmannS. ErdwegT. EschR. FischerA. GüthT. HebbekerC. HeidemannK. HoepfnerS. KnutzenM. MerschmeyerA. MeyerP. MilletS. MukherjeeT. PookM. RadziejH. ReithlerM. RiegerF. ScheuchD. TeyssierS. ThüerG. FlüggeB. KargollT. KressA. KünskenT. MüllerA. NehrkornA. NowackC. PistoneO. PoothA. StahlM. Aldaya MartinT. ArndtC. AsawatangtrakuldeeK. BeernaertO. BehnkeU. BehrensA. Bermúdez MartínezA. A. Bin AnuarK. BorrasV. BottaA. CampbellP. ConnorC. Contreras-CampanaF. CostanzaA. De WitC. Diez PardosG. EckerlinD. EcksteinT. EichhornE. ErenE. GalloJ. Garay GarciaA. GeiserJ. M. Grados LuyandoA. GrohsjeanP. GunnelliniM. GuthoffA. HarbJ. HaukM. HempelH. JungM. KasemannJ. KeaveneyC. KleinwortI. KorolD. KrückerW. LangeA. LelekT. LenzK. LipkaW. LohmannR. MankelI.-A. Melzer-PellmannA. B. MeyerM. MeyerM. MissiroliG. MittagJ. MnichA. MussgillerD. PitzlA. RasperezaM. SavitskyiP. SaxenaR. ShevchenkoN. StefaniukH. TholenG. P. Van OnsemR. WalshY. WenK. WichmannC. WissingO. ZenaievR. AggletonS. BeinV. BlobelM. Centis VignaliT. DreyerE. GaruttiD. GonzalezJ. HallerA. HinzmannM. HoffmannA. KaravdinaG. KasieczkaR. KlannerR. KoglerN. KovalchukS. KurzD. MarconiJ. MulthaupM. NiedzielaD. NowatschinT. PeifferA. PerieanuA. ReimersC. ScharfP. SchleperA. SchmidtS. SchumannJ. SchwandtJ. SonneveldH. StadieG. SteinbrückF. M. StoberM. StöverD. TroendleE. UsaiA. VanhoeferB. VormwaldM. AkbiyikC. BarthM. BaselgaS. BaurE. ButzR. CaspartT. ChwalekF. ColomboW. De BoerA. DierlammN. FaltermannB. FreundR. FrieseM. GiffelsM. A. HarrendorfF. HartmannS. M. HeindlU. HusemannF. KasselS. KudellaH. MildnerM. U. MozerTh. MüllerM. PlaggeG. QuastK. RabbertzM. SchröderI. ShvetsovG. SieberH. J. SimonisR. UlrichS. WayandM. WeberT. WeilerS. WilliamsonC. WöhrmannR. WolfG. AnagnostouG. DaskalakisT. GeralisA. KyriakisD. LoukasI. Topsis-GiotisG. KarathanasisS. KesisoglouA. PanagiotouN. SaoulidouE. TziaferiK. KousourisI. PapakrivopoulosI. EvangelouC. FoudasP. GianneiosP. KatsoulisP. KokkasS. MalliosN. ManthosI. PapadopoulosE. ParadasJ. StrologasF. A. TriantisD. TsitsonisM. CsanadN. FilipovicG. PasztorO. SurányiG. I. VeresG. BenczeC. HajduD. HorvathÁ. HunyadiF. SiklerT. Á. VámiV. VeszpremiG. VesztergombiN. BeniS. CzellarJ. KarancsiA. MakovecJ. MolnarZ. SzillasiM. BartókP. RaicsZ. L. TrocsanyiB. UjvariS. ChoudhuryJ. R. KomaragiriS. BahinipatiP. MalK. MandalA. NayakD. K. SahooN. SahooS. K. SwainS. BansalS. B. BeriV. BhatnagarR. ChawlaN. DhingraR. GuptaA. KaurM. KaurS. KaurR. KumarP. KumariA. MehtaS. SharmaJ. B. SinghG. WaliaA. BhardwajS. ChauhanB. C. ChoudharyR. B. GargS. KeshriA. KumarAshok KumarS. MalhotraM. NaimuddinK. RanjanAashaq ShahR. SharmaR. BhardwajR. BhattacharyaS. BhattacharyaU. BhawandeepD. BhowmikS. DeyS. DuttS. DuttaS. GhoshN. MajumdarA. ModakK. MondalS. MukhopadhyayS. NandanA. PurohitP. K. RoutA. RoyS. Roy ChowdhuryS. SarkarM. SharanB. SinghS. ThakurP. K. BeheraR. ChudasamaD. DuttaV. JhaV. KumarA. K. MohantyP. K. NetrakantiL. M. PantP. ShuklaA. TopkarT. AzizS. DugadB. MahakudS. MitraG. B. MohantyN. SurB. SutarS. BanerjeeS. BhattacharyaS. ChatterjeeP. DasM. GuchaitSa. JainS. KumarM. MaityG. MajumderK. MazumdarT. SarkarN. WickramageS. ChauhanS. DubeV. HegdeA. KapoorK. KothekarS. PandeyA. RaneS. SharmaS. ChenaraniE. Eskandari TadavaniS. M. EtesamiM. KhakzadM. Mohammadi NajafabadiM. NaseriS. Paktinat MehdiabadiF. Rezaei HosseinabadiB. SafarzadehM. ZeinaliM. FelciniM. GrunewaldM. AbbresciaC. CalabriaA. ColaleoD. CreanzaL. CristellaN. De FilippisM. De PalmaA. Di FlorioF. ErricoL. FioreG. IaselliS. LezkiG. MaggiM. MaggiB. MarangelliG. MinielloS. MyS. NuzzoA. PompiliG. PuglieseR. RadognaA. RanieriG. SelvaggiA. SharmaL. SilvestrisR. VendittiP. VerwilligenG. ZitoG. AbbiendiC. BattilanaD. BonacorsiL. BorgonoviS. Braibant-GiacomelliR. CampaniniP. CapiluppiA. CastroF. R. CavalloS. S. ChhibraG. CodispotiM. CuffianiG. M. DallavalleF. FabbriA. FanfaniD. FasanellaP. GiacomelliC. GrandiL. GuiducciF. IemmiS. MarcelliniG. MasettiA. MontanariF. L. NavarriaA. PerrottaA. M. RossiT. RovelliG. P. SiroliN. TosiS. AlbergoS. CostaA. Di MattiaF. GiordanoR. PotenzaA. TricomiC. TuveG. BarbagliK. ChatterjeeV. CiulliC. CivininiR. D’AlessandroE. FocardiG. LatinoP. LenziM. MeschiniS. PaolettiL. RussoG. SguazzoniD. StromL. VilianiL. BenussiS. BiancoF. FabbriD. PiccoloF. PrimaveraV. CalvelliF. FerroF. RaveraE. RobuttiS. TosiA. BenagliaA. BeschiL. BrianzaF. BrivioV. CirioloM. E. DinardoS. FiorendiS. GennaiA. GhezziP. GovoniM. MalbertiS. MalvezziR. A. ManzoniD. MenasceL. MoroniM. PaganoniK. PauwelsD. PedriniS. PigazziniS. RagazziT. Tabarelli de FatisS. BuontempoN. CavalloS. Di GuidaF. FabozziF. FiengaA. O. M. IorioW. A. KhanL. ListaS. MeolaP. PaolucciC. SciaccaF. ThyssenP. AzziN. BacchettaL. BenatoD. BiselloA. BolettiR. CarlinA. Carvalho Antunes De OliveiraP. ChecchiaM. Dall’OssoP. De Castro ManzanoT. DorigoF. GaspariniU. GaspariniA. GozzelinoS. LacapraraP. LujanM. MargoniA. T. MeneguzzoN. PozzobonP. RoncheseR. RossinF. SimonettoA. TikoE. TorassaM. ZanettiP. ZottoG. ZumerleA. BraghieriA. MagnaniP. MontagnaS. P. RattiV. ReM. RessegottiC. RiccardiP. SalviniI. VaiP. VituloL. Alunni SolestiziM. BiasiniG. M. BileiC. CecchiD. CiangottiniL. FanòP. LaricciaR. LeonardiE. ManoniG. MantovaniV. MarianiM. MenichelliA. RossiA. SantocchiaD. SpigaK. AndrosovP. AzzurriG. BagliesiL. BianchiniT. BoccaliL. BorrelloR. CastaldiM. A. CiocciR. Dell’OrsoG. FediL. GianniniA. GiassiM. T. GrippoF. LigabueT. LomtadzeE. MancaG. MandorliA. MessineoF. PallaA. RizziP. SpagnoloR. TenchiniG. TonelliA. VenturiP. G. VerdiniL. BaroneF. CavallariM. CiprianiN. DaciD. Del ReE. Di MarcoM. DiemozS. GelliE. LongoF. MargaroliB. MarzocchiP. MeridianiG. OrgantiniR. ParamattiF. PreiatoS. RahatlouC. RovelliF. SantanastasioN. AmapaneR. ArcidiaconoS. ArgiroM. ArneodoN. BartosikR. BellanC. BiinoN. CartigliaR. CastelloF. CennaM. CostaR. CovarelliA. DeganoN. DemariaB. KianiC. MariottiS. MaselliE. MiglioreV. MonacoE. MonteilM. MontenoM. M. ObertinoL. PacherN. PastroneM. PelliccioniG. L. Pinna AngioniA. RomeroM. RuspaR. SacchiK. ShchelinaV. SolaA. SolanoA. StaianoP. TraczykS. BelforteM. CasarsaF. CossuttiG. Della RiccaA. ZanettiD. H. KimG. N. KimM. S. KimJ. LeeS. LeeS. W. LeeC. S. MoonY. D. OhS. SekmenD. C. SonY. C. YangH. KimD. H. MoonG. OhJ. A. Brochero CifuentesJ. GohT. J. KimS. ChoS. ChoiY. GoD. GyunS. HaB. HongY. JoY. KimK. LeeK. S. LeeS. LeeJ. LimS. K. ParkY. RohJ. AlmondJ. KimJ. S. KimH. LeeK. LeeK. NamS. B. OhB. C. Radburn-SmithS. h. SeoU. K. YangH. D. YooG. B. YuH. KimJ. H. KimJ. S. H. LeeI. C. ParkY. ChoiC. HwangJ. LeeI. YuV. DudenasA. JuodagalvisJ. VaitkusI. AhmedZ. A. IbrahimM. A. B. Md AliF. Mohamad IdrisW. A. T. Wan AbdullahM. N. YusliZ. ZolkapliM. C. Duran-OsunaH. Castilla-ValdezE. De La Cruz-BureloG. Ramirez-SanchezI. Heredia-De La CruzR. I. Rabadan-TrejoR. Lopez-FernandezJ. Mejia GuisaoR Reyes-AlmanzaA. Sanchez-HernandezS. Carrillo MorenoC. Oropeza BarreraF. Vazquez ValenciaJ. EysermansI. PedrazaH. A. Salazar IbarguenC. Uribe EstradaA. Morelos PinedaD. KrofcheckP. H. ButlerA. AhmadM. AhmadQ. HassanH. R. HooraniA. SaddiqueM. A. ShahM. ShoaibM. WaqasH. BialkowskaM. BlujB. BoimskaT. FrueboesM. GórskiM. KazanaK. NawrockiM. SzleperP. ZalewskiK. BunkowskiA. ByszukK. DorobaA. KalinowskiM. KoneckiJ. KrolikowskiM. MisiuraM. OlszewskiA. PyskirM. WalczakP. BargassaC. Beirão Da Cruz E SilvaA. Di FrancescoP. FaccioliB. GalinhasM. GallinaroJ. HollarN. LeonardoL. Lloret IglesiasM. V. NemallapudiJ. SeixasG. StrongO. ToldaievD. VadruccioJ. VarelaS. AfanasievP. BuninM. GavrilenkoI. GolutvinI. GorbunovA. KamenevV. KarjavinA. LanevA. MalakhovV. MatveevP. MoisenzV. PalichikV. PerelyginS. ShmatovS. ShulhaN. SkatchkovV. SmirnovN. VoytishinA. ZarubinY. IvanovV. KimE. KuznetsovaP. LevchenkoV. MurzinV. OreshkinI. SmirnovD. SosnovV. SulimovL. UvarovS. VavilovA. VorobyevYu. AndreevA. DermenevS. GninenkoN. GolubevA. KarneyeuM. KirsanovN. KrasnikovA. PashenkovD. TlisovA. ToropinV. EpshteynV. GavrilovN. LychkovskayaV. PopovI. PozdnyakovG. SafronovA. SpiridonovA. StepennovV. StolinM. TomsE. VlasovA. ZhokinT. AushevA. BylinkinM. ChadeevaP. ParyginD. PhilippovS. PolikarpovE. PopovaV. RusinovV. AndreevM. AzarkinI. DreminM. KirakosyanS. V. RusakovA. TerkulovA. BaskakovA. BelyaevE. BoosV. BunichevM. DubininL. DudkoA. ErshovA. GribushinV. KlyukhinO. KodolovaI. LokhtinI. MiagkovS. ObraztsovM. PerfilovV. SavrinV. BlinovD. ShtolY. SkovpenI. AzhgireyI. BayshevS. BitioukovD. ElumakhovA. GodizovV. KachanovA. KalininD. KonstantinovP. MandrikV. PetrovR. RyutinA. SobolS. TroshinN. TyurinA. UzunianA. VolkovA. BabaevP. AdzicP. CirkovicD. DevetakM. DordevicJ. MilosevicJ. Alcaraz MaestreA. Álvarez FernándezI. BachillerM. Barrio LunaM. CerradaN. ColinoB. De La CruzA. Delgado PerisC. Fernandez BedoyaJ. P. Fernández RamosJ. FlixM. C. FouzO. Gonzalez LopezS. Goy LopezJ. M. HernandezM. I. JosaD. MoranA. Pérez-Calero YzquierdoJ. Puerta PelayoI. RedondoL. RomeroM. S. SoaresA. TriossiC. AlbajarJ. F. de TrocónizJ. CuevasC. EriceJ. Fernandez MenendezS. FolguerasI. Gonzalez CaballeroJ. R. González FernándezE. Palencia CortezonS. Sanchez CruzP. VischiaJ. M. Vizan GarciaI. J. CabrilloA. CalderonB. Chazin QueroJ. Duarte CampderrosM. FernandezP. J. Fernández MantecaA. García AlonsoJ. Garcia-FerreroG. GomezA. Lopez VirtoJ. MarcoC. Martinez RiveroP. Martinez Ruiz del ArbolF. MatorrasJ. Piedra GomezC. PrieelsT. RodrigoA. Ruiz-JimenoL. ScodellaroN. TrevisaniI. VilaR. Vilar CortabitarteD. AbbaneoB. AkgunE. AuffrayP. BaillonA. H. BallD. BarneyJ. BendavidM. BiancoA. BocciC. BottaT. CamporesiM. CepedaG. CerminaraE. ChaponY. ChenD. d’EnterriaA. DabrowskiV. DaponteA. DavidM. De GruttolaA. De RoeckN. DeelenM. DobsonT. du PreeM. DünserN. DupontA. Elliott-PeisertP. EveraertsF. FallavollitaG. FranzoniJ. FulcherW. FunkD. GigiA. GilbertK. GillF. GlegeD. GulhanJ. HegemanV. InnocenteA. JafariP. JanotO. KarachebanJ. KieselerV. KnünzA. KornmayerM. J. KortelainenM. KrammerC. LangeP. LecoqC. LourençoM. T. LucchiniL. MalgeriM. MannelliA. MartelliF. MeijersJ. A. MerlinS. MersiE. MeschiP. MilenovicF. MoortgatM. MuldersH. NeugebauerJ. NgadiubaS. OrfanelliL. OrsiniF. PantaleoL. PapeE. PerezM. PeruzziA. PetrilliG. PetruccianiA. PfeifferM. PieriniF. M. PittersD. RabadyA. RaczT. ReisG. RolandiM. RovereH. SakulinC. SchäferC. SchwickM. SeidelM. SelvaggiA. SharmaP. SilvaP. SphicasA. StakiaJ. SteggemannM. StoyeM. TosiD. TreilleA. TsirouV. VeckalnsM. VerweijW. D. ZeunerW. BertlL. CaminadaK. DeitersW. ErdmannR. HorisbergerQ. IngramH. C. KaestliD. KotlinskiU. LangeneggerT. RoheS. A. WiederkehrM. BackhausL. BäniP. BergerB. CasalG. DissertoriM. DittmarM. DonegàC. DorferC. GrabC. HeideggerD. HitsJ. HossT. KlijnsmaW. LustermannM. MarionneauM. T. MeinhardD. MeisterF. MicheliP. MusellaF. Nessi-TedaldiF. PandolfiJ. PataF. PaussG. PerrinL. PerrozziM. QuittnatM. ReichmannD. A. Sanz BecerraM. SchönenbergerL. ShchutskaV. R. TavolaroK. TheofilatosM. L. Vesterbacka OlssonR. WallnyD. H. ZhuT. K. AarrestadC. AmslerD. BrzhechkoM. F. CanelliA. De CosaR. Del BurgoS. DonatoC. GalloniT. HreusB. KilminsterI. NeutelingsD. PinnaG. RaucoP. RobmannD. SalernoK. SchweigerC. SeitzY. TakahashiA. ZucchettaV. CandeliseY. H. ChangK. y. ChengT. H. DoanSh. JainR. KhuranaC. M. KuoW. LinA. PozdnyakovS. S. YuP. ChangY. ChaoK. F. ChenP. H. ChenF. FioriW.-S. HouY. HsiungArun KumarY. F. LiuR.-S. LuE. PaganisA. PsallidasA. SteenJ. f. TsaiB. AsavapibhopK. KovitanggoonG. SinghN. SrimanobhasA. BatF. BoranS. DamarseckinZ. S. DemirogluC. DozenE. EskutS. GirgisG. GokbulutY. GulerI. HosE. E. KangalO. KaraA. Kayis TopaksuU. KiminsuM. OglakciG. OnengutK. OzdemirS. OzturkA. PolatozB. TaliU. G. TokS. TurkcaparI. S. ZorbakirC. ZorbilmezG. KarapinarK. OcalanM. YalvacM. ZeyrekE. GülmezM. KayaO. KayaS. TektenE. A. YetkinM. N. AgarasS. AtayA. CakirK. CankocakY. KomurcuB. GrynyovL. LevchukF. BallL. BeckJ. J. BrookeD. BurnsE. ClementD. CussansO. DavignonH. FlacherJ. GoldsteinG. P. HeathH. F. HeathL. KreczkoD. M. NewboldS. ParamesvaranT. SakumaS. Seif El Nasr-storeyD. SmithV. J. SmithK. W. BellA. BelyaevC. BrewR. M. BrownL. CalligarisD. CieriD. J. A. CockerillJ. A. CoughlanK. HarderS. HarperJ. LinacreE. OlaiyaD. PetytC. H. Shepherd-ThemistocleousA. TheaI. R. TomalinT. WilliamsW. J. WomersleyG. AuzingerR. BainbridgeP. BlochJ. BorgS. BreezeO. BuchmullerA. BundockS. CasassoD. CollingL. CorpeP. DaunceyG. DaviesM. Della NegraR. Di MariaY. HaddadG. HallG. IlesT. JamesM. KommR. LaneC. LanerL. LyonsA.-M. MagnanS. MalikL. MastrolorenzoT. MatsushitaJ. NashA. NikitenkoV. PalladinoM. PesaresiA. RichardsA. RoseE. ScottC. SeezA. ShtipliyskiT. StreblerS. SummersA. TapperK. UchidaM. Vazquez AcostaT. VirdeeN. WardleD. WinterbottomJ. WrightS. C. ZenzJ. E. ColeP. R. HobsonA. KhanP. KyberdA. MortonI. D. ReidL. TeodorescuS. ZahidA. BorzouK. CallJ. DittmannK. HatakeyamaH. LiuN. PastikaC. SmithR. BartekA. DominguezA. BuccilliS. I. CooperC. HendersonP. RumerioC. WestD. ArcaroA. AvetisyanT. BoseD. GastlerD. RankinC. RichardsonJ. RohlfL. SulakD. ZouG. BenelliD. CuttsM. HadleyJ. HakalaU. HeintzJ. M. HoganK. H. M. KwokE. LairdG. LandsbergJ. LeeZ. MaoM. NarainJ. PazziniS. PiperovS. SagirR. SyarifD. YuR. BandC. BrainerdR. BreedonD. BurnsM. Calderon De La Barca SanchezM. ChertokJ. ConwayR. ConwayP. T. CoxR. ErbacherC. FloresG. FunkW. KoR. LanderC. McleanM. MulhearnD. PellettJ. PilotS. ShalhoutM. ShiJ. SmithD. StolpD. TaylorK. TosM. TripathiZ. WangF. ZhangM. BachtisC. BravoR. CousinsA. DasguptaA. FlorentJ. HauserM. IgnatenkoN. MccollS. RegnardD. SaltzbergC. SchnaibleV. ValuevE. BouvierK. BurtR. ClareJ. EllisonJ. W. GaryS. M. A. Ghiasi ShiraziG. HansonG. KarapostoliE. KennedyF. LacroixO. R. LongM. Olmedo NegreteM. I. PanevaW. SiL. WangH. WeiS. WimpennyB. R. YatesJ. G. BransonS. CittolinM. DerdzinskiR. GerosaD. GilbertB. HashemiA. HolznerD. KleinG. KoleV. KrutelyovJ. LettsM. MasciovecchioD. OlivitoS. PadhiM. PieriM. SaniV. SharmaS. SimonM. TadelA. VartakS. WasserbaechJ. WoodF. WürthweinA. YagilG. Zevi Della PortaN. AminR. BhandariJ. Bradmiller-FeldC. CampagnariM. CitronA. DishawV. DuttaM. Franco SevillaL. GouskosR. HellerJ. IncandelaA. OvcharovaH. QuJ. RichmanD. StuartI. SuarezJ. YooD. AndersonA. BornheimJ. BunnJ. M. LawhornH. B. NewmanT. Q. NguyenC. PenaM. SpiropuluJ. R. VlimantR. WilkinsonS. XieZ. ZhangR. Y. ZhuM. B. AndrewsT. FergusonT. MudholkarM. PauliniJ. RussM. SunH. VogelI. VorobievM. WeinbergJ. P. CumalatW. T. FordF. JensenA. JohnsonM. KrohnS. LeontsinisE. MacdonaldT. MulhollandK. StensonK. A. UlmerS. R. WagnerJ. AlexanderJ. ChavesY. ChengJ. ChuA. DattaS. DittmerK. McdermottN. MirmanJ. R. PattersonD. QuachA. RinkeviciusA. RydL. SkinnariL. SoffiS. M. TanZ. TaoJ. ThomJ. TuckerP. WittichM. ZientekS. AbdullinM. AlbrowM. AlyariG. ApollinariA. ApresyanA. ApyanS. BanerjeeL. A. T. BauerdickA. BeretvasJ. BerryhillP. C. BhatG. BollaK. BurkettJ. N. ButlerA. CanepaG. B. CeratiH. W. K. CheungF. ChlebanaM. CremonesiJ. DuarteV. D. ElviraJ. FreemanZ. GecseE. GottschalkL. GrayD. GreenS. GrünendahlO. GutscheJ. HanlonR. M. HarrisS. HasegawaJ. HirschauerZ. HuB. JayatilakaS. JindarianiM. JohnsonU. JoshiB. KlimaB. KreisS. LammelD. LincolnR. LiptonM. LiuT. LiuR. Lopes De SáJ. LykkenK. MaeshimaN. MaginiJ. M. MarraffinoD. MasonP. McBrideP. MerkelS. MrennaS. NahnV. O’DellK. PedroO. ProkofyevG. RaknessL. RistoriA. Savoy-NavarroB. SchneiderE. Sexton-KennedyA. SohaW. J. SpaldingL. SpiegelS. StoynevJ. StraitN. StrobbeL. TaylorS. TkaczykN. V. TranL. UpleggerE. W. VaanderingC. VernieriM. VerzocchiR. VidalM. WangH. A. WeberA. WhitbeckW. WuD. AcostaP. AveryP. BortignonD. BourilkovA. BrinkerhoffA. CarnesM. CarverD. CurryR. D. FieldI. K. FuricS. V. GleyzerB. M. JoshiJ. KonigsbergA. KorytovK. KotovP. MaK. MatchevH. MeiG. MitselmakherK. ShiD. SperkaN. TerentyevL. ThomasJ. WangS. WangJ. YeltonY. R. JoshiS. LinnP. MarkowitzJ. L. RodriguezA. AckertT. AdamsA. AskewS. HagopianV. HagopianK. F. JohnsonT. KolbergG. MartinezT. PerryH. ProsperA. SahaA. SantraV. SharmaR. YohayM. M. BaarmandV. BhopatkarS. ColafranceschiM. HohlmannD. NoonanT. RoyF. YumicevaM. R. AdamsL. ApanasevichD. BerryR. R. BettsR. CavanaughX. ChenO. EvdokimovC. E. GerberD. A. HangalD. J. HofmanK. JungJ. KaminI. D. Sandoval GonzalezM. B. TonjesN. VarelasH. WangZ. WuJ. ZhangB. BilkiW. ClaridaK. DilsizS. DurgutR. P. GandrajulaM. HaytmyradovV. KhristenkoJ.-P. MerloH. MermerkayaA. MestvirishviliA. MoellerJ. NachtmanH. OgulY. OnelF. OzokA. PenzoC. SnyderE. TirasJ. WetzelK. YiB. BlumenfeldA. CocorosN. EminizerD. FehlingL. FengA. V. GritsanP. MaksimovicJ. RoskesU. SaricaM. SwartzM. XiaoC. YouA. Al-batainehP. BaringerA. BeanS. BorenJ. BowenJ. CastleS. KhalilA. KropivnitskayaD. MajumderW. McbrayerM. MurrayC. RoganC. RoyonS. SandersE. SchmitzJ. D. Tapia TakakiQ. WangA. IvanovK. KaadzeY. MaravinA. MohammadiL. K. SainiN. SkhirtladzeF. RebassooD. WrightA. BadenO. BaronA. BelloniS. C. EnoY. FengC. FerraioliN. J. HadleyS. JabeenG. Y. JengR. G. KelloggJ. KunkleA. C. MignereyF. Ricci-TamY. H. ShinA. SkujaS. C. TonwarD. AbercrombieB. AllenV. AzzoliniR. BarbieriA. BatyG. BauerR. BiS. BrandtW. BuszaI. A. CaliM. D’AlfonsoZ. DemiragliG. Gomez CeballosM. GoncharovP. HarrisD. HsuM. HuY. IiyamaG. M. InnocentiM. KluteD. KovalskyiY.-J. LeeA. LevinP. D. LuckeyB. MaierA. C. MariniC. McginnC. MironovS. NarayananX. NiuC. PausC. RolandG. RolandJ. Salfeld-NebgenG. S. F. StephansK. SumorokK. TatarD. VelicanuJ. WangT. W. WangB. WyslouchS. ZhaozhongA. C. BenvenutiR. M. ChatterjeeA. EvansP. HansenS. KalafutY. KubotaZ. LeskoJ. MansS. NourbakhshN. RuckstuhlR. RusackJ. TurkewitzM. A. WadudJ. G. AcostaS. OliverosE. AvdeevaK. BloomD. R. ClaesC. FangmeierF. GolfR. Gonzalez SuarezR. KamalieddinI. KravchenkoJ. MonroyJ. E. SiadoG. R. SnowB. StiegerJ. DolenA. GodshalkC. HarringtonI. IashviliD. NguyenA. ParkerS. RappoccioB. RoozbahaniG. AlversonE. BarberisC. FreerA. HortiangthamA. MassironiD. M. MorseT. OrimotoR. Teixeira De LimaT. WamorkarB. WangA. WisecarverD. WoodS. BhattacharyaO. CharafK. A. HahnN. MuciaN. OdellM. H. SchmittK. SungM. TrovatoM. VelascoR. BucciN. DevM. HildrethK. Hurtado AnampaC. JessopD. J. KarmgardN. KellamsK. LannonW. LiN. LoukasN. MarinelliF. MengC. MuellerY. MusienkoM. PlanerA. ReinsvoldR. RuchtiP. SiddireddyG. SmithS. TaroniM. WayneA. WightmanM. WolfA. WoodardJ. AlimenaL. AntonelliB. BylsmaL. S. DurkinS. FlowersB. FrancisA. HartC. HillW. JiT. Y. LingW. LuoB. L. WinerH. W. WulsinS. CoopersteinO. DrigaP. ElmerJ. HardenbrookP. HebdaS. HigginbothamA. KalogeropoulosD. LangeJ. LuoD. MarlowK. MeiI. OjalvoJ. OlsenC. PalmerP. PirouéD. SticklandC. TullyS. MalikS. NorbergA. BarkerV. E. BarnesS. DasL. GutayM. JonesA. W. JungA. KhatiwadaD. H. MillerN. NeumeisterC. C. PengH. QiuJ. F. SchulteJ. SunF. WangR. XiaoW. XieT. ChengN. ParasharZ. ChenK. M. EcklundS. FreedF. J. M. GeurtsM. GuilbaudM. KilpatrickW. LiB. MichlinB. P. PadleyJ. RobertsJ. RorieW. ShiZ. TuJ. ZabelA. ZhangA. BodekP. de BarbaroR. DeminaY. t. DuhT. FerbelM. GalantiA. Garcia-BellidoJ. HanO. HindrichsA. KhukhunaishviliK. H. LoP. TanM. VerzettiR. CiesielskiK. GoulianosC. MesropianA. AgapitosJ. P. ChouY. GershteinT. A. Gómez EspinosaE. HalkiadakisM. HeindlE. HughesS. KaplanR. Kunnawalkam ElayavalliS. KyriacouA. LathR. MontalvoK. NashM. OshersonH. SakaS. SalurS. SchnetzerD. SheffieldS. SomalwarR. StoneS. ThomasP. ThomassenM. WalkerA. G. DelannoyJ. HeidemanG. RileyK. RoseS. SpanierK. ThapaO. BouhaliA. Castaneda HernandezA. CelikM. DalchenkoM. De MattiaA. DelgadoS. DildickR. EusebiJ. GilmoreT. HuangT. KamonR. MuellerY. PakhotinR. PatelA. PerloffL. PernièD. RathjensA. SafonovA. TatarinovN. AkchurinJ. DamgovF. De GuioP. R. DuderoJ. FaulknerE. GurpinarS. KunoriK. LamichhaneS. W. LeeT. MengkeS. MuthumuniT. PeltolaS. UndleebI. VolobouevZ. WangS. GreeneA. GurrolaR. JanjamW. JohnsC. MaguireA. MeloH. NiK. PadekenP. SheldonS. TuoJ. VelkovskaQ. XuM. W. ArentonP. BarriaB. CoxR. HiroskyM. JoyceA. LedovskoyH. LiC. NeuT. SinthuprasithY. WangE. WolfeF. XiaR. HarrP. E. KarchinN. PoudyalJ. SturdyP. ThapaS. ZaleskiM. BrodskiJ. BuchananC. CaillolD. CarlsmithS. DasuL. DoddS. DuricB. GomberM. GrotheM. HerndonA. HervéU. HussainP. KlabbersA. LanaroA. LevineK. LongR. LovelessV. RekovicT. RugglesA. SavinN. SmithW. H. SmithN. WoodsCMS Collaboration Open Access Regular Article - Experimental Physics First Online: 03 September 2018 Received: 07 March 2018 Accepted: 08 August 2018 35 Downloads Abstract A search for pair production of heavy scalar leptoquarks (LQs), each decaying into a top quark and a \(\tau \) lepton, is presented. The search considers final states with an electron or a muon, one or two \(\tau \) leptons that decayed to hadrons, and additional jets. The data were collected in 2016 in proton–proton collisions at \(\sqrt{s}=13\,\text {Te}\text {V} \) with the CMS detector at the LHC, and correspond to an integrated luminosity of 35.9\(\,\text {fb}^{-1}\). No evidence for pair production of LQs is found. Assuming a branching fraction of unity for the decay \(\mathrm {LQ} \rightarrow \mathrm {t}\tau \), upper limits on the production cross section are set as a function of LQ mass, excluding masses below 900\(\,\text {Ge}\text {V}\) at 95% confidence level. These results provide the most stringent limits to date on the production of scalar LQs that decay to a top quark and a \(\tau \) lepton. 1 Introduction Leptoquarks (LQs) are hypothetical particles that carry non-zero baryon and lepton quantum numbers. They are charged under all standard model (SM) gauge groups, and their possible quantum numbers can be restricted by the assumption that their interactions with SM fermions are renormalizable and gauge invariant [1]. The spin of an LQ state is either 0 (scalar LQ) or 1 (vector LQ). Leptoquarks appear in theories beyond the SM such as grand unified theories [2, 3, 4], technicolor models [5, 6] and other compositeness scenarios [7, 8], and R-parity-violating (RPV) supersymmetric models [9, 10]. Third-generation scalar LQs (\(\mathrm {LQ}_3\) s) have recently received considerable theoretical interest, as their existence can explain the anomaly in the \(\mathrm {\overline{B}}\rightarrow \mathrm {D}\tau \overline{\nu } \) and \(\mathrm {\overline{B}}\rightarrow \mathrm {D}^* \tau \overline{\nu } \) decay rates reported by the BaBar [11, 12], Belle [13, 14, 15], and LHCb [16] Collaborations. These decay rates deviate from the SM predictions by about four standard deviations [17], and studies of the flavor structure of LQ couplings reveal that large couplings to third-generation quarks and leptons could explain this anomaly [18, 19, 20, 21]. Third-generation LQs can appear in models in which only third-generation quarks and leptons are unified [22, 23] and therefore their existence is not constrained by proton decay experiments. All models that predict LQs with masses at the TeV scale and sizable couplings to top quarks and \(\tau \) leptons can be probed by the CMS experiment at the CERN LHC. In proton–proton (\(\mathrm {p}\mathrm {p}\)) collisions LQs are mainly pair produced through the quantum chromodynamic (QCD) quark-antiquark annihilation and gluon-gluon fusion s- and t-channel subprocesses as shown in Fig. 1. There are also lepton-mediated t- and u-channel contributions that depend on the unknown lepton-quark-LQ Yukawa coupling, but these contributions to \(\mathrm {LQ}_3\) production are negligible at the LHC as they require third-generation quarks in the initial state. Hence, the LQ pair-production cross section can be taken to depend only on the assumed values of the LQ spin and mass, and on the center-of-mass energy. The corresponding pair production cross sections have been calculated up to next-to-leading order (NLO) in perturbative QCD [24]. This paper presents the first search for the production of an \(\mathrm {LQ}_3\) decaying into a top quark and a \(\tau \) lepton at \(\sqrt{s} = 13\,\text {Te}\text {V} \). The search targets \(\mathrm {LQ}_3\) s with electric charges \(-5/3\,e\) and \(-1/3\,e\), where e is the proton charge, and with various possible weak isospin configurations, depending on the model. A previous search for this channel at \(\sqrt{s} = 8\,\text {Te}\text {V} \) by the CMS Collaboration resulted in a lower mass limit of 685\(\,\text {Ge}\text {V}\) for an \(\mathrm {LQ}_3\) with branching fraction \(\mathcal {B}=1\) into a top quark and a \(\tau \) lepton [25]. Other searches for an \(\mathrm {LQ}_3\) have targeted the decays \(\mathrm {LQ}_3 \rightarrow \mathrm {b}\nu \) and \(\mathrm {LQ}_3 \rightarrow \mathrm {b}\tau \) [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. The results of the search presented here are also interpreted in the context of RPV supersymmetric models, where the supersymmetric partner of the bottom quark (bottom squark) decays into a top quark and a \(\tau \) lepton via the RPV coupling. Open image in new window Fig. 1 Dominant leading order Feynman diagrams for the production of leptoquark pairs in proton–proton collisions We consider events with at least one electron or muon and at least one \(\tau \) lepton, where the \(\tau \) lepton undergoes a one- or three-prong hadronic decay, \(\tau _\mathrm {h} \rightarrow \text {hadron(s)}+\nu _\tau \). In \(\mathrm {LQ}_3 \overline{\mathrm {LQ}}_3 \) events, \(\tau \) leptons arise directly from \(\mathrm {LQ}_3 \) decays, as well as from \(\mathrm {W}\) bosons in the top quark decay chain. Electrons and muons are produced in leptonic decays of \(\mathrm {W}\) bosons or \(\tau \) leptons. Two search regions are used in this analysis: a di-\(\tau \) region with the signature \(\ell \tau _\mathrm {h} \tau _\mathrm {h} \)+jets and small background levels from SM processes, which provides high sensitivity for \(\mathrm {LQ}_3\) masses below 500\(\,\text {Ge}\text {V}\), and a region with a single \(\tau \) lepton in the final state, \(\ell \tau _\mathrm {h} \)+jets, which has higher sensitivity for \(\mathrm {LQ}_3\) masses above 500\(\,\text {Ge}\text {V}\) because of a larger signal efficiency. Here, \(\ell \) denotes either an electron or a muon. The dominant backgrounds in this search come from \({\mathrm {t}\overline{\mathrm {t}}} \)+jets and \(\mathrm {W}+\text {jets} \) production, with jets misidentified as hadronically decaying \(\tau \) leptons. These backgrounds are estimated through measurements in control regions and extrapolated to the signal region. In this paper, Sect. 2 describes the CMS detector, while Sect. 3 discusses the data samples and the properties of simulated events utilized in the analysis. Section 4 outlines the techniques used for event reconstruction and Sect. 5 describes the selection criteria applied in each analysis channel. The method used for the background estimation is reported in Sect. 6, and systematic uncertainties are detailed in Sect. 7. Finally, Sect. 8 contains the results of the analysis, and Sect. 9 summarizes this work. 2 The CMS detector The central feature of the CMS apparatus [40] is a superconducting solenoid of 6\(\,\text {m}\) internal diameter, providing a magnetic field of 3.8\(\,\text {T}\). Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (\(\eta \)) coverage provided by the barrel and endcap detectors. Electron momenta are estimated by combining the energy measurement in the ECAL with the momentum measurement in the tracker. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [40]. Events of interest are selected using a two-tiered trigger system [41], where the first level is composed of custom hardware processors and selects events at a rate of around 100\(\,\text {kHz}\) within a time interval of less than 4\(\,\upmu \text {s}\). The second level, known as the high-level trigger, uses a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1\(\,\text {kHz}\) before data storage. 3 Data sample and simulated events The search for \(\mathrm {LQ}_3\) s presented here uses \(\mathrm {p}\mathrm {p}\) collisions at \(\sqrt{s}=13\,\text {Te}\text {V} \) recorded with the CMS detector in 2016. The data sample corresponds to an integrated luminosity of 35.9\(\,\text {fb}^{-1}\)  [42]. The leading order (LO) Monte Carlo (MC) program pythia  8.205 [43] is used to simulate the \(\mathrm {LQ}_3\) pair production signal process. Both \(\mathrm {LQ}_3\) s are required to decay into a top quark and a \(\tau \) lepton, and polarization effects from the chiralities of the top quark and the \(\tau \) lepton have been neglected. The signal samples are generated for \(\mathrm {LQ}_3\) masses ranging from 200 to 2000\(\,\text {Ge}\text {V}\). The principal background processes, top quark pair production (\({\mathrm {t}\overline{\mathrm {t}}}\)) via the strong interaction and electroweak single top quark production in the t-channel and tW processes, are simulated with the NLO generator powheg (v1 is used for the single top \(\mathrm {t}\) \(\mathrm {W}\) processes and v2 for the single top t-channel and \({\mathrm {t}\overline{\mathrm {t}}}\) processes) [44, 45, 46, 47, 48, 49]. The s-channel process of single top quark production is generated at NLO using the program MadGraph 5_amc@nlo  (v2.2.2) [50]. Other background processes involve \(\mathrm {W}\) and \(\mathrm {Z}\) boson production in association with jet radiation. These processes are generated with MadGraph 5_amc@nlo  (v2.2.2), with \(\mathrm {W}\) boson production at NLO and \(\mathrm {Z}\) boson production at LO level. The matrix element generation of \(\mathrm {W}\) and \(\mathrm {Z}\) boson production is matched to the parton shower emissions with the Frederix and Frixione [51] and MLM [52] algorithms, respectively. Background processes from QCD multijet production are simulated with pythia  8.205. For all generated events, pythia  8.205 is used for the description of the parton shower and hadronization. In the parton shower, the underlying event tune CUETP8M1 [53, 54] has been applied for all samples except for \({\mathrm {t}\overline{\mathrm {t}}}\) and single top quark production in the t-channel, which use the underlying event tune CUETP8M2T4 [53, 54]. The event generation is performed using the NNPDF 3.0 parton distribution functions (PDFs) [55], for all events. The detector response is modeled with the Geant4  [56] suite of programs. 4 Event reconstruction Event reconstruction is based on the CMS particle-flow (PF) algorithm [57], which combines information from all subdetectors, including measurements from the tracking system, energy deposits in the ECAL and HCAL, and tracks reconstructed in the muon detectors. Based on this information, all particles in the event are reconstructed as electrons, muons, photons, charged hadrons, or neutral hadrons. Interaction vertices are reconstructed using a deterministic annealing filtering algorithm [58, 59]. The reconstructed vertex with the largest value of summed physics-objects \(p_{\mathrm {T}} ^2\) is taken to be the primary \(\mathrm {p}\mathrm {p}\) interaction vertex. The physics objects are jets, clustered using the jet finding algorithm [60, 61] with the tracks assigned to the vertex as inputs, and the associated missing transverse momentum, taken as the negative vector sum of the \(p_{\mathrm {T}}\) of those jets. Charged particles associated with other interaction vertices are removed from further consideration. Muons are reconstructed using the information collected in the muon detectors and the inner tracking detectors, and are measured in the range \(|\eta |< 2.4\). Tracks associated with muon candidates must be consistent with muons originating from the primary vertex, and are required to satisfy a set of identification requirements. Matching muon detector information to tracks measured in the silicon tracker results in a \(p_{\mathrm {T}}\) resolution for muons with \(20<p_{\mathrm {T}} < 100\,\text {Ge}\text {V} \) of 1.3–2.0% in the barrel and better than 6% in the endcaps. The \(p_{\mathrm {T}}\) resolution in the barrel is better than 10% for muons with \(p_{\mathrm {T}}\) up to 1\(\,\text {Te}\text {V}\)  [62]. Electron candidates are reconstructed in the range \(|\eta |<2.5\) by combining tracking information with energy deposits in the ECAL. Candidates are identified [63] using information on the spatial distribution of the shower, the track quality and the spatial match between the track and electromagnetic cluster, the fraction of total cluster energy in the HCAL, and the level of activity in the surrounding tracker and calorimeter regions. The transverse momentum \(p_{\mathrm {T}}\) resolution for electrons with \(p_{\mathrm {T}} \approx 45\,\text {Ge}\text {V} \) from \(\mathrm {Z} \rightarrow \mathrm {e}\mathrm {e}\) decays ranges from 1.7% for nonshowering electrons in the barrel region to 4.5% for electrons showering in the endcaps [63]. Jets are clustered using PF candidates as inputs to the anti-\(k_{\mathrm {T}}\) algorithm [60] in the FastJet  3.0 software package [61], using a distance parameter of 0.4. For all jets, corrections based on the jet area [64] are applied to the energy of the jets to remove the energy contributions from neutral hadrons from additional pp interactions in the same or adjacent bunch crossings (pileup collisions). Subsequent corrections are used to account for the nonlinear calorimetric response in both jet energy and mass, as a function of \(\eta \) and \(p_{\mathrm {T}} \) [65]. The jet energy resolution amounts typically to 15% at 10\(\,\text {Ge}\text {V}\), 8% at 100\(\,\text {Ge}\text {V}\), and 4% at 1\(\,\text {Te}\text {V}\)  [66]. Corrections to the jet energy scale and the jet energy resolution are propagated to the determination of the missing transverse momentum [66]. Jets associated with \(\mathrm {b}\) quarks are identified using the combined secondary vertex v2 algorithm [67, 68]. The working point used for jet \(\mathrm {b}\) tagging in this analysis has an efficiency of \(\approx \)65% (in \({\mathrm {t}\overline{\mathrm {t}}}\) simulated events) and a mistag rate (the rate at which light-flavor jets are incorrectly tagged) of approximately 1% [68]. Hadronically decaying \(\tau \) leptons are reconstructed with the hadron-plus-strips (HPS) algorithm [69] and are denoted by \(\tau _\mathrm {h} \). The HPS algorithm is based on PF jets and additionally includes photons originating from neutral pion decays. Energy depositions in the ECAL are reconstructed in “strips” elongated in the direction of the azimuthal angle \(\phi \), to take account of interactions in the material of the detector and the axial magnetic field. These deposits are associated with one or three charged tracks to reconstruct various hadronic decay modes of \(\tau \) leptons. To suppress backgrounds from light-quark or gluon jets, a \(\tau _\mathrm {h} \) candidate is required to be isolated from other energy deposits in the event. The isolation criterion is based on the scalar \(p_{\mathrm {T}} \) sum \(I_\tau \) of charged and neutral PF candidates within a cone of radius \(\smash [b]{\sqrt{(\varDelta \eta )^2 + (\varDelta \phi )^2} = 0.5}\) around the \(\tau _\mathrm {h} \) direction, excluding the \(\tau _\mathrm {h} \) candidate. The isolation criterion is \(I_\tau < 1.5\,\text {Ge}\text {V} \) [70]. The energies and resolutions as well as the selection efficiencies for all reconstructed jets and leptons are studied in data and simulated events [62, 63, 66, 68, 70]. Based on these studies, the simulation is corrected to match the data. 5 Event selection and categorization In the online trigger system, events with an isolated muon (or electron) with \(p_{\mathrm {T}} >24\,(27)\,\text {Ge}\text {V} \) and \(|\eta |<2.4\,(2.1)\) are selected in the muon (electron) channel. We select events offline containing exactly one isolated muon (or electron) with \(p_{\mathrm {T}} >30\,\text {Ge}\text {V} \) and \(|\eta |<2.4\,(2.1)\). For the electron channel, a veto is applied to events with a muon to avoid overlap between the two channels. At least one \(\tau _\mathrm {h} \) lepton with \(p_{\mathrm {T}} >20\,\text {Ge}\text {V} \) and \(|\eta |<2.1\) and at least two jets with \(p_{\mathrm {T}} >50\,\text {Ge}\text {V} \) and \(|\eta | < 2.4\) are required. Events are selected if a third jet with \(p_{\mathrm {T}} >30\,\text {Ge}\text {V} \) and \(|\eta | < 2.4\) is present, and any additional jets are only considered if they have \({p_{\mathrm {T}} >30\,\text {Ge}\text {V}}\). The magnitude of the missing transverse momentum, \(p_{\mathrm {T}} ^\text {miss}\), is required to be above 50\(\,\text {Ge}\text {V}\). Further, the events are divided into two categories corresponding to the number of observed LQ candidates, allowing the sensitivity to be enhanced over a broad range of LQ masses. The event selection was chosen to maximize the expected significance of a possible LQ signal. A summary of the selection criteria for both categories is given in Table 1 and described below. Table 1 Summary of selection criteria in event categories A (\(\ell \tau _\mathrm {h} \) + jets) and B (\(\ell \tau _\mathrm {h} \tau _\mathrm {h} \) + jets), where \(\ell = \mu , \mathrm {e}\). In category A, the two subcategories, OS and SS, are defined by the charge of the \(\ell \tau _h\) pair. The fit variable used in each category is also shown Open image in new window 5.1 Category A: \(\ell \tau _\mathrm {h} \) + jets In this category, exactly one \(\tau _\mathrm {h} \) lepton is required in addition to the presence of one electron or muon. High \(p_{\mathrm {T}}\) requirements are applied to maximize the sensitivity at high LQ masses. The leading jet is required to have \({p_{\mathrm {T}} >150\,\text {Ge}\text {V}}\). In addition we define two subcategories based on the electric charges of the particles in the \(\ell \tau _\mathrm {h} \) pair: opposite-sign (OS) and same-sign (SS). Events passing the OS \(\ell \tau _\mathrm {h} \) pair requirement must contain at least four jets and have \(p_{\mathrm {T}} ^\text {miss} >100\,\text {Ge}\text {V} \). For both subcategories, we require that the leading tau lepton has \(p_{\mathrm {T}} >100\,\text {Ge}\text {V} \) and that there is at least one \(\mathrm {b}\)-tagged jet. Finally the events are divided into two regions of \(S_{\mathrm {T}}\), where \(S_{\mathrm {T}}\) is the scalar \(p_{\mathrm {T}} \) sum of all selected jets, leptons, and \(p_{\mathrm {T}} ^\text {miss} \). In the low (high)-\(S_{\mathrm {T}}\) search regions, events must satisfy \(S_{\mathrm {T}} <1200\,(\ge 1200)\,\text {Ge}\text {V} \). This division adds sensitivity for \(\mathrm {LQ}_3\) masses of 600\(\,\text {Ge}\text {V}\) and higher. The top quarks originating from the decay of a heavy \(\mathrm {LQ}_3\) are expected to be produced with larger \(p_{\mathrm {T}} \) than the top quarks produced in background processes. Therefore, the transverse momentum distribution of the top quark candidate decaying into hadronic jets (\(p_{\mathrm {T}}^{\mathrm {t}}\)) gives discrimination power between background and signal events, and a measurement of the \(p_{\mathrm {T}}^{\mathrm {t}}\) spectrum is performed in category A. A kinematic reconstruction of the top quark candidate is performed by building top quark hypotheses using between one and five jets. Because of the presence of multiple hypotheses in each event, we choose the hypothesis in which the reconstructed top quark mass is closest to the value of 172.5\(\,\text {Ge}\text {V}\). The statistical evaluation in this category is performed through a template-based fit to the measured \(p_{\mathrm {T}}^{\mathrm {t}} \) distribution. 5.2 Category B: \(\ell \tau _\mathrm {h} \tau _\mathrm {h} \) + jets In this category events are required to have at least two \(\tau _\mathrm {h}\) leptons and one electron or muon. This requirement of two \(\tau _\mathrm {h}\) leptons removes a large fraction of the SM background processes. The exception to this exclusion of SM backgrounds are diboson production events that contain one or more \(\tau _\mathrm {h}\) leptons, but the cross sections for these processes are small. The selection criteria in this category are adapted to provide good sensitivity for low LQ masses. Each event is required to contain an OS \(\tau _\mathrm {h} \tau _\mathrm {h} \) pair. If the event contains more than one \(\tau _\mathrm {h} \tau _\mathrm {h} \) pair, the OS pair with the largest scalar \(p_{\mathrm {T}}\) sum is selected. Moreover, the leading and subleading \(\tau _\mathrm {h} \) must satisfy \(p_{\mathrm {T}} >65\) and \(35\,\text {Ge}\text {V} \), respectively. In this category a counting experiment is performed, as the number of expected background events is too small for results to benefit from a shape-based analysis. 6 Background estimation The background in this analysis consists of samples of events that are selected because of jets misidentified as \(\tau _\mathrm {h} \) leptons and events with one electron or muon together with one or more \(\tau _\mathrm {h}\) leptons. In the following, events from \({\mathrm {t}\overline{\mathrm {t}}} \) and \(\mathrm {W}+\text {jets}\) production that contain at least one misidentified \(\tau _\mathrm {h} \) lepton are obtained from control regions (CRs) separately defined for the two search regions (SRs) A and B. We consider the following contributions: the \({\mathrm {t}\overline{\mathrm {t}}} \) background that consists of only misidentified \(\tau _\mathrm {h} \) leptons (or exactly one misidentified \(\tau _\mathrm {h} \) lepton as in category A), denoted by \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \), the \({\mathrm {t}\overline{\mathrm {t}}} \) background that consists of (at least) one \(\tau _\mathrm {h} \) lepton and (at least) one misidentified \(\tau _\mathrm {h} \) lepton (only used in category B), denoted by \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}} \), and the \({\mathrm {t}\overline{\mathrm {t}}} \) background that consists of one \(\tau _\mathrm {h} \) lepton, denoted by \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p}} \). An extrapolation method is used to derive the background due to misidentified \(\tau _\mathrm {h} \) leptons. The normalization, and in category A also the shape, of the \({\mathrm {t}\overline{\mathrm {t}}} \) background is estimated using $$\begin{aligned} N^{{\mathrm {t}\overline{\mathrm {t}}}, \, \text {data}}_{\text {SR}} = \left( N^{\text {data}}_{\text {CR}}-N^{\text {other, MC}}_{\text {CR}} \right) \, \frac{N^{{\mathrm {t}\overline{\mathrm {t}}}, \,\text {MC}}_{\text {SR}}}{N^{{\mathrm {t}\overline{\mathrm {t}}}, \, \text {MC}}_{\text {CR}}}, \end{aligned}$$ (1) where N is the total number of events for the respective process in the signal region or control region and where “other” denotes all non-\({\mathrm {t}\overline{\mathrm {t}}}\) background processes that are estimated from simulation. The contribution to the background from events with \(\tau _\mathrm {h} \) leptons only is estimated from simulated events. 6.1 Backgrounds in category A In each subcategory of category A, the largest fraction of background events originates from \({\mathrm {t}\overline{\mathrm {t}}} \) production. The second largest source of background events arises from \(\mathrm {W}+\text {jets}\) production, while minor contributions come from single top quark and \(\mathrm {Z} +\text {jets}\) production. The \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) background and the \(\mathrm {W}+\text {jets}\) background that contain a misidentified \(\tau _\mathrm {h} \) lepton are derived from a single control region (\(\mathrm {CR}_{\mathrm {A}}\)), which is defined through the same selection requirements as for the SR, but with an inverted isolation requirement for the \(\tau _\mathrm {h} \) lepton. The shape of the \(p_{\mathrm {T}}^{\mathrm {t}} \) distribution is compared between the \(\mathrm {CR}_{\mathrm {A}}\) and SR in simulated \({\mathrm {t}\overline{\mathrm {t}}}\) and \(\mathrm {W}+\text {jets}\) events. Since the inversion of the \(\tau _\mathrm {h}\) isolation criterion introduces kinematic differences between the SRs and CRs, the jet multiplicity and \(p_{\mathrm {T}}^{\mathrm {t}} \) are corrected in order to reproduce the shape of the \({\mathrm {t}\overline{\mathrm {t}}}\) and \(\mathrm {W}+\text {jets}\) backgrounds in the SRs [71], as shown in Fig. 2. Open image in new window Fig. 2 Shape comparison between the category A signal region and the corresponding control region, as a function of \(p_{\mathrm {T}}^{\mathrm {t}}\), for simulated \({\mathrm {t}\overline{\mathrm {t}}}\) and \(\mathrm {W}+\text {jets} \) events. Events with an opposite-sign \(\mu \tau _\mathrm {h} \) pair are shown in the upper panel, while those with a same-sign \(\mu \tau _\mathrm {h} \) pair are shown in the lower panel. The full selection is applied and the \(S_{\mathrm {T}} \) categories are combined. All histograms are normalized to the total number of entries. Uncertainties of the signal region and control region are indicated by red error bars and gray hatched areas, respectively. The gray band in the ratio plot corresponds to the statistical uncertainty in the simulated samples Once the kinematic distributions in the \(\mathrm {CR}_{\mathrm {A}}\) are corrected, we use Eq. (1) to extrapolate the \({\mathrm {t}\overline{\mathrm {t}}}\) and \(\mathrm {W}+\text {jets}\) background yields to the SR. In this equation, we replace \(N^{{\mathrm {t}\overline{\mathrm {t}}}}\) with \(N^{{\mathrm {t}\overline{\mathrm {t}}},\,\mathrm {W}+\text {jets}}\) for category A. 6.2 Backgrounds in category B In category B, the dominant background also originates from \({\mathrm {t}\overline{\mathrm {t}}} \) production. As the fraction of misidentified electrons and muons was found to be negligible in this analysis, at least one of the two \(\tau _\mathrm {h} \) leptons is mimicked by a jet. Thus, background events from \({\mathrm {t}\overline{\mathrm {t}}} \) production consist either of only misidentified \(\tau _\mathrm {h} \) leptons or one \(\tau _\mathrm {h} \) lepton and one misidentified \(\tau _\mathrm {h} \) lepton, plus an electron or a muon. A separate CR is defined for each component. The strategy for determining this background in category B is shown in Fig. 3. The first control region (\(\mathrm {CR}_{\mathrm {B1}}\)) is defined by inverting the isolation criterion for all \(\tau _\mathrm {h} \) leptons with respect to the isolation criterion applied in the SR. The region \(\mathrm {CR}_{\mathrm {B1}}\) is used to extrapolate the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) background to the SR. In contrast to the SR, the charge criterion on the \(\tau _\mathrm {h} \) lepton is removed and the leading \(\tau _\mathrm {h} \) lepton must have \(p_{\mathrm {T}} <100\,\text {Ge}\text {V} \) to avoid overlap between the control region \(\mathrm {CR}_{\mathrm {B1}}\) and control region \(\mathrm {CR}_{\mathrm {A}}\). The \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) background normalization is then derived as in Eq. (1). A second control region (\(\mathrm {CR}_{\mathrm {B2}}\)) to estimate the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}} \) background is defined, in which at least one isolated and at least one nonisolated \(\tau _\mathrm {h} \) lepton are required. In contrast to the SR, the charge criterion on the \(\tau _\mathrm {h} \) lepton is removed and the leading \(\tau _\mathrm {h} \) lepton must have \(p_{\mathrm {T}} <45\,\text {Ge}\text {V} \). The event must have an opposite-sign \(\ell \tau _\mathrm {h} \) pair. For this requirement, the pair with the largest summed \(p_{\mathrm {T}}\) is chosen. In addition, the events must satisfy \(M_{\mathrm {T}}(\ell ,p_{\mathrm {T}} ^\text {miss})>100\,\text {Ge}\text {V} \), where \(M_{\mathrm {T}}(\ell ,p_{\mathrm {T}} ^\text {miss})\) is the transverse mass of the lepton-\(\vec {p}_{\mathrm {T}}^{\,\text {miss}}\) system and defined as $$\begin{aligned} \smash [b]{M_{\mathrm {T}}(\ell ,p_{\mathrm {T}} ^\text {miss})=\sqrt{2p_{\mathrm {T}} ^\ell p_{\mathrm {T}} ^\text {miss} \left( 1-\cos [\varDelta \phi (\vec {p}_{\mathrm {T}}^{\,\ell },\vec {p}_{\mathrm {T}}^{\,\text {miss}})]\right) }}. \end{aligned}$$ The largest non-\({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}} \) fraction in control region \(\mathrm {CR}_{\mathrm {B2}}\) arises from the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) events. The estimate of this background is derived from the control region \(\mathrm {CR}_{\mathrm {B1}}\) and extrapolated to the control region \(\mathrm {CR}_{\mathrm {B2}}\) by using the extrapolation method as in Eq. (1). Once the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) background is estimated from \(\mathrm {CR}_{\mathrm {B1}}\), it is subtracted from \(\mathrm {CR}_{\mathrm {B2}}\). The \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}} \) background is extrapolated to the SR by using the extrapolation method as in Eq. (1). Open image in new window Fig. 3 Strategy for the background estimation in category B. The \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) background in the signal region is derived from the control region \(\mathrm {CR}_{\mathrm {B1}}\). The \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}} \) background in the signal region is derived from the control region \(\mathrm {CR}_{\mathrm {B2}}\). To obtain an estimate of the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) background in the control region \(\mathrm {CR}_{\mathrm {B2}}\), the control region \(\mathrm {CR}_{\mathrm {B1}}\) is used 7 Systematic uncertainties Systematic uncertainties can affect both the overall normalization of background components, and the shapes of the \(p_{\mathrm {T}}^{\mathrm {t}} \) distributions for signal and background processes. Uncertainties in the MC simulation are applied to all simulated events used in the signal and in the various control regions. For each systematic uncertainty, the background estimation procedure described in Sect. 6 is repeated to study the impact of the respective systematic variation on the final result of the analysis. In the following, the systematic uncertainties applied to the analysis are summarized. The uncertainty in the integrated luminosity measurement recorded with the CMS detector in the 2016 run at \(\sqrt{s}=13\,\text {Te}\text {V} \) is 2.5% [42]. The following uncertainties in the normalization of the background processes are included: 5.6% in the \({\mathrm {t}\overline{\mathrm {t}}} \) production cross sect. [72] for \({\mathrm {t}\overline{\mathrm {t}}} \) events that include \(\tau \) leptons, 10% for single top quark [73, 74, 75], W+jets, and Z+jets production [76], 20% for diboson production [77, 78, 79]. The estimation of pileup effects is based on the total inelastic cross section. This cross section is determined to be 69.2\(\,\text {mb}\). The uncertainty is taken into account by varying the total inelastic cross section by 5% [80]. Simulated events are corrected for lepton identification, trigger, and isolation efficiencies. The corresponding scale factors are applied as functions of \(|\eta |\) and \(p_{\mathrm {T}} \). The systematic uncertainties due to these corrections are taken into account by varying each scale factor within its uncertainty. The scale factors for the jet energy scale and the jet energy resolution are determined as functions of \(|\eta |\) and \(p_{\mathrm {T}} \) [66]. The effect of the uncertainties in these scale factors are considered by varying the scale factors within their uncertainties. These variations are propagated to the measurement of the \(p_{\mathrm {T}} ^\text {miss}\). Scale factors for the \(\mathrm {b}\) tagging efficiencies are applied. These scale factors are measured as a function of the jet \(p_{\mathrm {T}} \) [68]. The corresponding uncertainty is taken into account by varying the scale factors within their uncertainties. Table 2 Summary of largest systematic uncertainties for the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) (and \(\mathrm {W}+\text {jets}\)) and \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}} \) backgrounds derived from data, for the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p}} \) background obtained from simulation and for a leptoquark signal with a mass of 700\(\,\text {Ge}\text {V}\). Shown are the ranges of uncertainties, which are dependent on the search regions and the lepton channel type Uncertainty Category A Category B \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p}} \) \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \,+\,\mathrm {W}+\text {jets} \) \(\mathrm {LQ}_3\) \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}} \) \(\mathrm {LQ}_3\) Scales (\(\mu _{\mathrm {F}}\), \(\mu _{\mathrm {R}}\)) (%) 26–42 1–7 – 5–7 2–6 – \(\tau \) ID (%) 8–9 0–1 9–11 0 5–6 18–20 Bkg. estimate (%) – 6–18 – 26–30 30–38 – Various uncertainties in the \(\tau \) lepton reconstruction are considered. An uncertainty of 5% in the \(\tau \) lepton identification is applied, with an additional uncertainty of \(0.2\,p_{\mathrm {T}}/(1\,\text {Te}\text {V})\). An uncertainty of 3% in the \(\tau \) lepton energy scale is taken into account, and an uncertainty in the charge misidentification rate of 2% is applied [70]. Parton distribution functions from the NNPDF 3.0 set are used to generate simulated events for both background and signal samples. The uncertainties in the PDFs are determined according to the procedure described in Ref. [81]. The associated PDF uncertainties in the signal acceptance are estimated following the prescription for the LHC [81]. We consider uncertainties in the renormalization (\(\mu _{\mathrm {R}}\)) and factorization (\(\mu _{\mathrm {F}}\)) scales by varying the respective scales, both simultaneously and independently, by factors between 0.5 and 2. We apply an uncertainty in the background estimation method by varying the extrapolation factors for background processes without \(\tau \) leptons within their uncertainties. An additional uncertainty due to the correction factors used to reweight events in control region \(\mathrm {CR}_{\mathrm {A}}\) is applied. Open image in new window Fig. 4 Distributions of \(p_{\mathrm {T}}^{\mathrm {t}}\) for events in the electron channel passing the full selection in category A. The events are separated into OS (upper), SS (lower), low \(S_{\mathrm {T}}\) (left) and high \(S_{\mathrm {T}}\) (right) categories. The hatched areas represent the total uncertainties of the SM background. In the bottom panel, the ratio of data to SM background is shown together with statistical (dark gray) and total (light gray) uncertainties of the total SM background The systematic uncertainties with the largest effects on the most important background processes and on the signal are summarized in Table 2. The most important background processes are the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \), \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}} \) and \(\mathrm {W}+\text {jets} \), and \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}} \) backgrounds derived from data, and the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p}} \) background taken from simulation. Also shown is the systematic uncertainty associated with the signal produced by an \(\mathrm {LQ}_3\) whose mass is 700\(\,\text {Ge}\text {V}\). The impact of the different sources of uncertainty varies for different processes. The uncertainty due to the variation in the scales \(\mu _{\mathrm {R}}\) and \(\mu _{\mathrm {F}}\) has a large impact on the \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p}} \) background, and is derived from simulation. The uncertainty in the \(\tau \) lepton identification has the largest effect on the signal sample. For the backgrounds derived from several CRs, the uncertainty in the extrapolation factor has the largest impact. 8 Results The results of all search categories in the electron and muon channels are combined in a binned-likelihood fit. A statistical template-based analysis, using the measured \(p_{\mathrm {T}}^{\mathrm {t}}\) distributions in category A and a counting experiment with the events measured in category B, is performed by using the Theta software package [82]. Each systematic uncertainty discussed in Sect. 7 is accounted for by a nuisance parameter in the likelihood formation. The post-fit \(p_{\mathrm {T}}^{\mathrm {t}}\) distributions in the electron and muon channels in category A are shown in Figs. 4 and  5, respectively. Contributions from \({\mathrm {t}\overline{\mathrm {t}}}\) and \(\mathrm {W}+\text {jets}\) production with a misidentified \(\tau _\mathrm {h}\) lepton are derived from control region \(\mathrm {CR}_{\mathrm {A}}\), whereas SM backgrounds with a \(\tau _\mathrm {h}\) lepton and other small backgrounds are taken from simulation. Open image in new window Fig. 5 Distributions of \(p_{\mathrm {T}}^{\mathrm {t}}\) for events in the muon channel passing the full selection in category A. The events are separated into OS (upper), SS (lower), low \(S_{\mathrm {T}}\) (left) and high \(S_{\mathrm {T}}\) (right) categories. The hatched areas represent the total uncertainties of the SM background. In the bottom panel, the ratio of data to SM background is shown together with statistical (dark gray) and total (light gray) uncertainties of the total SM background Table 3 Final event yield in category B in the muon and electron channels for different leptoquark mass hypotheses, the background processes, and data. The total uncertainties for the signal and the background processes are shown Process \(\mathrm {e}\tau _\mathrm {h} \tau _\mathrm {h} + \hbox {jets}\) \(\mu \tau _\mathrm {h} \tau _\mathrm {h} + \hbox {jets}\) \(\mathrm {LQ}_3\) (300\(\,\text {Ge}\text {V}\)) 97\(^{+ 25 }_{- 24 }\) 167\(^{+ 36 }_{- 37 }\) \(\mathrm {LQ}_3\) (400\(\,\text {Ge}\text {V}\)) 73\(^{+ 14 }_{- 13 }\) 98\(^{+ 19 }_{- 17 }\) \(\mathrm {LQ}_3\) (500\(\,\text {Ge}\text {V}\)) 34.1\(^{+ 6.6 }_{- 6.2 }\) 44.9\(^{+ 8.5 }_{- 7.9 }\) \(\mathrm {LQ}_3\) (600\(\,\text {Ge}\text {V}\)) 14.1\(^{+ 2.8 }_{- 2.7 }\) 21.1\(^{+ 4.1 }_{- 3.8 }\) \(\mathrm {LQ}_3\) (700\(\,\text {Ge}\text {V}\)) 7.3\(^{+ 1.5 }_{- 1.4 }\) 7.1\(^{+ 1.5 }_{- 1.4 }\) \(\mathrm {LQ}_3\) (800\(\,\text {Ge}\text {V}\)) 3.2\(^{+ 0.7 }_{- 0.7 }\) 4.4\(^{+ 1.0 }_{- 0.9 }\) \(\mathrm {LQ}_3\) (900\(\,\text {Ge}\text {V}\)) 1.5\(^{+ 0.4 }_{- 0.3 }\) 1.9\(^{+ 0.4 }_{- 0.4 }\) \(\mathrm {LQ}_3\) (1000\(\,\text {Ge}\text {V}\)) 0.8\(^{+ 0.2 }_{- 0.2 }\) 0.9\(^{+ 0.2 }_{- 0.2 }\) \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {f}}\) 2.5\( ^{+ 0.8 }_{- 1.2 }\) 3.2\( ^{+ 1.5 }_{- 1.2 }\) \({\mathrm {t}\overline{\mathrm {t}}} _{\mathrm {p+f}}\) 1.5\( ^{+ 0.8 }_{- 0.8 }\) 2.0\( ^{+ 0.8 }_{- 0.9 }\) Single t 0.3\( ^{+ 0.3 }_{- 0.3 }\) 0.0\( ^{+ 0.2 }_{- 0.0 }\) W+jets 0.5\( ^{+ 1.2 }_{- 0.5 }\) 0.4\( ^{+ 0.7 }_{- 0.4 }\) Z+jets 1.4\( ^{+ 0.5 }_{- 0.5 }\) 1.0\( ^{+ 0.4 }_{- 0.4 }\) Diboson 1.6\( ^{+ 1.7 }_{- 1.6 }\) 1.7\( ^{+ 1.8 }_{- 1.7 }\) Total background 7.9\( ^{+ 2.4 }_{- 2.5 }\) 8.4\( ^{+ 2.6 }_{- 2.3 }\) Data 9 11 In Table 3, the total number of events from background processes and signal processes in category B is summarized. No significant deviation from the SM prediction is observed in the data in either category A or category B. A Bayesian statistical method [82, 83] is used to derive 95% confidence level (\(\text {CL}\)) upper limits on the product of the cross section and the branching fraction squared for \(\mathrm {LQ}_3 \) pair production. Pseudo-experiments are performed to extract expected limits under a background-only hypothesis. For the signal cross section parameter, we use a uniform prior distribution. For the nuisance parameters, log-normal prior distributions are used. These are randomly varied within their ranges of validity to estimate the 68 and 95% \(\text {CL}\) expected limits. Correlations between the systematic uncertainties across all channels are taken into account. The statistical uncertainties of simulated samples are treated as an additional Poisson nuisance parameter in each bin of the \(p_{\mathrm {T}}^{\mathrm {t}}\) distribution. The 95% \(\text {CL}\) upper limits on the product of the cross section and the branching fraction squared \(\mathcal {B}^2\) as a function of \(\mathrm {LQ}_3\) mass and the 95% \(\text {CL}\) upper limits on the \(\mathrm {LQ}_3\) mass as a function of \(\mathcal {B}\) are shown in Fig. 6 (top). The cross section for pair production of scalar LQs at NLO accuracy [24] is shown as the dashed line. The dotted lines indicate the uncertainty due to the PDFs and to variations of the renormalization and factorization scales by factors of 0.5 and 2. Production cross sections of 0.6\(\,\text {pb}\) for \(\mathrm {LQ}_3\) masses of 300\(\,\text {Ge}\text {V}\) and of about 0.01\(\,\text {pb}\) for masses up to 1.5\(\,\text {Te}\text {V}\) are excluded at 95% \(\text {CL}\) under the assumption of \(\mathcal {B}=1\) for \(\mathrm {LQ}_3\) decays to a top quark and \(\tau \) lepton. Comparing these limits with the NLO cross sections, \(\mathrm {LQ}_3\) masses up to 900\(\,\text {Ge}\text {V}\) (930\(\,\text {Ge}\text {V}\) expected) can be excluded. Exclusion limits with varying branching fractions \(\mathcal {B}\) are presented in Fig. 6 (bottom), where limits on the complementary \(\mathrm {LQ}_3 \rightarrow \mathrm {b} \nu \) (\(\mathcal {B}=0\)) decay channel are also included. The results for \(\mathcal {B}=0\) are obtained from a search for pair-produced bottom squarks [38] with subsequent decays into \(\mathrm {b} \) quark and neutralino pairs, in the limit of vanishing neutralino masses. Scalar \(\mathrm {LQ}_3\) s can be excluded for masses below 1150\(\,\text {Ge}\text {V}\) for \(\mathcal {B}=0\) and for masses below 700\(\,\text {Ge}\text {V}\) over the full \(\mathcal {B}\) range. For the assumptions of a LQ with symmetric couplings under the SM gauge symmetry and with decays to only \(\mathrm {b} \nu \) and \(\mathrm {t}\tau \), \(\mathcal {B}\) can only take values of 1 or 0.5. When these assumptions are lifted, \(\mathcal {B}\) can take all possible values between 0 and 1. Note that if upper limits on \(\mathcal {B}\) are to be used to constrain the lepton-quark-\(\mathrm {LQ}_3\) Yukawa couplings, \(\lambda _{\mathrm {b} \nu }\) and \(\lambda _{\mathrm {t} \tau }\), kinematic suppression factors that favor \(\mathrm {b} \nu \) decay over the \(\mathrm {t} \tau \) decay have to be considered as well [26, 27]. The results presented here can be directly reinterpreted in the context of pair produced down-type squarks decaying into top quark and \(\tau \) lepton pairs. Such squarks appear in RPV SUSY scenarios and correspond to LQs with \(\mathcal {B} = 0.5\). These squarks are excluded up to a mass of 810\(\,\text {Ge}\text {V}\), and the decay mode is dominated by the RPV coupling \(\lambda ^{\prime }_{333}\) [84]. Open image in new window Fig. 6 Upper limits at 95% confidence level on the product of the cross section and the branching fraction squared (upper), and on the leptoquark mass as a function of the branching fraction (lower), for the pair production of scalar LQs decaying to a top quark and a \(\tau \) lepton. In the top plot, the theoretical curve corresponds to the NLO cross section with uncertainties from PDF and scale variations [24], shown by the dotted lines. The bottom plot additionally includes results from a search for pair-produced bottom squarks [38] 9 Summary A search has been conducted for pair production of third-generation scalar leptoquarks (\(\mathrm {LQ}_3\) s) decaying into a top quark and a \(\tau \) lepton. Proton–proton collision data recorded in 2016 at a center-of-mass energy of 13\(\,\text {Te}\text {V}\), corresponding to an integrated luminosity of 35.9\(\,\text {fb}^{-1}\), has been analyzed. The search has been carried out in the \(\ell \tau _\mathrm {h} \)+jets and \(\ell \tau _\mathrm {h} \tau _\mathrm {h} \)+jets channels, where \(\ell \) is either an electron or muon and \(\tau _\mathrm {h} \) indicates a tau lepton decaying to hadrons. Standard model backgrounds due to misidentified \(\tau _\mathrm {h}\) leptons are derived from control regions. The measured transverse momentum distributions for the reconstructed top quark candidate are analyzed in four search regions in the \(\ell \tau _\mathrm {h} \)+jets channel. The observed number of events are found to be in agreement with the background predictions. Upper limits on the production cross section of \(\mathrm {LQ}_3\) pairs are set between 0.6 and 0.01\(\,\text {pb}\) at 95% confidence level for \(\mathrm {LQ}_3\) masses between 300 and 1700\(\,\text {Ge}\text {V}\), assuming a branching fraction of \(\mathcal {B} = 1\). The scalar \(\mathrm {LQ}_3\) s are excluded with masses below 900\(\,\text {Ge}\text {V}\), for \(\mathcal {B}=1\). This result represents the most stringent limits to date on \(\mathrm {LQ}_3\) s coupled to \(\tau \) leptons and top quarks and constrains models explaining flavor anomalies in the \(\mathrm {b}\) quark sector through contributions from scalar LQs. Notes Acknowledgements We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science - EOS” – be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). References 1. W. Buchmüller, R. Rückl, D. Wyler, Leptoquarks in lepton-quark collisions. Phys. Lett. B 191, 442 (1987).  https://doi.org/10.1016/0370-2693(87)90637-X (Erratum: 10.1016/S0370-2693(99)00014-3) 2. J.C. Pati, A. Salam, Lepton number as the fourth color. Phys. Rev. D 10, 275 (1974).  https://doi.org/10.1103/PhysRevD.10.275 (Erratum: 10.1103/PhysRevD.11.703.2) 3. H. Georgi, S.L. Glashow, Unity of all elementary particle forces. Phys. Rev. Lett. 32, 438 (1974).  https://doi.org/10.1103/PhysRevLett.32.438 ADSCrossRefGoogle Scholar 4. H. Fritzsch, P. Minkowski, Unified interactions of leptons and hadrons. Ann. Phys. 93, 193 (1975).  https://doi.org/10.1016/0003-4916(75)90211-0 ADSMathSciNetCrossRefGoogle Scholar 5. E. Farhi, L. Susskind, Technicolor. Phys. Rept. 74, 277 (1981).  https://doi.org/10.1016/0370-1573(81)90173-3 ADSCrossRefGoogle Scholar 6. K.D. Lane, M.V. Ramana, Walking technicolor signatures at hadron colliders. Phys. Rev. D 44, 2678 (1991).  https://doi.org/10.1103/PhysRevD.44.2678 ADSCrossRefGoogle Scholar 7. B. Schrempp, F. Schrempp, Light leptoquarks. Phys. Lett. B 153, 101 (1985).  https://doi.org/10.1016/0370-2693(85)91450-9 ADSCrossRefGoogle Scholar 8. B. Gripaios, Composite leptoquarks at the LHC. JHEP 02, 045 (2010).  https://doi.org/10.1007/JHEP02(2010)045. arXiv:0910.1789 ADSCrossRefzbMATHGoogle Scholar 9. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B 76, 575 (1978).  https://doi.org/10.1016/0370-2693(78)90858-4 ADSCrossRefGoogle Scholar 10. R. Barbier et al., R-parity violating supersymmetry. Phys. Rept. 420, 1 (2005).  https://doi.org/10.1016/j.physrep.2005.08.006. arXiv:hep-ph/0406039 ADSCrossRefGoogle Scholar 11. BaBar Collaboration, Evidence for an excess of \(\bar{B} \rightarrow D^{(*)} \tau ^-\bar{\nu }_\tau \) decays. Phys. Rev. Lett. 109 101802 (2012).  https://doi.org/10.1103/PhysRevLett.109.101802. arXiv:1205.5442 12. BaBar Collaboration, Measurement of an excess of \(\bar{B} \rightarrow D^{(*)}\tau ^- \bar{\nu }_\tau \) decays and implications for charged Higgs bosons. Phys. Rev. D 88, 072012 (2013).  https://doi.org/10.1103/PhysRevD.88.072012. arXiv:1303.0571 13. Belle Collaboration, Observation of \(B^0 \rightarrow D^{*-} \tau ^+ \nu_\tau \) decay at Belle. Phys. Rev. Lett. 99, 191807 (2007).  https://doi.org/10.1103/PhysRevLett.99.191807. arXiv:0706.4429 14. Belle Collaboration, Observation of \(B^+ \rightarrow \bar{D}^{*0} \tau ^+ \nu_\tau \) and evidence for \(B^+ \rightarrow \bar{D}^0 \tau ^+ \nu_\tau \) at Belle. Phys. Rev. D 82, 072005 (2010).  https://doi.org/10.1103/PhysRevD.82.072005. arXiv:1005.2302 15. Belle Collaboration, Measurement of the branching ratio of \(\bar{B} \rightarrow D^{(\ast )} \tau ^- \bar{\nu }_\tau \) relative to \(\bar{B} \rightarrow D^{(\ast )} \ell ^- \bar{\nu }_\ell \) decays with hadronic tagging at Belle. Phys. Rev. D 92, 072014 (2015).  https://doi.org/10.1103/PhysRevD.92.072014. arXiv:1507.03233 16. LHCb Collaboration, Measurement of the ratio of branching fractions \(\cal{B}(\bar{B}^0 \rightarrow D^{*+}\tau ^{-}\bar{\nu }_{\tau })/\cal{B}(\bar{B}^0 \rightarrow D^{*+}\mu ^{-}\bar{\nu }_{\mu })\). Phys. Rev. Lett. 115, 111803 (2015).  https://doi.org/10.1103/PhysRevLett.115.159901. arXiv:1506.08614 (Erratum: 10.1103/PhysRevLett.115.111803) 17. B. Dumont, K. Nishiwaki, R. Watanabe, LHC constraints and prospects for \(S_1\) scalar leptoquark explaining the \(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu }\) anomaly. Phys. Rev. D 94, 034001 (2016).  https://doi.org/10.1103/PhysRevD.94.034001. arXiv:1603.05248 ADSCrossRefGoogle Scholar 18. M. Tanaka, R. Watanabe, New physics in the weak interaction of \(\bar{B}\rightarrow D^{(*)}\tau \bar{\nu }\). Phys. Rev. D 87, 034028 (2013).  https://doi.org/10.1103/PhysRevD.87.034028. arXiv:1212.1878 ADSCrossRefGoogle Scholar 19. Y. Sakaki, M. Tanaka, A. Tayduganov, R. Watanabe, Testing leptoquark models in \(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu }\). Phys. Rev. D 88, 094012 (2013).  https://doi.org/10.1103/PhysRevD.88.094012. arXiv:1309.0301 ADSCrossRefGoogle Scholar 20. I. Doršner, S. Fajfer, N. Košnik, I. Nišandžić, Minimally flavored colored scalar in \(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu }\) and the mass matrices constraints. JHEP 11, 084 (2013).  https://doi.org/10.1007/JHEP11(2013)084. arXiv:1306.6493 ADSCrossRefGoogle Scholar 21. B. Gripaios, M. Nardecchia, S.A. Renner, Composite leptoquarks and anomalies in \(B\)-meson decays. JHEP 05, 006 (2015).  https://doi.org/10.1007/JHEP05(2015)006. arXiv:1412.1791 ADSCrossRefGoogle Scholar 22. S. Chakdar, T. Li, S. Nandi, S.K. Rai, Unity of elementary particles and forces for the third family. Phys. Lett. B 718, 121 (2012).  https://doi.org/10.1016/j.physletb.2012.10.021. arXiv:1206.0409 ADSCrossRefGoogle Scholar 23. S. Chakdar, T. Li, S. Nandi, S.K. Rai, Top SU(5) models: Baryon and lepton number violating resonances at the LHC. Phys. Rev. D 87, 096002 (2013).  https://doi.org/10.1103/PhysRevD.87.096002. arXiv:1302.6942 ADSCrossRefGoogle Scholar 24. M. Krämer, T. Plehn, M. Spira, P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC. Phys. Rev. D 71, 057503 (2005).  https://doi.org/10.1103/PhysRevD.71.057503. arXiv:hep-ph/0411038 ADSCrossRefGoogle Scholar 25. CMS Collaboration, Search for third-generation scalar leptoquarks in the t\(\tau \) channel in proton-proton collisions at \(\sqrt{s}=8\) TeV. JHEP 07, 042 (2015).  https://doi.org/10.1007/JHEP07(2015)042. arXiv:1503.09049 (Erratum: 10.1007/JHEP11(2016)056) 26. D0 Collaboration, Search for third-generation leptoquarks in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV. Phys. Rev. Lett. 99, 061801 (2007).  https://doi.org/10.1103/PhysRevLett.99.061801. arXiv:0705.0812 27. CDF Collaboration, Search for third generation vector leptoquarks in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV. Phys. Rev. D 77, 091105 (2008).  https://doi.org/10.1103/PhysRevD.77.091105. arXiv:0706.2832 28. ATLAS Collaboration, Search for third generation scalar leptoquarks in pp collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector. JHEP 06, 033 (2013).  https://doi.org/10.1007/JHEP06(2013)033. arXiv:1303.0526 29. CMS Collaboration, Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at \(\sqrt{s}=7\) TeV. JHEP 12, 055 (2012).  https://doi.org/10.1007/JHEP12(2012)055. arXiv:1210.5627 30. CMS Collaboration, Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at \(\sqrt{s}\) = 8 TeV. Phys. Lett. B 739, 229 (2014).  https://doi.org/10.1016/j.physletb.2014.10.063. arXiv:1408.0806 31. CMS Collaboration, Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at \( \sqrt{s} = 8\) TeV. JHEP 06, 116 (2015).  https://doi.org/10.1007/JHEP06(2015)116. arXiv:1503.08037 32. ATLAS Collaboration, Searches for scalar leptoquarks in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. Eur. Phys. J. C 76, 5 (2016).  https://doi.org/10.1140/epjc/s10052-015-3823-9. arXiv:1508.04735 33. ATLAS Collaboration, Summary of the searches for squarks and gluinos using \( \sqrt{s}=8\) TeV pp collisions with the ATLAS experiment at the LHC. JHEP 10, 054 (2015).  https://doi.org/10.1007/JHEP10(2015)054. arXiv:1507.05525 34. ATLAS Collaboration, Search for bottom squark pair production in proton-proton collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector. Eur. Phys. J. C 76, 547 (2016).  https://doi.org/10.1140/epjc/s10052-016-4382-4. arXiv:1606.08772 35. ATLAS Collaboration, Search for supersymmetry in events with \(b\)-tagged jets and missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector. JHEP 11, 195 (2017).  https://doi.org/10.1007/JHEP11(2017)195. arXiv:1708.09266 36. CMS Collaboration, Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying \(\tau \) leptons and two jets in proton-proton collisions at \( \sqrt{s}=13\) TeV. JHEP 03, 077 (2017).  https://doi.org/10.1007/JHEP03(2017)077. arXiv:1612.01190 37. CMS Collaboration, Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV. JHEP 07, 121 (2017).  https://doi.org/10.1007/JHEP07(2017)121. arXiv:1703.03995 38. CMS Collaboration, Search for new phenomena with the \(M_{\rm T2}\) variable in the all-hadronic final state produced in proton-proton collisions at \(\sqrt{s} = 13\) TeV. Eur. Phys. J. C 77, 710 (2017).  https://doi.org/10.1140/epjc/s10052-017-5267-x. arXiv:1705.04650 39. CMS Collaboration, Search for the pair production of third-generation squarks with two-body decays to a bottom or charm quark and a neutralino in proton-proton collisions at \(\sqrt{s}=13\) TeV. Phys. Lett. B 778, 263 (2018).  https://doi.org/10.1016/j.physletb.2018.01.012. arXiv:1707.07274 40. CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008).  https://doi.org/10.1088/1748-0221/3/08/S08004 41. CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017).  https://doi.org/10.1088/1748-0221/12/01/P01020. arXiv:1609.02366 42. CMS Collaboration, CMS luminosity measurements for the 2016 data taking period. Technical Report CMS-PAS-LUM-17-001. CERN, Geneva (2017)Google Scholar 43. T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008).  https://doi.org/10.1016/j.cpc.2008.01.036. arXiv:0710.3820 ADSCrossRefzbMATHGoogle Scholar 44. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004).  https://doi.org/10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146 ADSCrossRefGoogle Scholar 45. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP 11, 070 (2007).  https://doi.org/10.1088/1126-6708/2007/11/070. arXiv:0709.2092 ADSCrossRefGoogle Scholar 46. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010).  https://doi.org/10.1007/JHEP06(2010)043. arXiv:1002.2581 ADSCrossRefzbMATHGoogle Scholar 47. S. Frixione, P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. JHEP 09, 126 (2007).  https://doi.org/10.1088/1126-6708/2007/09/126. arXiv:0707.3088 ADSCrossRefGoogle Scholar 48. S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: \(s\)- and \(t\)-channel contributions. JHEP 09, 111 (2009).  https://doi.org/10.1088/1126-6708/2009/09/111. arXiv:0907.4076 (Erratum: 10.1007/JHEP02(2010) 011) 49. E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C 71, 1547 (2011).  https://doi.org/10.1140/epjc/s10052-011-1547-z. arXiv:1009.2450 ADSCrossRefGoogle Scholar 50. J. Alwall, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014).  https://doi.org/10.1007/JHEP07(2014)079. arXiv:1405.0301 ADSCrossRefGoogle Scholar 51. R. Frederix, S. Frixione, Merging meets matching in MC@NLO. JHEP 12, 061 (2012).  https://doi.org/10.1007/JHEP12(2012)061. arXiv:1209.6215 ADSCrossRefGoogle Scholar 52. M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions. JHEP 01, 013 (2007).  https://doi.org/10.1088/1126-6708/2007/01/013. arXiv:hep-ph/0611129 ADSCrossRefGoogle Scholar 53. CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2016).  https://doi.org/10.1140/epjc/s10052-016-3988-x. arXiv:1512.00815 54. P. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune. Eur. Phys. J. C 74, 3024 (2014).  https://doi.org/10.1140/epjc/s10052-014-3024-y. arXiv:1404.5630 ADSCrossRefGoogle Scholar 55. NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP 04, 040 (2015).  https://doi.org/10.1007/JHEP04(2015)040. arXiv:1410.8849 56. GEANT4 Collaboration, GEANT4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003).  https://doi.org/10.1016/S0168-9002(03)01368-8 57. CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector. JINST 12, P10003 (2017).  https://doi.org/10.1088/1748-0221/12/10/P10003. arXiv:1706.04965 58. R. Frühwirth, A. Strandlie, Track fitting with ambiguities and noise: A study of elastic tracking and nonlinear filters. Comput. Phys. Commun. 120, 197 (1999).  https://doi.org/10.1016/S0010-4655(99)00231-3 ADSCrossRefGoogle Scholar 59. CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014).  https://doi.org/10.1088/1748-0221/9/10/P10009. arXiv:1405.6569 60. M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k_{\rm T}\) jet clustering algorithm. JHEP 04, 063 (2008).  https://doi.org/10.1088/1126-6708/2008/04/063. arXiv:0802.1189 ADSCrossRefzbMATHGoogle Scholar 61. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012).  https://doi.org/10.1140/epjc/s10052-012-1896-2. arXiv:1111.6097 ADSCrossRefzbMATHGoogle Scholar 62. CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at \(\sqrt{s}=7\) TeV. JINST 7, P10002 (2012).  https://doi.org/10.1088/1748-0221/7/10/P10002. arXiv:1206.4071 63. CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at \(\sqrt{s}=8\) TeV. JINST 10, P06005 (2015).  https://doi.org/10.1088/1748-0221/10/06/P06005. arXiv:1502.02701 64. M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets. JHEP 04, 005 (2008).  https://doi.org/10.1088/1126-6708/2008/04/005. arXiv:0802.1188 ADSCrossRefGoogle Scholar 65. CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011).  https://doi.org/10.1088/1748-0221/6/11/P11002. arXiv:1107.4277 66. CMS Collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. JINST 12, P02014 (2017).  https://doi.org/10.1088/1748-0221/12/02/P02014. arXiv:1607.03663 67. CMS Collaboration, Identification of b-quark jets with the CMS experiment. JINST 8, P04013 (2013).  https://doi.org/10.1088/1748-0221/8/04/P04013. arXiv:1211.4462 68. CMS Collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. JINST (2017).  https://doi.org/10.1088/1748-0221/13/05/P05011. arXiv:1712.07158 69. CMS Collaboration, Performance of tau-lepton reconstruction and identification in CMS. JINST 7, P01001 (2012).  https://doi.org/10.1088/1748-0221/7/01/P01001. arXiv:1109.6034 70. CMS Collaboration, Performance of reconstruction and identification of tau leptons in their decays to hadrons and tau neutrino in LHC Run-2. Technical Report CMS-PAS-TAU-16-002. CERN (2017)Google Scholar 71. M. Stöver, Search for third-generation scalar leptoquarks with the CMS experiment. Dissertation, University of Hamburg (2018).  https://doi.org/10.3204/PUBDB-2018-00997 72. CMS Collaboration, Measurement of the \(t\bar{t}\) production cross section using events in the \(\text{e}\mu \) final state in pp collisions at \(\sqrt{s} = 13\) TeV. Eur. Phys. J. C 77, 172 (2017).  https://doi.org/10.1140/epjc/s10052-017-4718-8. arXiv:1611.04040 73. N. Kidonakis, NNLL threshold resummation for top-pair and single-top production. Phys. Part. Nucl. 45, 714 (2014).  https://doi.org/10.1134/S1063779614040091. arXiv:1210.7813 CrossRefGoogle Scholar 74. CMS Collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at \(\sqrt{s} = 8\) TeV. Phys. Rev. Lett. 112, 231802 (2014).  https://doi.org/10.1103/PhysRevLett.112.231802. arXiv:1401.2942 75. CMS Collaboration, Cross section measurement of \(t\)-channel single top quark production in pp collisions at \(\sqrt{s} = 13\) TeV. Phys. Lett. B 772, 752 (2017).  https://doi.org/10.1016/j.physletb.2017.07.047. arXiv:1610.00678 76. CMS Collaboration, Measurement of inclusive W and Z boson production cross sections in pp collisions at \(\sqrt{s} = 8\) TeV. Phys. Rev. Lett. 112, 191802 (2014).  https://doi.org/10.1103/PhysRevLett.112.191802. arXiv:1402.0923 77. J.M. Campbell, R.K. Ellis, C. Williams, Vector boson pair production at the LHC. JHEP 07, 018 (2011).  https://doi.org/10.1007/JHEP07(2011)018. arXiv:1105.0020 ADSCrossRefGoogle Scholar 78. T. Gehrmann, \(W^+W^-\) production at hadron colliders in next-to-next-to-leading-order QCD. Phys. Rev. Lett. 113, 212001 (2014).  https://doi.org/10.1103/PhysRevLett.113.212001. arXiv:1408.5243 ADSCrossRefGoogle Scholar 79. CMS Collaboration, Measurement of the WZ production cross section in pp collisions at \(\sqrt{s} = 13\) TeV. Phys. Lett. B 766, 268 (2017).  https://doi.org/10.1016/j.physletb.2017.01.011. arXiv:1607.06943 80. CMS Collaboration, Measurement of the inelastic proton-proton cross section at \(\sqrt{s}=7\) TeV. Phys. Lett. B 722, 5 (2013).  https://doi.org/10.1016/j.physletb.2013.03.024. arXiv:1210.6718 81. J. Butterworth et al., PDF4LHC recommendations for LHC Run-2. J. Phys. G 43, 023001 (2016).  https://doi.org/10.1088/0954-3899/43/2/023001. arXiv:1510.03865 ADSCrossRefGoogle Scholar 82. J. Ott, Theta—A framework for template-based modeling and inference (2010). http://www-ekp.physik.uni-karlsruhe.de/~ott/theta/theta-auto 83. A. O’Hagan, J.J. Forster, Kendall’s advanced theory of statistics. Vol. 2B: Bayesian Inference. Arnold, London (2004)Google Scholar 84. D. Dercks et al., R-Parity violation at the LHC. Eur. Phys. J. C 77, 856 (2017).  https://doi.org/10.1140/epjc/s10052-017-5414-4. arXiv:1706.09418 ADSCrossRefGoogle Scholar Copyright information © CERN for the benefit of the CMS collaboration 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3 Authors and Affiliations A. M. Sirunyan1A. Tumasyan1W. Adam2F. Ambrogi2E. Asilar2T. Bergauer2J. Brandstetter2E. Brondolin2M. Dragicevic2J. Erö2A. Escalante Del Valle2M. Flechl2M. Friedl2R. Frühwirth2V. M. Ghete2J. Grossmann2J. Hrubec2M. Jeitler2A. König2N. Krammer2I. Krätschmer2D. Liko2T. Madlener2I. Mikulec2E. Pree2N. Rad2H. Rohringer2J. Schieck2R. Schöfbeck2M. Spanring2D. Spitzbart2A. Taurok2W. Waltenberger2J. Wittmann2C.-E. Wulz2M. Zarucki2V. Chekhovsky3V. Mossolov3J. Suarez Gonzalez3E. A. De Wolf4D. Di Croce4X. Janssen4J. Lauwers4M. Pieters4M. Van De Klundert4H. Van Haevermaet4P. Van Mechelen4N. Van Remortel4S. Abu Zeid5F. Blekman5J. D’Hondt5I. De Bruyn5J. De Clercq5K. Deroover5G. Flouris5D. Lontkovskyi5S. Lowette5I. Marchesini5S. Moortgat5L. Moreels5Q. Python5K. Skovpen5S. Tavernier5W. Van Doninck5P. Van Mulders5I. Van Parijs5D. Beghin6B. Bilin6H. Brun6B. Clerbaux6G. De Lentdecker6H. Delannoy6B. Dorney6G. Fasanella6L. Favart6R. Goldouzian6A. Grebenyuk6A. K. Kalsi6T. Lenzi6J. Luetic6T. Maerschalk6T. Seva6E. Starling6C. Vander Velde6P. Vanlaer6D. Vannerom6R. Yonamine6F. Zenoni6T. Cornelis7D. Dobur7A. Fagot7M. Gul7I. Khvastunov7D. Poyraz7C. Roskas7D. Trocino7M. Tytgat7W. Verbeke7M. Vit7N. Zaganidis7H. Bakhshiansohi8O. Bondu8S. Brochet8G. Bruno8C. Caputo8A. Caudron8P. David8S. De Visscher8C. Delaere8M. Delcourt8B. Francois8A. Giammanco8G. Krintiras8V. Lemaitre8A. Magitteri8A. Mertens8M. Musich8K. Piotrzkowski8L. Quertenmont8A. Saggio8M. Vidal Marono8S. Wertz8J. Zobec8W. L. Aldá Júnior9F. L. Alves9G. A. Alves9L. Brito9G. Correia Silva9C. Hensel9A. Moraes9M. E. Pol9P. Rebello Teles9E. Belchior Batista Das Chagas10W. Carvalho10J. Chinellato10E. Coelho10E. M. Da Costa10G. G. Da Silveira10D. De Jesus Damiao10S. Fonseca De Souza10L. M. Huertas Guativa10H. Malbouisson10M. Medina Jaime10M. Melo De Almeida10C. Mora Herrera10L. Mundim10H. Nogima10L. J. Sanchez Rosas10A. Santoro10A. Sznajder10M. Thiel10E. J. Tonelli Manganote10F. Torres Da Silva De Araujo10A. Vilela Pereira10S. Ahuja11C. A. Bernardes11T. R. Fernandez Perez Tomei11E. M. Gregores11P. G. Mercadante11S. F. Novaes11Sandra S. Padula11D. Romero Abad11J. C. Ruiz Vargas11A. Aleksandrov12R. Hadjiiska12P. Iaydjiev12A. Marinov12M. Misheva12M. Rodozov12M. Shopova12G. Sultanov12A. Dimitrov13L. Litov13B. Pavlov13P. Petkov13W. Fang14X. Gao14L. Yuan14M. Ahmad15J. G. Bian15G. M. Chen15H. S. Chen15M. Chen15Y. Chen15C. H. Jiang15D. Leggat15H. Liao15Z. Liu15F. Romeo15S. M. Shaheen15A. Spiezia15J. Tao15C. Wang15Z. Wang15E. Yazgan15H. Zhang15J. Zhao15Y. Ban16G. Chen16J. Li16Q. Li16S. Liu16Y. Mao16S. J. Qian16D. Wang16Z. Xu16Y. Wang17C. Avila18A. Cabrera18C. A. Carrillo Montoya18L. F. Chaparro Sierra18C. Florez18C. F. González Hernández18J. D. Ruiz Alvarez18M. A. Segura Delgado18B. Courbon19N. Godinovic19D. Lelas19I. Puljak19P. M. Ribeiro Cipriano19T. Sculac19Z. Antunovic20M. Kovac20V. Brigljevic21D. Ferencek21K. Kadija21B. Mesic21A. Starodumov21T. Susa21M. W. Ather22A. Attikis22G. Mavromanolakis22J. Mousa22C. Nicolaou22F. Ptochos22P. A. Razis22H. Rykaczewski22M. Finger23M. FingerJr.23E. Carrera Jarrin24A. A. Abdelalim25S. Elgammal25A. Ellithi Kamel25S. Bhowmik26R. K. Dewanjee26M. Kadastik26L. Perrini26M. Raidal26C. Veelken26P. Eerola27H. Kirschenmann27J. Pekkanen27M. Voutilainen27J. Havukainen28J. K. Heikkilä28T. Järvinen28V. Karimäki28R. Kinnunen28T. Lampén28K. Lassila-Perini28S. Laurila28S. Lehti28T. Lindén28P. Luukka28T. Mäenpää28H. Siikonen28E. Tuominen28J. Tuominiemi28T. Tuuva29M. Besancon30F. Couderc30M. Dejardin30D. Denegri30J. L. Faure30F. Ferri30S. Ganjour30S. Ghosh30A. Givernaud30P. Gras30G. Hamel de Monchenault30P. Jarry30C. Leloup30E. Locci30M. Machet30J. Malcles30G. Negro30J. Rander30A. Rosowsky30M. Ö. Sahin30M. Titov30A. Abdulsalam31C. Amendola31I. Antropov31S. Baffioni31F. Beaudette31P. Busson31L. Cadamuro31C. Charlot31R. Granier de Cassagnac31M. Jo31I. Kucher31S. Lisniak31A. Lobanov31J. Martin Blanco31M. Nguyen31C. Ochando31G. Ortona31P. Paganini31P. Pigard31R. Salerno31J. B. Sauvan31Y. Sirois31A. G. Stahl Leiton31Y. Yilmaz31A. Zabi31A. Zghiche31J.-L. Agram32J. Andrea32D. Bloch32J.-M. Brom32M. Buttignol32E. C. Chabert32C. Collard32E. Conte32X. Coubez32F. Drouhin32J.-C. Fontaine32D. Gelé32U. Goerlach32M. Jansová32P. Juillot32A.-C. Le Bihan32N. Tonon32P. Van Hove32S. Gadrat33S. Beauceron34C. Bernet34G. Boudoul34N. Chanon34R. Chierici34D. Contardo34P. Depasse34H. El Mamouni34J. Fay34L. Finco34S. Gascon34M. Gouzevitch34G. Grenier34B. Ille34F. Lagarde34I. B. Laktineh34H. Lattaud34M. Lethuillier34L. Mirabito34A. L. Pequegnot34S. Perries34A. Popov34V. Sordini34M. Vander Donckt34S. Viret34S. Zhang34T. Toriashvili35Z. Tsamalaidze36C. Autermann37L. Feld37M. K. Kiesel37K. Klein37M. Lipinski37M. Preuten37C. Schomakers37J. Schulz37M. Teroerde37B. Wittmer37V. Zhukov37A. Albert38D. Duchardt38M. Endres38M. Erdmann38S. Erdweg38T. Esch38R. Fischer38A. Güth38T. Hebbeker38C. Heidemann38K. Hoepfner38S. Knutzen38M. Merschmeyer38A. Meyer38P. Millet38S. Mukherjee38T. Pook38M. Radziej38H. Reithler38M. Rieger38F. Scheuch38D. Teyssier38S. Thüer38G. Flügge39B. Kargoll39T. Kress39A. Künsken39T. Müller39A. Nehrkorn39A. Nowack39C. Pistone39O. Pooth39A. Stahl39M. Aldaya Martin40T. Arndt40C. Asawatangtrakuldee40K. Beernaert40O. Behnke40U. Behrens40A. Bermúdez Martínez40A. A. Bin Anuar40K. Borras40V. Botta40A. Campbell40P. Connor40C. Contreras-Campana40F. Costanza40A. De Wit40C. Diez Pardos40G. Eckerlin40D. Eckstein40T. Eichhorn40E. Eren40E. Gallo40J. Garay Garcia40A. Geiser40J. M. Grados Luyando40A. Grohsjean40P. Gunnellini40M. Guthoff40A. Harb40J. Hauk40M. Hempel40H. Jung40M. Kasemann40J. Keaveney40C. Kleinwort40I. Korol40D. Krücker40W. Lange40A. Lelek40T. Lenz40K. Lipka40W. Lohmann40R. Mankel40I.-A. Melzer-Pellmann40A. B. Meyer40M. Meyer40M. Missiroli40G. Mittag40J. Mnich40A. Mussgiller40D. Pitzl40A. Raspereza40M. Savitskyi40P. Saxena40R. Shevchenko40N. Stefaniuk40H. Tholen40G. P. Van Onsem40R. Walsh40Y. Wen40K. Wichmann40C. Wissing40O. Zenaiev40R. Aggleton41S. Bein41V. Blobel41M. Centis Vignali41T. Dreyer41E. Garutti41D. Gonzalez41J. Haller41A. Hinzmann41M. Hoffmann41A. Karavdina41G. Kasieczka41R. Klanner41R. Kogler41N. Kovalchuk41S. Kurz41D. Marconi41J. Multhaup41M. Niedziela41D. Nowatschin41T. Peiffer41A. Perieanu41A. Reimers41C. Scharf41P. Schleper41A. Schmidt41S. Schumann41J. Schwandt41J. Sonneveld41H. Stadie41G. Steinbrück41F. M. Stober41M. Stöver41D. Troendle41E. Usai41A. Vanhoefer41B. Vormwald41M. Akbiyik42C. Barth42M. Baselga42S. Baur42E. Butz42R. Caspart42T. Chwalek42F. Colombo42W. De Boer42A. Dierlamm42N. Faltermann42B. Freund42R. Friese42M. Giffels42M. A. Harrendorf42F. Hartmann42S. M. Heindl42U. Husemann42F. Kassel42S. Kudella42H. Mildner42M. U. Mozer42Th. Müller42M. Plagge42G. Quast42K. Rabbertz42M. Schröder42I. Shvetsov42G. Sieber42H. J. Simonis42R. Ulrich42S. Wayand42M. Weber42T. Weiler42S. Williamson42C. Wöhrmann42R. Wolf42G. Anagnostou43G. Daskalakis43T. Geralis43A. Kyriakis43D. Loukas43I. Topsis-Giotis43G. Karathanasis44S. Kesisoglou44A. Panagiotou44N. Saoulidou44E. Tziaferi44K. Kousouris45I. Papakrivopoulos45I. Evangelou46C. Foudas46P. Gianneios46P. Katsoulis46P. Kokkas46S. Mallios46N. Manthos46I. Papadopoulos46E. Paradas46J. Strologas46F. A. Triantis46D. Tsitsonis46M. Csanad47N. Filipovic47G. Pasztor47O. Surányi47G. I. Veres47G. Bencze48C. Hajdu48D. Horvath48Á. Hunyadi48F. Sikler48T. Á. Vámi48V. Veszpremi48G. Vesztergombi48N. Beni49S. Czellar49J. Karancsi49A. Makovec49J. Molnar49Z. Szillasi49M. Bartók50P. Raics50Z. L. Trocsanyi50B. Ujvari50S. Choudhury51J. R. Komaragiri51S. Bahinipati52P. Mal52K. Mandal52A. Nayak52D. K. Sahoo52N. Sahoo52S. K. Swain52S. Bansal53S. B. Beri53V. Bhatnagar53R. Chawla53N. Dhingra53R. Gupta53A. Kaur53M. Kaur53S. Kaur53R. Kumar53P. Kumari53A. Mehta53S. Sharma53J. B. Singh53G. Walia53A. Bhardwaj54S. Chauhan54B. C. Choudhary54R. B. Garg54S. Keshri54A. Kumar54Ashok Kumar54S. Malhotra54M. Naimuddin54K. Ranjan54Aashaq Shah54R. Sharma54R. Bhardwaj55R. Bhattacharya55S. Bhattacharya55U. Bhawandeep55D. Bhowmik55S. Dey55S. Dutt55S. Dutta55S. Ghosh55N. Majumdar55A. Modak55K. Mondal55S. Mukhopadhyay55S. Nandan55A. Purohit55P. K. Rout55A. Roy55S. Roy Chowdhury55S. Sarkar55M. Sharan55B. Singh55S. Thakur55P. K. Behera56R. Chudasama57D. Dutta57V. Jha57V. Kumar57A. K. Mohanty57P. K. Netrakanti57L. M. Pant57P. Shukla57A. Topkar57T. Aziz58S. Dugad58B. Mahakud58S. Mitra58G. B. Mohanty58N. Sur58B. Sutar58S. Banerjee59S. Bhattacharya59S. Chatterjee59P. Das59M. Guchait59Sa. Jain59S. Kumar59M. Maity59G. Majumder59K. Mazumdar59T. Sarkar59N. Wickramage59S. Chauhan60S. Dube60V. Hegde60A. Kapoor60K. Kothekar60S. Pandey60A. Rane60S. Sharma60S. Chenarani61E. Eskandari Tadavani61S. M. Etesami61M. Khakzad61M. Mohammadi Najafabadi61M. Naseri61S. Paktinat Mehdiabadi61F. Rezaei Hosseinabadi61B. Safarzadeh61M. Zeinali61M. Felcini62M. Grunewald62M. Abbrescia63C. Calabria63A. Colaleo63D. Creanza63L. Cristella63N. De Filippis63M. De Palma63A. Di Florio63F. Errico63L. Fiore63G. Iaselli63S. Lezki63G. Maggi63M. Maggi63B. Marangelli63G. Miniello63S. My63S. Nuzzo63A. Pompili63G. Pugliese63R. Radogna63A. Ranieri63G. Selvaggi63A. Sharma63L. Silvestris63R. Venditti63P. Verwilligen63G. Zito63G. Abbiendi64C. Battilana64D. Bonacorsi64L. Borgonovi64S. Braibant-Giacomelli64R. Campanini64P. Capiluppi64A. Castro64F. R. Cavallo64S. S. Chhibra64G. Codispoti64M. Cuffiani64G. M. Dallavalle64F. Fabbri64A. Fanfani64D. Fasanella64P. Giacomelli64C. Grandi64L. Guiducci64F. Iemmi64S. Marcellini64G. Masetti64A. Montanari64F. L. Navarria64A. Perrotta64A. M. Rossi64T. Rovelli64G. P. Siroli64N. Tosi64S. Albergo65S. Costa65A. Di Mattia65F. Giordano65R. Potenza65A. Tricomi65C. Tuve65G. Barbagli66K. Chatterjee66V. Ciulli66C. Civinini66R. D’Alessandro66E. Focardi66G. Latino66P. Lenzi66M. Meschini66S. Paoletti66L. Russo66G. Sguazzoni66D. Strom66L. Viliani66L. Benussi67S. Bianco67F. Fabbri67D. Piccolo67F. Primavera67V. Calvelli68F. Ferro68F. Ravera68E. Robutti68S. Tosi68A. Benaglia69A. Beschi69L. Brianza69F. Brivio69V. Ciriolo69M. E. Dinardo69S. Fiorendi69S. Gennai69A. Ghezzi69P. Govoni69M. Malberti69S. Malvezzi69R. A. Manzoni69D. Menasce69L. Moroni69M. Paganoni69K. Pauwels69D. Pedrini69S. Pigazzini69S. Ragazzi69T. Tabarelli de Fatis69S. Buontempo70N. Cavallo70S. Di Guida70F. Fabozzi70F. Fienga70A. O. M. Iorio70W. A. Khan70L. Lista70S. Meola70P. Paolucci70C. Sciacca70F. Thyssen70P. Azzi71N. Bacchetta71L. Benato71D. Bisello71A. Boletti71R. Carlin71A. Carvalho Antunes De Oliveira71P. Checchia71M. Dall’Osso71P. De Castro Manzano71T. Dorigo71F. Gasparini71U. Gasparini71A. Gozzelino71S. Lacaprara71P. Lujan71M. Margoni71A. T. Meneguzzo71N. Pozzobon71P. Ronchese71R. Rossin71F. Simonetto71A. Tiko71E. Torassa71M. Zanetti71P. Zotto71G. Zumerle71A. Braghieri72A. Magnani72P. Montagna72S. P. Ratti72V. Re72M. Ressegotti72C. Riccardi72P. Salvini72I. Vai72P. Vitulo72L. Alunni Solestizi73M. Biasini73G. M. Bilei73C. Cecchi73D. Ciangottini73L. Fanò73P. Lariccia73R. Leonardi73E. Manoni73G. Mantovani73V. Mariani73M. Menichelli73A. Rossi73A. Santocchia73D. Spiga73K. Androsov74P. Azzurri74G. Bagliesi74L. Bianchini74T. Boccali74L. Borrello74R. Castaldi74M. A. Ciocci74R. Dell’Orso74G. Fedi74L. Giannini74A. Giassi74M. T. Grippo74F. Ligabue74T. Lomtadze74E. Manca74G. Mandorli74A. Messineo74F. Palla74A. Rizzi74P. Spagnolo74R. Tenchini74G. Tonelli74A. Venturi74P. G. Verdini74L. Barone75F. Cavallari75M. Cipriani75N. Daci75D. Del Re75E. Di Marco75M. Diemoz75S. Gelli75E. Longo75F. Margaroli75B. Marzocchi75P. Meridiani75G. Organtini75R. Paramatti75F. Preiato75S. Rahatlou75C. Rovelli75F. Santanastasio75N. Amapane76R. Arcidiacono76S. Argiro76M. Arneodo76N. Bartosik76R. Bellan76C. Biino76N. Cartiglia76R. Castello76F. Cenna76M. Costa76R. Covarelli76A. Degano76N. Demaria76B. Kiani76C. Mariotti76S. Maselli76E. Migliore76V. Monaco76E. Monteil76M. Monteno76M. M. Obertino76L. Pacher76N. Pastrone76M. Pelliccioni76G. L. Pinna Angioni76A. Romero76M. Ruspa76R. Sacchi76K. Shchelina76V. Sola76A. Solano76A. Staiano76P. Traczyk76S. Belforte77M. Casarsa77F. Cossutti77G. Della Ricca77A. Zanetti77D. H. Kim78G. N. Kim78M. S. Kim78J. Lee78S. Lee78S. W. Lee78C. S. Moon78Y. D. Oh78S. Sekmen78D. C. Son78Y. C. Yang78H. Kim79D. H. Moon79G. Oh79J. A. Brochero Cifuentes80J. Goh80T. J. Kim80S. Cho81S. Choi81Y. Go81D. Gyun81S. Ha81B. Hong81Y. Jo81Y. Kim81K. Lee81K. S. Lee81S. Lee81J. Lim81S. K. Park81Y. Roh81J. Almond82J. Kim82J. S. Kim82H. Lee82K. Lee82K. Nam82S. B. Oh82B. C. Radburn-Smith82S. h. Seo82U. K. Yang82H. D. Yoo82G. B. Yu82H. Kim83J. H. Kim83J. S. H. Lee83I. C. Park83Y. Choi84C. Hwang84J. Lee84I. Yu84V. Dudenas85A. Juodagalvis85J. Vaitkus85I. Ahmed86Z. A. Ibrahim86M. A. B. Md Ali86F. Mohamad Idris86W. A. T. Wan Abdullah86M. N. Yusli86Z. Zolkapli86M. C. Duran-Osuna87H. Castilla-Valdez87E. De La Cruz-Burelo87G. Ramirez-Sanchez87I. Heredia-De La Cruz87R. I. Rabadan-Trejo87R. Lopez-Fernandez87J. Mejia Guisao87R Reyes-Almanza87A. Sanchez-Hernandez87S. Carrillo Moreno88C. Oropeza Barrera88F. Vazquez Valencia88J. Eysermans89I. Pedraza89H. A. Salazar Ibarguen89C. Uribe Estrada89A. Morelos Pineda90D. Krofcheck91P. H. Butler92A. Ahmad93M. Ahmad93Q. Hassan93H. R. Hoorani93A. Saddique93M. A. Shah93M. Shoaib93M. Waqas93H. Bialkowska94M. Bluj94B. Boimska94T. Frueboes94M. Górski94M. Kazana94K. Nawrocki94M. Szleper94P. Zalewski94K. Bunkowski95A. Byszuk95K. Doroba95A. Kalinowski95M. Konecki95J. Krolikowski95M. Misiura95M. Olszewski95A. Pyskir95M. Walczak95P. Bargassa96C. Beirão Da Cruz E Silva96A. Di Francesco96P. Faccioli96B. Galinhas96M. Gallinaro96J. Hollar96N. Leonardo96L. Lloret Iglesias96M. V. Nemallapudi96J. Seixas96G. Strong96O. Toldaiev96D. Vadruccio96J. Varela96S. Afanasiev97P. Bunin97M. Gavrilenko97I. Golutvin97I. Gorbunov97A. Kamenev97V. Karjavin97A. Lanev97A. Malakhov97V. Matveev97P. Moisenz97V. Palichik97V. Perelygin97S. Shmatov97S. Shulha97N. Skatchkov97V. Smirnov97N. Voytishin97A. Zarubin97Y. Ivanov98V. Kim98E. Kuznetsova98P. Levchenko98V. Murzin98V. Oreshkin98I. Smirnov98D. Sosnov98V. Sulimov98L. Uvarov98S. Vavilov98A. Vorobyev98Yu. Andreev99A. Dermenev99S. Gninenko99N. Golubev99A. Karneyeu99M. Kirsanov99N. Krasnikov99A. Pashenkov99D. Tlisov99A. Toropin99V. Epshteyn100V. Gavrilov100N. Lychkovskaya100V. Popov100I. Pozdnyakov100G. Safronov100A. Spiridonov100A. Stepennov100V. Stolin100M. Toms100E. Vlasov100A. Zhokin100T. Aushev101A. Bylinkin101M. Chadeeva102P. Parygin102D. Philippov102S. Polikarpov102E. Popova102V. Rusinov102V. Andreev103M. Azarkin103I. Dremin103M. Kirakosyan103S. V. Rusakov103A. Terkulov103A. Baskakov104A. Belyaev104E. Boos104V. Bunichev104M. Dubinin104L. Dudko104A. Ershov104A. Gribushin104V. Klyukhin104O. Kodolova104I. Lokhtin104I. Miagkov104S. Obraztsov104M. Perfilov104V. Savrin104V. Blinov105D. Shtol105Y. Skovpen105I. Azhgirey106I. Bayshev106S. Bitioukov106D. Elumakhov106A. Godizov106V. Kachanov106A. Kalinin106D. Konstantinov106P. Mandrik106V. Petrov106R. Ryutin106A. Sobol106S. Troshin106N. Tyurin106A. Uzunian106A. Volkov106A. Babaev107P. Adzic108P. Cirkovic108D. Devetak108M. Dordevic108J. Milosevic108J. Alcaraz Maestre109A. Álvarez Fernández109I. Bachiller109M. Barrio Luna109M. Cerrada109N. Colino109B. De La Cruz109A. Delgado Peris109C. Fernandez Bedoya109J. P. Fernández Ramos109J. Flix109M. C. Fouz109O. Gonzalez Lopez109S. Goy Lopez109J. M. Hernandez109M. I. Josa109D. Moran109A. Pérez-Calero Yzquierdo109J. Puerta Pelayo109I. Redondo109L. Romero109M. S. Soares109A. Triossi109C. Albajar110J. F. de Trocóniz110J. Cuevas111C. Erice111J. Fernandez Menendez111S. Folgueras111I. Gonzalez Caballero111J. R. González Fernández111E. Palencia Cortezon111S. Sanchez Cruz111P. Vischia111J. M. Vizan Garcia111I. J. Cabrillo112A. Calderon112B. Chazin Quero112J. Duarte Campderros112M. Fernandez112P. J. Fernández Manteca112A. García Alonso112J. Garcia-Ferrero112G. Gomez112A. Lopez Virto112J. Marco112C. Martinez Rivero112P. Martinez Ruiz del Arbol112F. Matorras112J. Piedra Gomez112C. Prieels112T. Rodrigo112A. Ruiz-Jimeno112L. Scodellaro112N. Trevisani112I. Vila112R. Vilar Cortabitarte112D. Abbaneo113B. Akgun113E. Auffray113P. Baillon113A. H. Ball113D. Barney113J. Bendavid113M. Bianco113A. Bocci113C. Botta113T. Camporesi113M. Cepeda113G. Cerminara113E. Chapon113Y. Chen113D. d’Enterria113A. Dabrowski113V. Daponte113A. David113M. De Gruttola113A. De Roeck113N. Deelen113M. Dobson113T. du Pree113M. Dünser113N. Dupont113A. Elliott-Peisert113P. Everaerts113F. Fallavollita113G. Franzoni113J. Fulcher113W. Funk113D. Gigi113A. Gilbert113K. Gill113F. Glege113D. Gulhan113J. Hegeman113V. Innocente113A. Jafari113P. Janot113O. Karacheban113J. Kieseler113V. Knünz113A. Kornmayer113M. J. Kortelainen113M. Krammer113C. Lange113P. Lecoq113C. Lourenço113M. T. Lucchini113L. Malgeri113M. Mannelli113A. Martelli113F. Meijers113J. A. Merlin113S. Mersi113E. Meschi113P. Milenovic113F. Moortgat113M. Mulders113H. Neugebauer113J. Ngadiuba113S. Orfanelli113L. Orsini113F. Pantaleo113L. Pape113E. Perez113M. Peruzzi113A. Petrilli113G. Petrucciani113A. Pfeiffer113M. Pierini113F. M. Pitters113D. Rabady113A. Racz113T. Reis113G. Rolandi113M. Rovere113H. Sakulin113C. Schäfer113C. Schwick113M. Seidel113M. Selvaggi113A. Sharma113P. Silva113P. Sphicas113A. Stakia113J. Steggemann113M. Stoye113M. Tosi113D. Treille113A. Tsirou113V. Veckalns113M. Verweij113W. D. Zeuner113W. Bertl114L. Caminada114K. Deiters114W. Erdmann114R. Horisberger114Q. Ingram114H. C. Kaestli114D. Kotlinski114U. Langenegger114T. Rohe114S. A. Wiederkehr114M. Backhaus115L. Bäni115P. Berger115B. Casal115G. Dissertori115M. Dittmar115M. Donegà115C. Dorfer115C. Grab115C. Heidegger115D. Hits115J. Hoss115T. Klijnsma115W. Lustermann115M. Marionneau115M. T. Meinhard115D. Meister115F. Micheli115P. Musella115F. Nessi-Tedaldi115F. Pandolfi115J. Pata115F. Pauss115G. Perrin115L. Perrozzi115M. Quittnat115M. Reichmann115D. A. Sanz Becerra115M. Schönenberger115L. Shchutska115V. R. Tavolaro115K. Theofilatos115M. L. Vesterbacka Olsson115R. Wallny115D. H. Zhu115T. K. Aarrestad116C. Amsler116D. Brzhechko116M. F. Canelli116A. De Cosa116R. Del Burgo116S. Donato116C. Galloni116T. Hreus116B. Kilminster116I. Neutelings116D. Pinna116G. Rauco116P. Robmann116D. Salerno116K. Schweiger116C. Seitz116Y. Takahashi116A. Zucchetta116V. Candelise117Y. H. Chang117K. y. Cheng117T. H. Doan117Sh. Jain117R. Khurana117C. M. Kuo117W. Lin117A. Pozdnyakov117S. S. Yu117P. Chang118Y. Chao118K. F. Chen118P. H. Chen118F. Fiori118W.-S. Hou118Y. Hsiung118Arun Kumar118Y. F. Liu118R.-S. Lu118E. Paganis118A. Psallidas118A. Steen118J. f. Tsai118B. Asavapibhop119K. Kovitanggoon119G. Singh119N. Srimanobhas119A. Bat120F. Boran120S. Damarseckin120Z. S. Demiroglu120C. Dozen120E. Eskut120S. Girgis120G. Gokbulut120Y. Guler120I. Hos120E. E. Kangal120O. Kara120A. Kayis Topaksu120U. Kiminsu120M. Oglakci120G. Onengut120K. Ozdemir120S. Ozturk120A. Polatoz120B. Tali120U. G. Tok120S. Turkcapar120I. S. Zorbakir120C. Zorbilmez120G. Karapinar121K. Ocalan121M. Yalvac121M. Zeyrek121E. Gülmez122M. Kaya122O. Kaya122S. Tekten122E. A. Yetkin122M. N. Agaras123S. Atay123A. Cakir123K. Cankocak123Y. Komurcu123B. Grynyov124L. Levchuk125F. Ball126L. Beck126J. J. Brooke126D. Burns126E. Clement126D. Cussans126O. Davignon126H. Flacher126J. Goldstein126G. P. Heath126H. F. Heath126L. Kreczko126D. M. Newbold126S. Paramesvaran126T. Sakuma126S. Seif El Nasr-storey126D. Smith126V. J. Smith126K. W. Bell127A. Belyaev127C. Brew127R. M. Brown127L. Calligaris127D. Cieri127D. J. A. Cockerill127J. A. Coughlan127K. Harder127S. Harper127J. Linacre127E. Olaiya127D. Petyt127C. H. Shepherd-Themistocleous127A. Thea127I. R. Tomalin127T. Williams127W. J. Womersley127G. Auzinger128R. Bainbridge128P. Bloch128J. Borg128S. Breeze128O. Buchmuller128A. Bundock128S. Casasso128D. Colling128L. Corpe128P. Dauncey128G. Davies128M. Della Negra128R. Di Maria128Y. Haddad128G. Hall128G. Iles128T. James128M. Komm128R. Lane128C. Laner128L. Lyons128A.-M. Magnan128S. Malik128L. Mastrolorenzo128T. Matsushita128J. Nash128A. Nikitenko128V. Palladino128M. Pesaresi128A. Richards128A. Rose128E. Scott128C. Seez128A. Shtipliyski128T. Strebler128S. Summers128A. Tapper128K. Uchida128M. Vazquez Acosta128T. Virdee128N. Wardle128D. Winterbottom128J. Wright128S. C. Zenz128J. E. Cole129P. R. Hobson129A. Khan129P. Kyberd129A. Morton129I. D. Reid129L. Teodorescu129S. Zahid129A. Borzou130K. Call130J. Dittmann130K. Hatakeyama130H. Liu130N. Pastika130C. Smith130R. Bartek131A. Dominguez131A. Buccilli132S. I. Cooper132C. Henderson132P. Rumerio132C. West132D. Arcaro133A. Avetisyan133T. Bose133D. Gastler133D. Rankin133C. Richardson133J. Rohlf133L. Sulak133D. Zou133G. Benelli134D. Cutts134M. Hadley134J. Hakala134U. Heintz134J. M. Hogan134K. H. M. Kwok134E. Laird134G. Landsberg134J. Lee134Z. Mao134M. Narain134J. Pazzini134S. Piperov134S. Sagir134R. Syarif134D. Yu134R. Band135C. Brainerd135R. Breedon135D. Burns135M. Calderon De La Barca Sanchez135M. Chertok135J. Conway135R. Conway135P. T. Cox135R. Erbacher135C. Flores135G. Funk135W. Ko135R. Lander135C. Mclean135M. Mulhearn135D. Pellett135J. Pilot135S. Shalhout135M. Shi135J. Smith135D. Stolp135D. Taylor135K. Tos135M. Tripathi135Z. Wang135F. Zhang135M. Bachtis136C. Bravo136R. Cousins136A. Dasgupta136A. Florent136J. Hauser136M. Ignatenko136N. Mccoll136S. Regnard136D. Saltzberg136C. Schnaible136V. Valuev136E. Bouvier137K. Burt137R. Clare137J. Ellison137J. W. Gary137S. M. A. Ghiasi Shirazi137G. Hanson137G. Karapostoli137E. Kennedy137F. Lacroix137O. R. Long137M. Olmedo Negrete137M. I. Paneva137W. Si137L. Wang137H. Wei137S. Wimpenny137B. R. Yates137J. G. Branson138S. Cittolin138M. Derdzinski138R. Gerosa138D. Gilbert138B. Hashemi138A. Holzner138D. Klein138G. Kole138V. Krutelyov138J. Letts138M. Masciovecchio138D. Olivito138S. Padhi138M. Pieri138M. Sani138V. Sharma138S. Simon138M. Tadel138A. Vartak138S. Wasserbaech138J. Wood138F. Würthwein138A. Yagil138G. Zevi Della Porta138N. Amin139R. Bhandari139J. Bradmiller-Feld139C. Campagnari139M. Citron139A. Dishaw139V. Dutta139M. Franco Sevilla139L. Gouskos139R. Heller139J. Incandela139A. Ovcharova139H. Qu139J. Richman139D. Stuart139I. Suarez139J. Yoo139D. Anderson140A. Bornheim140J. Bunn140J. M. Lawhorn140H. B. Newman140T. Q. Nguyen140C. Pena140M. Spiropulu140J. R. Vlimant140R. Wilkinson140S. Xie140Z. Zhang140R. Y. Zhu140M. B. Andrews141T. Ferguson141T. Mudholkar141M. Paulini141J. Russ141M. Sun141H. Vogel141I. Vorobiev141M. Weinberg141J. P. Cumalat142W. T. Ford142F. Jensen142A. Johnson142M. Krohn142S. Leontsinis142E. Macdonald142T. Mulholland142K. Stenson142K. A. Ulmer142S. R. Wagner142J. Alexander143J. Chaves143Y. Cheng143J. Chu143A. Datta143S. Dittmer143K. Mcdermott143N. Mirman143J. R. Patterson143D. Quach143A. Rinkevicius143A. Ryd143L. Skinnari143L. Soffi143S. M. Tan143Z. Tao143J. Thom143J. Tucker143P. Wittich143M. Zientek143S. Abdullin144M. Albrow144M. Alyari144G. Apollinari144A. Apresyan144A. Apyan144S. Banerjee144L. A. T. Bauerdick144A. Beretvas144J. Berryhill144P. C. Bhat144G. Bolla144K. Burkett144J. N. Butler144A. Canepa144G. B. Cerati144H. W. K. Cheung144F. Chlebana144M. Cremonesi144J. Duarte144V. D. Elvira144J. Freeman144Z. Gecse144E. Gottschalk144L. Gray144D. Green144S. Grünendahl144O. Gutsche144J. Hanlon144R. M. Harris144S. Hasegawa144J. Hirschauer144Z. Hu144B. Jayatilaka144S. Jindariani144M. Johnson144U. Joshi144B. Klima144B. Kreis144S. Lammel144D. Lincoln144R. Lipton144M. Liu144T. Liu144R. Lopes De Sá144J. Lykken144K. Maeshima144N. Magini144J. M. Marraffino144D. Mason144P. McBride144P. Merkel144S. Mrenna144S. Nahn144V. O’Dell144K. Pedro144O. Prokofyev144G. Rakness144L. Ristori144A. Savoy-Navarro144B. Schneider144E. Sexton-Kennedy144A. Soha144W. J. Spalding144L. Spiegel144S. Stoynev144J. Strait144N. Strobbe144L. Taylor144S. Tkaczyk144N. V. Tran144L. Uplegger144E. W. Vaandering144C. Vernieri144M. Verzocchi144R. Vidal144M. Wang144H. A. Weber144A. Whitbeck144W. Wu144D. Acosta145P. Avery145P. Bortignon145D. Bourilkov145A. Brinkerhoff145A. Carnes145M. Carver145D. Curry145R. D. Field145I. K. Furic145S. V. Gleyzer145B. M. Joshi145J. Konigsberg145A. Korytov145K. Kotov145P. Ma145K. Matchev145H. Mei145G. Mitselmakher145K. Shi145D. Sperka145N. Terentyev145L. Thomas145J. Wang145S. Wang145J. Yelton145Y. R. Joshi146S. Linn146P. Markowitz146J. L. Rodriguez146A. Ackert147T. Adams147A. Askew147S. Hagopian147V. Hagopian147K. F. Johnson147T. Kolberg147G. Martinez147T. Perry147H. Prosper147A. Saha147A. Santra147V. Sharma147R. Yohay147M. M. Baarmand148V. Bhopatkar148S. Colafranceschi148M. Hohlmann148D. Noonan148T. Roy148F. Yumiceva148M. R. Adams149L. Apanasevich149D. Berry149R. R. Betts149R. Cavanaugh149X. Chen149O. Evdokimov149C. E. Gerber149D. A. Hangal149D. J. Hofman149K. Jung149J. Kamin149I. D. Sandoval Gonzalez149M. B. Tonjes149N. Varelas149H. Wang149Z. Wu149J. Zhang149B. Bilki150W. Clarida150K. Dilsiz150S. Durgut150R. P. Gandrajula150M. Haytmyradov150V. Khristenko150J.-P. Merlo150H. Mermerkaya150A. Mestvirishvili150A. Moeller150J. Nachtman150H. Ogul150Y. Onel150F. Ozok150A. Penzo150C. Snyder150E. Tiras150J. Wetzel150K. Yi150B. Blumenfeld151A. Cocoros151N. Eminizer151D. Fehling151L. Feng151A. V. Gritsan151P. Maksimovic151J. Roskes151U. Sarica151M. Swartz151M. Xiao151C. You151A. Al-bataineh152P. Baringer152A. Bean152S. Boren152J. Bowen152J. Castle152S. Khalil152A. Kropivnitskaya152D. Majumder152W. Mcbrayer152M. Murray152C. Rogan152C. Royon152S. Sanders152E. Schmitz152J. D. Tapia Takaki152Q. Wang152A. Ivanov153K. Kaadze153Y. Maravin153A. Mohammadi153L. K. Saini153N. Skhirtladze153F. Rebassoo154D. Wright154A. Baden155O. Baron155A. Belloni155S. C. Eno155Y. Feng155C. Ferraioli155N. J. Hadley155S. Jabeen155G. Y. Jeng155R. G. Kellogg155J. Kunkle155A. C. Mignerey155F. Ricci-Tam155Y. H. Shin155A. Skuja155S. C. Tonwar155D. Abercrombie156B. Allen156V. Azzolini156R. Barbieri156A. Baty156G. Bauer156R. Bi156S. Brandt156W. Busza156I. A. Cali156M. D’Alfonso156Z. Demiragli156G. Gomez Ceballos156M. Goncharov156P. Harris156D. Hsu156M. Hu156Y. Iiyama156G. M. Innocenti156M. Klute156D. Kovalskyi156Y.-J. Lee156A. Levin156P. D. Luckey156B. Maier156A. C. Marini156C. Mcginn156C. Mironov156S. Narayanan156X. Niu156C. Paus156C. Roland156G. Roland156J. Salfeld-Nebgen156G. S. F. Stephans156K. Sumorok156K. Tatar156D. Velicanu156J. Wang156T. W. Wang156B. Wyslouch156S. Zhaozhong156A. C. Benvenuti157R. M. Chatterjee157A. Evans157P. Hansen157S. Kalafut157Y. Kubota157Z. Lesko157J. Mans157S. Nourbakhsh157N. Ruckstuhl157R. Rusack157J. Turkewitz157M. A. Wadud157J. G. Acosta158S. Oliveros158E. Avdeeva159K. Bloom159D. R. Claes159C. Fangmeier159F. Golf159R. Gonzalez Suarez159R. Kamalieddin159I. Kravchenko159J. Monroy159J. E. Siado159G. R. Snow159B. Stieger159J. Dolen160A. Godshalk160C. Harrington160I. Iashvili160D. Nguyen160A. Parker160S. Rappoccio160B. Roozbahani160G. Alverson161E. Barberis161C. Freer161A. Hortiangtham161A. Massironi161D. M. Morse161T. Orimoto161R. Teixeira De Lima161T. Wamorkar161B. Wang161A. Wisecarver161D. Wood161S. Bhattacharya162O. Charaf162K. A. Hahn162N. Mucia162N. Odell162M. H. Schmitt162K. Sung162M. Trovato162M. Velasco162R. Bucci163N. Dev163M. Hildreth163K. Hurtado Anampa163C. Jessop163D. J. Karmgard163N. Kellams163K. Lannon163W. Li163N. Loukas163N. Marinelli163F. Meng163C. Mueller163Y. Musienko163M. Planer163A. Reinsvold163R. Ruchti163P. Siddireddy163G. Smith163S. Taroni163M. Wayne163A. Wightman163M. Wolf163A. Woodard163J. Alimena164L. Antonelli164B. Bylsma164L. S. Durkin164S. Flowers164B. Francis164A. Hart164C. Hill164W. Ji164T. Y. Ling164W. Luo164B. L. Winer164H. W. Wulsin164S. Cooperstein165O. Driga165P. Elmer165J. Hardenbrook165P. Hebda165S. Higginbotham165A. Kalogeropoulos165D. Lange165J. Luo165D. Marlow165K. Mei165I. Ojalvo165J. Olsen165C. Palmer165P. Piroué165D. Stickland165C. Tully165S. Malik166S. Norberg166A. Barker167V. E. Barnes167S. Das167L. Gutay167M. Jones167A. W. Jung167A. Khatiwada167D. H. Miller167N. Neumeister167C. C. Peng167H. Qiu167J. F. Schulte167J. Sun167F. Wang167R. Xiao167W. Xie167T. Cheng168N. Parashar168Z. Chen169K. M. Ecklund169S. Freed169F. J. M. Geurts169M. Guilbaud169M. Kilpatrick169W. Li169B. Michlin169B. P. Padley169J. Roberts169J. Rorie169W. Shi169Z. Tu169J. Zabel169A. Zhang169A. Bodek170P. de Barbaro170R. Demina170Y. t. Duh170T. Ferbel170M. Galanti170A. Garcia-Bellido170J. Han170O. Hindrichs170A. Khukhunaishvili170K. H. Lo170P. Tan170M. Verzetti170R. Ciesielski171K. Goulianos171C. Mesropian171A. Agapitos172J. P. Chou172Y. Gershtein172T. A. Gómez Espinosa172E. Halkiadakis172M. Heindl172E. Hughes172S. Kaplan172R. Kunnawalkam Elayavalli172S. Kyriacou172A. Lath172R. Montalvo172K. Nash172M. Osherson172H. Saka172S. Salur172S. Schnetzer172D. Sheffield172S. Somalwar172R. Stone172S. Thomas172P. Thomassen172M. Walker172A. G. Delannoy173J. Heideman173G. Riley173K. Rose173S. Spanier173K. Thapa173O. Bouhali174A. Castaneda Hernandez174A. Celik174M. Dalchenko174M. De Mattia174A. Delgado174S. Dildick174R. Eusebi174J. Gilmore174T. Huang174T. Kamon174R. Mueller174Y. Pakhotin174R. Patel174A. Perloff174L. Perniè174D. Rathjens174A. Safonov174A. Tatarinov174N. Akchurin175J. Damgov175F. De Guio175P. R. Dudero175J. Faulkner175E. Gurpinar175S. Kunori175K. Lamichhane175S. W. Lee175T. Mengke175S. Muthumuni175T. Peltola175S. Undleeb175I. Volobouev175Z. Wang175S. Greene176A. Gurrola176R. Janjam176W. Johns176C. Maguire176A. Melo176H. Ni176K. Padeken176P. Sheldon176S. Tuo176J. Velkovska176Q. Xu176M. W. Arenton177P. Barria177B. Cox177R. Hirosky177M. Joyce177A. Ledovskoy177H. Li177C. Neu177T. Sinthuprasith177Y. Wang177E. Wolfe177F. Xia177R. Harr178P. E. Karchin178N. Poudyal178J. Sturdy178P. Thapa178S. Zaleski178M. Brodski179J. Buchanan179C. Caillol179D. Carlsmith179S. Dasu179L. Dodd179S. Duric179B. Gomber179M. Grothe179M. Herndon179A. Hervé179U. Hussain179P. Klabbers179A. Lanaro179A. Levine179K. Long179R. Loveless179V. Rekovic179T. Ruggles179A. Savin179N. Smith179W. H. Smith179N. Woods179CMS Collaboration180Email author1.Yerevan Physics InstituteYerevanArmenia2.Institut für HochenergiephysikViennaAustria3.Institute for Nuclear ProblemsMinskBelarus4.Universiteit AntwerpenAntwerpenBelgium5.Vrije Universiteit BrusselBrusselBelgium6.Université Libre de BruxellesBruxellesBelgium7.Ghent UniversityGhentBelgium8.Université Catholique de LouvainLouvain-la-NeuveBelgium9.Centro Brasileiro de Pesquisas FisicasRio de JaneiroBrazil10.Universidade do Estado do Rio de JaneiroRio de JaneiroBrazil11.Universidade Estadual Paulista , Universidade Federal do ABCSão PauloBrazil12.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria13.University of SofiaSofiaBulgaria14.Beihang UniversityBeijingChina15.Institute of High Energy PhysicsBeijingChina16.State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina17.Tsinghua UniversityBeijingChina18.Universidad de Los AndesBogotaColombia19.University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval ArchitectureSplitCroatia20.University of Split, Faculty of ScienceSplitCroatia21.Institute Rudjer BoskovicZagrebCroatia22.University of CyprusNicosiaCyprus23.Charles UniversityPragueCzech Republic24.Universidad San Francisco de QuitoQuitoEcuador25.Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy PhysicsCairoEgypt26.National Institute of Chemical Physics and BiophysicsTallinnEstonia27.Department of PhysicsUniversity of HelsinkiHelsinkiFinland28.Helsinki Institute of PhysicsHelsinkiFinland29.Lappeenranta University of TechnologyLappeenrantaFinland30.IRFU, CEA, Université Paris-SaclayGif-sur-YvetteFrance31.Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3Université Paris-SaclayPalaiseauFrance32.Université de Strasbourg, CNRS, IPHC UMR 7178StrasbourgFrance33.Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3VilleurbanneFrance34.Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de LyonVilleurbanneFrance35.Georgian Technical UniversityTbilisiGeorgia36.Tbilisi State UniversityTbilisiGeorgia37.RWTH Aachen University, I. Physikalisches InstitutAachenGermany38.RWTH Aachen University, III. Physikalisches Institut AAachenGermany39.RWTH Aachen University, III. Physikalisches Institut BAachenGermany40.Deutsches Elektronen-SynchrotronHamburgGermany41.University of HamburgHamburgGermany42.Institut für Experimentelle TeilchenphysikKarlsruheGermany43.Institute of Nuclear and Particle Physics (INPP), NCSR DemokritosAghia ParaskeviGreece44.National and Kapodistrian University of AthensAthensGreece45.National Technical University of AthensAthensGreece46.University of IoánninaIoánninaGreece47.MTA-ELTE Lendület CMS Particle and Nuclear Physics GroupEötvös Loránd UniversityBudapestHungary48.Wigner Research Centre for PhysicsBudapestHungary49.Institute of Nuclear Research ATOMKIDebrecenHungary50.Institute of Physics, University of DebrecenDebrecenHungary51.Indian Institute of Science (IISc)BangaloreIndia52.National Institute of Science Education and ResearchBhubaneswarIndia53.Panjab UniversityChandigarhIndia54.University of DelhiDelhiIndia55.Saha Institute of Nuclear Physics, HBNIKolkataIndia56.Indian Institute of Technology MadrasMadrasIndia57.Bhabha Atomic Research CentreMumbaiIndia58.Tata Institute of Fundamental Research-AMumbaiIndia59.Tata Institute of Fundamental Research-BMumbaiIndia60.Indian Institute of Science Education and Research (IISER)PuneIndia61.Institute for Research in Fundamental Sciences (IPM)TehranIran62.University College DublinDublinIreland63.INFN Sezione di Bari , Università di Bari , Politecnico di BariBariItaly64.INFN Sezione di Bologna , Università di BolognaBolognaItaly65.INFN Sezione di Catania , Università di CataniaCataniaItaly66.INFN Sezione di Firenze , Università di FirenzeFirenzeItaly67.INFN Laboratori Nazionali di FrascatiFrascatiItaly68.INFN Sezione di Genova , Università di GenovaGenoaItaly69.INFN Sezione di Milano-Bicocca , Università di Milano-BicoccaMilanItaly70.INFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. MarconiRomeItaly71.INFN Sezione di Padova , Università di Padova , Padova, Italy, Università di TrentoTrentoItaly72.INFN Sezione di Pavia , Università di PaviaPaviaItaly73.INFN Sezione di Perugia , Università di PerugiaPerugiaItaly74.INFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di PisaPisaItaly75.INFN Sezione di Roma , Sapienza Università di RomaRomeItaly76.INFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte OrientaleNovaraItaly77.INFN Sezione di Trieste , Università di TriesteTriesteItaly78.Kyungpook National UniversityDaeguSouth Korea79.Chonnam National University, Institute for Universe and Elementary ParticlesKwangjuKorea80.Hanyang UniversitySeoulKorea81.Korea UniversitySeoulKorea82.Seoul National UniversitySeoulKorea83.University of SeoulSeoulKorea84.Sungkyunkwan UniversitySuwonKorea85.Vilnius UniversityVilniusLithuania86.National Centre for Particle Physics, Universiti MalayaKuala LumpurMalaysia87.Centro de Investigacion y de Estudios Avanzados del IPNMexico CityMexico88.Universidad IberoamericanaMexico CityMexico89.Benemerita Universidad Autonoma de PueblaPueblaMexico90.Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico91.University of AucklandAucklandNew Zealand92.University of CanterburyChristchurchNew Zealand93.National Centre for Physics, Quaid-I-Azam UniversityIslamabadPakistan94.National Centre for Nuclear ResearchSwierkPoland95.Institute of Experimental Physics, Faculty of Physics, University of WarsawWarsawPoland96.Laboratório de Instrumentação e Física Experimental de PartículasLisbonPortugal97.Joint Institute for Nuclear ResearchDubnaRussia98.Petersburg Nuclear Physics InstituteGatchina (St. Petersburg)Russia99.Institute for Nuclear ResearchMoscowRussia100.Institute for Theoretical and Experimental PhysicsMoscowRussia101.Moscow Institute of Physics and TechnologyMoscowRussia102.National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI)MoscowRussia103.P.N. Lebedev Physical InstituteMoscowRussia104.Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State UniversityMoscowRussia105.Novosibirsk State University (NSU)NovosibirskRussia106.State Research Center of Russian Federation, Institute for High Energy Physics of NRC&quot, Kurchatov Institute&quotProtvinoRussia107.National Research Tomsk Polytechnic UniversityTomskRussia108.University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear SciencesBelgradeSerbia109.Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT)MadridSpain110.Universidad Autónoma de MadridMadridSpain111.Universidad de OviedoOviedoSpain112.Instituto de Física de Cantabria (IFCA), CSIC-Universidad de CantabriaSantanderSpain113.CERN, European Organization for Nuclear ResearchGenevaSwitzerland114.Paul Scherrer InstitutVilligenSwitzerland115.ETH Zurich, Institute for Particle Physics and Astrophysics (IPA)ZurichSwitzerland116.Universität ZürichZurichSwitzerland117.National Central UniversityChung-LiTaiwan118.National Taiwan University (NTU)TaipeiTaiwan119.Chulalongkorn University, Faculty of Science, Department of PhysicsBangkokThailand120.Çukurova University, Physics Department, Science and Art FacultyAdanaTurkey121.Middle East Technical University, Physics DepartmentAnkaraTurkey122.Bogazici UniversityIstanbulTurkey123.Istanbul Technical UniversityIstanbulTurkey124.Institute for Scintillation Materials of National Academy of Science of UkraineKharkovUkraine125.National Scientific Center, Kharkov Institute of Physics and TechnologyKharkovUkraine126.University of BristolBristolUK127.Rutherford Appleton LaboratoryDidcotUK128.Imperial CollegeLondonUK129.Brunel UniversityUxbridgeUK130.Baylor UniversityWacoUSA131.Catholic University of AmericaWashington DCUSA132.The University of AlabamaTuscaloosaUSA133.Boston UniversityBostonUSA134.Brown UniversityProvidenceUSA135.University of CaliforniaDavisUSA136.University of CaliforniaLos AngelesUSA137.University of CaliforniaRiversideUSA138.University of CaliforniaSan DiegoUSA139.University of California, Santa Barbara, Department of PhysicsSanta BarbaraUSA140.California Institute of TechnologyPasadenaUSA141.Carnegie Mellon UniversityPittsburghUSA142.University of Colorado BoulderBoulderUSA143.Cornell UniversityIthacaUSA144.Fermi National Accelerator LaboratoryBataviaUSA145.University of FloridaGainesvilleUSA146.Florida International UniversityMiamiUSA147.Florida State UniversityTallahasseeUSA148.Florida Institute of TechnologyMelbourneUSA149.University of Illinois at Chicago (UIC)ChicagoUSA150.The University of IowaIowa CityUSA151.Johns Hopkins UniversityBaltimoreUSA152.The University of KansasLawrenceUSA153.Kansas State UniversityManhattanUSA154.Lawrence Livermore National LaboratoryLivermoreUSA155.University of MarylandCollege ParkUSA156.Massachusetts Institute of TechnologyCambridgeUSA157.University of MinnesotaMinneapolisUSA158.University of MississippiOxfordUSA159.University of Nebraska-LincolnLincolnUSA160.State University of New York at BuffaloBuffaloUSA161.Northeastern UniversityBostonUSA162.Northwestern UniversityEvanstonUSA163.University of Notre DameNotre DameUSA164.The Ohio State UniversityColumbusUSA165.Princeton UniversityPrincetonUSA166.University of Puerto RicoMayaguezUSA167.Purdue UniversityWest LafayetteUSA168.Purdue University NorthwestHammondUSA169.Rice UniversityHoustonUSA170.University of RochesterRochesterUSA171.The Rockefeller UniversityNew YorkUSA172.Rutgers, The State University of New JerseyPiscatawayUSA173.University of TennesseeKnoxvilleUSA174.Texas A&M UniversityCollege StationUSA175.Texas Tech UniversityLubbockUSA176.Vanderbilt UniversityNashvilleUSA177.University of VirginiaCharlottesvilleUSA178.Wayne State UniversityDetroitUSA179.University of Wisconsin, MadisonMadisonUSA180.CERNGeneva 23Switzerland


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-018-6143-z.pdf

A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A. K. Kalsi, T. Lenzi, J. Luetic, T. Maerschalk, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, M. Vit, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L. J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov, A. Dimitrov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, L. Yuan, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, Y. Wang, C. Avila, A. Cabrera, C. A. Carrillo Montoya, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, J. D. Ruiz Alvarez, M. A. Segura Delgado, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, A. A. Abdelalim, S. Elgammal, A. Ellithi Kamel, S. Bhowmik, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken, P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen, J. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, C. Collard, E. Conte, X. Coubez, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang, T. Toriashvili, Z. Tsamalaidze, C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov, A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker. Search for third-generation scalar leptoquarks decaying to a top quark and a \(\tau \) lepton at \(\sqrt{s}=13\,\text {Te}\text {V} \), The European Physical Journal C, 2018, 707, DOI: 10.1140/epjc/s10052-018-6143-z