MINLO t-channel single-top plus jet

Journal of High Energy Physics, Sep 2018

Abstract We present a next-to-leading order accurate simulation of t-channel single-top plus jet production matched to parton showers via the Powheg method. The calculation underlying the simulation is enhanced with a process-specific implementation of the multi-scale improved NLO (Minlo) method, such that it gives physical predictions all through phase space, including regions where the jet additional to the t-channel single-top process is unresolved. We further describe a tuning procedure for the Minlo Sudakov form factor, fitting the coefficient of the first subleading term in its exponent using an artificial neural-network. The latter tuning, implemented as a straightforward event-by-event reweighting, renders the Minlo simulation NLO accurate for t-channel single-top observables, in addition to those of the analogous single-top plus jet process.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP09%282018%29108.pdf

MINLO t-channel single-top plus jet

Journal of High Energy Physics September 2018, 2018:108 | Cite as MINLO t-channel single-top plus jet AuthorsAuthors and affiliations Stefano CarrazzaRikkert FrederixKeith HamiltonGiulia Zanderighi Open Access Regular Article - Theoretical Physics First Online: 18 September 2018 Received: 31 May 2018 Accepted: 27 August 2018 Abstract We present a next-to-leading order accurate simulation of t-channel single-top plus jet production matched to parton showers via the Powheg method. The calculation underlying the simulation is enhanced with a process-specific implementation of the multi-scale improved NLO (Minlo) method, such that it gives physical predictions all through phase space, including regions where the jet additional to the t-channel single-top process is unresolved. We further describe a tuning procedure for the Minlo Sudakov form factor, fitting the coefficient of the first subleading term in its exponent using an artificial neural-network. The latter tuning, implemented as a straightforward event-by-event reweighting, renders the Minlo simulation NLO accurate for t-channel single-top observables, in addition to those of the analogous single-top plus jet process. Keywords NLO Computations QCD Phenomenology  ArXiv ePrint: 1805.09855 On leave from: Rudolf Peierls Centre for Theoretical, Physics, 1 Keble Road, University of Oxford, Oxford, U.K. (Giulia Zanderighi) Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [2] F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [3] W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [INSPIRE]. [4] M. Cacciari et al., Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE]. [5] M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar [6] M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. [7] M. Czakon et al., Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].ADSCrossRefGoogle Scholar [8] M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].ADSCrossRefGoogle Scholar [9] P. Kant et al., HatHor for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions, Comput. Phys. Commun. 191 (2015) 74 [arXiv:1406.4403] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [10] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W − or H −, Phys. Rev. D 82 (2010) 054018 [arXiv:1005.4451] [INSPIRE]. [11] N. Kidonakis, Top quark production, in the proceedings of the Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons (HQ 2013), July 15-28, JINR, Dubna, Russia (2014), arXiv:1311.0283. [12] J. Alwall et al., Is V (tb) ≃ 1?, Eur. Phys. J. C 49 (2007) 791 [hep-ph/0607115] [INSPIRE]. [13] H. Lacker et al., Model-independent extraction of |V tq | matrix elements from top-quark measurements at hadron colliders, Eur. Phys. J. C 72 (2012) 2048 [arXiv:1202.4694] [INSPIRE]. [14] Q.-H. Cao, B. Yan, J.-H. Yu and C. Zhang, A general analysis of W tb anomalous couplings, Chin. Phys. C 41 (2017) 063101 [arXiv:1504.03785] [INSPIRE]. [15] E. Alvarez, L. Da Rold, M. Estevez and J.F. Kamenik, Measuring |V td| at the LHC, Phys. Rev. D 97 (2018) 033002 [arXiv:1709.07887] [INSPIRE]. [16] T.M.P. Tait and C.P. Yuan, Single top quark production as a window to physics beyond the standard model, Phys. Rev. D 63 (2000) 014018 [hep-ph/0007298] [INSPIRE]. [17] Q.-H. Cao, J. Wudka and C.P. Yuan, Search for new physics via single top production at the LHC, Phys. Lett. B 658 (2007) 50 [arXiv:0704.2809] [INSPIRE]. [18] D. Atwood, S. Bar-Shalom, G. Eilam and A. Soni, CP violation in top physics, Phys. Rept. 347 (2001) 1 [hep-ph/0006032] [INSPIRE]. [19] E. Drueke et al., Single top production as a probe of heavy resonances, Phys. Rev. D 91 (2015) 054020 [arXiv:1409.7607] [INSPIRE]. [20] J.A. Aguilar-Saavedra, C. Degrande and S. Khatibi, Single top polarisation as a window to new physics, Phys. Lett. B 769 (2017) 498 [arXiv:1701.05900] [INSPIRE]. [21] C. Zhang, Single top production at next-to-leading order in the standard model effective field theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE]. [22] ATLAS collaboration, Measurement of the t-channel single top-quark production cross section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 717 (2012) 330 [arXiv:1205.3130] [INSPIRE]. [23] ATLAS collaboration, Comprehensive measurements of t-channel single top-quark production cross sections at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112006 [arXiv:1406.7844] [INSPIRE]. [24] ATLAS collaboration, Search for anomalous couplings in the W tb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector, JHEP 04 (2016) 023 [arXiv:1510.03764] [INSPIRE]. [25] ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 04 (2017) 086 [arXiv:1609.03920] [INSPIRE]. [26] ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J. C 77 (2017) 531 [arXiv:1702.02859] [INSPIRE]. [27] ATLAS collaboration, Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 04 (2017) 124 [arXiv:1702.08309] [INSPIRE]. [28] CMS collaboration, Measurement of the t-channel single top quark production cross section in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 091802 [arXiv:1106.3052] [INSPIRE]. [29] CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 035 [arXiv:1209.4533] [INSPIRE]. [30] CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |V tb| CKM matrix element in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 090 [arXiv:1403.7366] [INSPIRE]. [31] CMS collaboration, Measurement of top quark polarisation in t-channel single top quark production, JHEP 04 (2016) 073 [arXiv:1511.02138] [INSPIRE]. [32] CMS collaboration, Cross section measurement of t-channel single top quark production in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 772 (2017) 752 [arXiv:1610.00678] [INSPIRE]. [33] CMS collaboration, Search for anomalous W tb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 02 (2017) 028 [arXiv:1610.03545] [INSPIRE]. [34] CMS collaboration, Measurement of the top quark mass using single top quark events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 77 (2017) 354 [arXiv:1703.02530] [INSPIRE]. [35] A. Giammanco, Single top quark production at the LHC, Rev. Phys. 1 (2016) 1 [arXiv:1511.06748] [INSPIRE].CrossRefGoogle Scholar [36] A. Giammanco and R. Schwienhorst, Single top-quark production at the Tevatron and the LHC, Rev. Mod. Phys. 90 (2018) 035001 [arXiv:1710.10699] [INSPIRE]. [37] B.W. Harris et al., The fully differential single top quark cross-section in next to leading order QCD, Phys. Rev. D 66 (2002) 054024 [hep-ph/0207055] [INSPIRE]. [38] J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [INSPIRE]. [39] Q.H. Cao et al., Next-to-leading order corrections to single top quark production and decay at the Tevatron: 2. t − channel process, Phys. Rev. D 72 (2005) 094027 [hep-ph/0504230] [INSPIRE]. [40] J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [INSPIRE].ADSCrossRefGoogle Scholar [41] J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP 10 (2009) 042 [arXiv:0907.3933] [INSPIRE].ADSCrossRefGoogle Scholar [42] J.M. Campbell and R.K. Ellis, Top-quark processes at NLO in production and decay, J. Phys. G 42 (2015) 015005 [arXiv:1204.1513] [INSPIRE]. [43] M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to single-top production at the LHC, Phys. Lett. B 736 (2014) 58 [arXiv:1404.7116] [INSPIRE]. [44] E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD corrections to t-channel single top-quark production and decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE]. [45] E.L. Berger, J. Gao and H.X. Zhu, Differential distributions for t-channel single top-quark production and decay at next-to-next-to-leading order in QCD, JHEP 11 (2017) 158 [arXiv:1708.09405] [INSPIRE].ADSCrossRefGoogle Scholar [46] J. Wang, C.S. Li, H.X. Zhu and J.J. Zhang, Factorization and resummation of t-channel single top quark production, arXiv:1010.4509 [INSPIRE]. [47] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE]. [48] Q.-H. Cao et al., Transverse momentum resummation for t-channel single top quark production at the LHC, arXiv:1801.09656 [INSPIRE]. [49] S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [INSPIRE]. [50] S. Frixione et al., Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].ADSCrossRefGoogle Scholar [51] R. Frederix, E. Re and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, JHEP 09 (2012) 130 [arXiv:1207.5391] [INSPIRE].ADSCrossRefGoogle Scholar [52] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE]. [53] E. Bothmann, F. Krauss and M. Schönherr, Single top-quark production with SHERPA, Eur. Phys. J. C 78 (2018) 220 [arXiv:1711.02568] [INSPIRE]. [54] P. Falgari, P. Mellor and A. Signer, Production-decay interferences at NLO in QCD for t-channel single-top production, Phys. Rev. D 82 (2010) 054028 [arXiv:1007.0893] [INSPIRE]. [55] P. Falgari, F. Giannuzzi, P. Mellor and A. Signer, Off-shell effects for t-channel and s-channel single-top production at NLO in QCD, Phys. Rev. D 83 (2011) 094013 [arXiv:1102.5267] [INSPIRE]. [56] A.S. Papanastasiou et al., Single-top t-channel production with off-shell and non-resonant effects, Phys. Lett. B 726 (2013) 223 [arXiv:1305.7088] [INSPIRE]. [57] T. Ježo and P. Nason, On the treatment of resonances in next-to-leading order calculations matched to a parton shower, JHEP 12 (2015) 065 [arXiv:1509.09071] [INSPIRE].ADSGoogle Scholar [58] R. Frederix et al., Off-shell single-top production at NLO matched to parton showers, JHEP 06 (2016) 027 [arXiv:1603.01178] [INSPIRE].ADSCrossRefGoogle Scholar [59] M. Beccaria et al., A complete one-loop calculation of electroweak supersymmetric effects in t-channel single top production at CERN LHC, Phys. Rev. D 77 (2008) 113018 [arXiv:0802.1994] [INSPIRE]. [60] D. Bardin et al., Electroweak radiative corrections to single-top production, Eur. Phys. J. C 71 (2011) 1533 [arXiv:1008.1859] [INSPIRE]. [61] R. Frederix et al., The automation of next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [arXiv:1804.10017] [INSPIRE]. [62] S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP 09 (2011) 104 [arXiv:1108.0909] [INSPIRE].ADSCrossRefGoogle Scholar [63] K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].ADSCrossRefGoogle Scholar [64] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].ADSCrossRefGoogle Scholar [65] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSCrossRefGoogle Scholar [66] S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP 08 (2013) 114 [arXiv:1211.5467] [INSPIRE].ADSCrossRefGoogle Scholar [67] S. Alioli et al., Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].ADSCrossRefGoogle Scholar [68] L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].ADSCrossRefGoogle Scholar [69] K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].ADSCrossRefGoogle Scholar [70] S. Alioli et al., Matching fully differential NNLO calculations and parton showers, JHEP 06 (2014) 089 [arXiv:1311.0286] [INSPIRE].ADSCrossRefGoogle Scholar [71] J. Bellm, S. Gieseke and S. Plätzer, Merging NLO multi-jet calculations with improved unitarization, Eur. Phys. J. C 78 (2018) 244 [arXiv:1705.06700] [INSPIRE]. [72] S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE]. [73] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar [74] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar [75] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. [76] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE]. [77] H.S. Shao, unpublished.Google Scholar [78] A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefGoogle Scholar [79] R. Frederix and K. Hamilton, Extending the MINLO method, JHEP 05 (2016) 042 [arXiv:1512.02663] [INSPIRE].ADSCrossRefGoogle Scholar [80] S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE]. [81] T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in pp collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [INSPIRE]. [82] M. Cacciari et al., Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082002 [arXiv:1506.02660] [INSPIRE]. [83] J.M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].ADSCrossRefGoogle Scholar [84] V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefGoogle Scholar [85] G. Mahlon and S.J. Parke, Improved spin basis for angular correlation studies in single top quark production at the Tevatron, Phys. Rev. D 55 (1997) 7249 [hep-ph/9611367] [INSPIRE]. [86] S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081 [hep-ph/0702198] [INSPIRE]. [87] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSCrossRefGoogle Scholar [88] S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE]. [89] A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE]. [90] R. Bonciani, S. Catani, M.L. Mangano and P. Nason, Sudakov resummation of multiparton QCD cross-sections, Phys. Lett. B 575 (2003) 268 [hep-ph/0307035] [INSPIRE]. [91] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar [92] G. Rodrigo and F. Krauss, Resummed jet rates for heavy quark production in e + e − annihilation, Eur. Phys. J. C 33 (2004) S457 [hep-ph/0309325] [INSPIRE]. [93] G. Luisoni, P. Nason, C. Oleari and F. Tramontano, HW ± /HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP 10 (2013) 083 [arXiv:1306.2542] [INSPIRE]. [94] K. Hamilton, T. Melia, P.F. Monni, E. Re and G. Zanderighi, Merging W W and W W + jet with MINLO, JHEP 09 (2016) 057 [arXiv:1606.07062] [INSPIRE].ADSCrossRefGoogle Scholar [95] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE]. [96] N. Hansen and A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evolut. Comput. (2001) 159.Google Scholar [97] A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSCrossRefGoogle Scholar [98] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [99] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE]. [100] Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE]. [101] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE]. [102] B. Cabouat and T. Sjöstrand, Some dipole shower studies, Eur. Phys. J. C 78 (2018) 226 [arXiv:1710.00391] [INSPIRE]. [103] A. Ballestrero et al., Precise predictions for same-sign W-boson scattering at the LHC, Eur. Phys. J. C 78 (2018) 671 [arXiv:1803.07943] [INSPIRE]. [104] F. Krauss and G. Rodrigo, Resummed jet rates for e + e − annihilation into massive quarks, Phys. Lett. B 576 (2003) 135 [hep-ph/0303038] [INSPIRE]. [105] S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE]. [106] D. de Florian and M. Grazzini, The Structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE]. Copyright information © The Author(s) 2018 Authors and Affiliations Stefano Carrazza1Rikkert Frederix2Keith Hamilton13Giulia Zanderighi1Email author1.CERN, Theoretical Physics DepartmentGeneva 23Switzerland2.Physik Department T31Technische Universität MünchenGarchingGermany3.Department of Physics and AstronomyUniversity College LondonLondonU.K.


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP09%282018%29108.pdf

Stefano Carrazza, Rikkert Frederix, Keith Hamilton, Giulia Zanderighi. MINLO t-channel single-top plus jet, Journal of High Energy Physics, 2018, 108, DOI: 10.1007/JHEP09(2018)108