\( {R}_{D^{\left(*\right)}},{R}_{K^{\left(*\right)}} \) and neutrino mass in the 2HDM-III with right-handed neutrinos

Journal of High Energy Physics, Sep 2018

Abstract Given that the two-Higgs-doublet model of type III (2HDM-III) has the potential to address the \( {R}_{D^{\left(*\right)}} \) anomalies while the resolution to the \( {R}_{K^{\left(*\right)}} \) deficits requires new degrees of freedom within this framework, we consider in this paper a unified scenario where the low-scale type-I seesaw mechanism is embedded into the 2HDM-III, so as to accommodate the \( {R}_{D^{\left(*\right)}} \) and \( {R}_{K^{\left(*\right)}} \) anomalies as well as the neutrino mass. We first revisit the \( {R}_{D^{\left(*\right)}} \) anomalies and find that the current world-averaged results can be addressed at 2σ level without violating the bound from the branching ratio \( \mathrm{\mathcal{B}}\left({B}_c^{-}\to {\tau}^{-}\overline{\nu}\right) \) ≤ 30%. The scenario predicts two sub-eV neutrino masses based on a decoupled heavy Majorana neutrino and two nearly degenerate Majorana neutrinos with mass around the electroweak scale. For the \( {R}_{K^{\left(*\right)}} \) anomalies, the same scenario can generate the required Wilson coefficients in the direction C 9 μ NP  = − C 10 μ NP  < 0, with \( \mathcal{O}(1) \) Yukawa couplings for the muon and the top quark.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP09%282018%29149.pdf

\( {R}_{D^{\left(*\right)}},{R}_{K^{\left(*\right)}} \) and neutrino mass in the 2HDM-III with right-handed neutrinos

Journal of High Energy Physics September 2018, 2018:149 | Cite as \( {R}_{D^{\left(*\right)}},{R}_{K^{\left(*\right)}} \) and neutrino mass in the 2HDM-III with right-handed neutrinos AuthorsAuthors and affiliations Shao-Ping LiXin-Qiang LiYa-Dong YangXin Zhang Open Access Regular Article - Theoretical Physics First Online: 26 September 2018 19 Downloads Abstract Given that the two-Higgs-doublet model of type III (2HDM-III) has the potential to address the \( {R}_{D^{\left(*\right)}} \) anomalies while the resolution to the \( {R}_{K^{\left(*\right)}} \) deficits requires new degrees of freedom within this framework, we consider in this paper a unified scenario where the low-scale type-I seesaw mechanism is embedded into the 2HDM-III, so as to accommodate the \( {R}_{D^{\left(*\right)}} \) and \( {R}_{K^{\left(*\right)}} \) anomalies as well as the neutrino mass. We first revisit the \( {R}_{D^{\left(*\right)}} \) anomalies and find that the current world-averaged results can be addressed at 2σ level without violating the bound from the branching ratio \( \mathrm{\mathcal{B}}\left({B}_c^{-}\to {\tau}^{-}\overline{\nu}\right) \) ≤ 30%. The scenario predicts two sub-eV neutrino masses based on a decoupled heavy Majorana neutrino and two nearly degenerate Majorana neutrinos with mass around the electroweak scale. For the \( {R}_{K^{\left(*\right)}} \) anomalies, the same scenario can generate the required Wilson coefficients in the direction C 9 μ NP  = − C 10 μ NP  < 0, with \( \mathcal{O}(1) \) Yukawa couplings for the muon and the top quark. Keywords Beyond Standard Model Heavy Quark Physics  ArXiv ePrint: 1807.08530 Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] M. Artuso et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833] [INSPIRE].ADSGoogle Scholar [2] M. Antonelli et al., Flavor Physics in the Quark Sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [INSPIRE].ADSCrossRefGoogle Scholar [3] BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE]. [4] BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE]. [5] Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE]. [6] Belle collaboration, Y. Sato et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{*+}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{*+}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE]. [7] Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{*}{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE]. [8] Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{*}{\tau}^{-}{\overline{\nu}}_{\tau } \) with one-prong hadronic τ decays at Belle, Phys. Rev. D 97 (2018) 012004 [arXiv:1709.00129] [INSPIRE]. [9] LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE]. [10] LHCb collaboration, Measurement of the ratio of the B 0 → D *− τ + ν τ and B 0 → D *− μ + ν μ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE]. [11] LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B 0 → D *− τ + ν τ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE]. [12] HFLAV collaboration, R. Aaij et al., Average of R(D) and R(D *) for Summer 2018, https://hflav-eos.web.cern.ch/hflav-eos/semi/summer18/RDRDs.html. [13] S. Fajfer, J.F. Kamenik and I. Nisandzic, On the \( B\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } \) Sensitivity to New Physics, Phys. Rev. D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].ADSGoogle Scholar [14] F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of semileptonic B decays to D and D * : \( {R}_{D^{\left(*\right)}} \) , |V cb|, and new physics, Phys. Rev. D 95 (2017) 115008 [Erratum ibid. D 97 (2018) 059902] [arXiv:1703.05330] [INSPIRE]. [15] D. Bigi, P. Gambino and S. Schacht, \( {R}_{D^{\ast }} \) , |V cb|, and the Heavy Quark Symmetry relations between form factors, JHEP 11 (2017) 061 [arXiv:1707.09509] [INSPIRE].ADSCrossRefGoogle Scholar [16] S. Jaiswal, S. Nandi and S.K. Patra, Extraction of |V cb| from B → D (*) ℓν ℓ and the Standard Model predictions of R(D (*)), JHEP 12 (2017) 060 [arXiv:1707.09977] [INSPIRE].ADSCrossRefGoogle Scholar [17] MILC collaboration, J.A. Bailey et al., B → Dℓν form factors at nonzero recoil and |V cb| from 2+1-flavor lattice QCD, Phys. Rev. D 92 (2015) 034506 [arXiv:1503.07237] [INSPIRE]. [18] HPQCD collaboration, H. Na, C.M. Bouchard, G.P. Lepage, C. Monahan and J. Shigemitsu, B → Dℓν form factors at nonzero recoil and extraction of |V cb|, Phys. Rev. D 92 (2015) 054510 [Erratum ibid. D 93 (2016) 119906] [arXiv:1505.03925] [INSPIRE]. [19] D. Bigi and P. Gambino, Revisiting B → Dℓν, Phys. Rev. D 94 (2016) 094008 [arXiv:1606.08030] [INSPIRE].ADSGoogle Scholar [20] S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of Lepton Flavor Universality Violations in B Decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].ADSCrossRefGoogle Scholar [21] D. Bečirević, N. Košnik and A. Tayduganov, \( \overline{B}\to D\tau {\overline{\nu}}_{\tau } \) vs. \( \overline{B}\to D\mu {\overline{\nu}}_{\mu } \), Phys. Lett. B 716 (2012) 208 [arXiv:1206.4977] [INSPIRE]. [22] P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in \( B\to {D}^{\left(\ast \right)}\tau {\overline{\nu}}_{\tau } \) decays, Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].ADSGoogle Scholar [23] B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous Explanation of the R K and \( {R}_{D^{\left(*\right)}} \) Puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].ADSCrossRefGoogle Scholar [24] R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar [25] D. Bardhan, P. Byakti and D. Ghosh, A closer look at the R D and \( {R}_{D^{*}} \) anomalies, JHEP 01 (2017) 125 [arXiv:1610.03038] [INSPIRE].ADSCrossRefGoogle Scholar [26] P. Colangelo and F. De Fazio, Tension in the inclusive versus exclusive determinations of |V cb|: a possible role of new physics, Phys. Rev. D 95 (2017) 011701 [arXiv:1611.07387] [INSPIRE].ADSGoogle Scholar [27] S. Bhattacharya, S. Nandi and S.K. Patra, Looking for possible new physics in B → D (*) τν τ in light of recent data, Phys. Rev. D 95 (2017) 075012 [arXiv:1611.04605] [INSPIRE].ADSGoogle Scholar [28] M.A. Ivanov, J.G. Körner and C.-T. Tran, Probing new physics in \( {\overline{B}}^0\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) using the longitudinal, transverse, and normal polarization components of the tau lepton, Phys. Rev. D 95 (2017) 036021 [arXiv:1701.02937] [INSPIRE].ADSGoogle Scholar [29] A.K. Alok, D. Kumar, J. Kumar, S. Kumbhakar and S.U. Sankar, New physics solutions for R D and \( {R}_{D^{*}} \), arXiv:1710.04127 [INSPIRE]. [30] A. Azatov, D. Bardhan, D. Ghosh, F. Sgarlata and E. Venturini, Anatomy of b → cτν anomalies, arXiv:1805.03209 [INSPIRE]. [31] F. Feruglio, P. Paradisi and O. Sumensari, Implications of scalar and tensor explanations of \( {R}_{D^{\left(*\right)}} \), arXiv:1806.10155 [INSPIRE]. [32] P. Colangelo and F. De Fazio, Scrutinizing \( \overline{B}\to {D}^{\ast}\left(D\pi \right){\ell}^{-}{\nu}_{\ell}\kern0.5em and\kern0.5em \overline{B}\to {D}^{\ast}\left(D\upgamma \right){\ell}^{-}{\overline{\nu}}_{\ell } \) in search of new physics footprints, JHEP 06 (2018) 082 [arXiv:1801.10468] [INSPIRE].ADSCrossRefGoogle Scholar [33] F.F. Deppisch, S. Kulkarni, H. Päs and E. Schumacher, Leptoquark patterns unifying neutrino masses, flavor anomalies, and the diphoton excess, Phys. Rev. D 94 (2016) 013003 [arXiv:1603.07672] [INSPIRE].ADSGoogle Scholar [34] M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the \( {R}_{D^{\left(*\right)}} \) , R K , and (g − 2)μ Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].ADSCrossRefGoogle Scholar [35] M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].ADSGoogle Scholar [36] S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and \( {R}_{D^{\left(*\right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].ADSCrossRefGoogle Scholar [37] D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy and O. Sumensari, Scalar leptoquarks from GUT to accommodate the B-physics anomalies, Phys. Rev. D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].ADSGoogle Scholar [38] X.-Q. Li, Y.-D. Yang and X. Zhang, Revisiting the one leptoquark solution to the \( {R}_{D^{\left(*\right)}} \) anomalies and its phenomenological implications, JHEP 08 (2016) 054 [arXiv:1605.09308] [INSPIRE].ADSCrossRefGoogle Scholar [39] N. Assad, B. Fornal and B. Grinstein, Baryon Number and Lepton Universality Violation in Leptoquark and Diquark Models, Phys. Lett. B 777 (2018) 324 [arXiv:1708.06350] [INSPIRE].ADSCrossRefGoogle Scholar [40] A.K. Alok, D. Kumar, J. Kumar and R. Sharma, Lepton flavor non-universality in the B-sector: a global analyses of various new physics models, arXiv:1704.07347 [INSPIRE]. [41] M. Blanke and A. Crivellin, B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background, Phys. Rev. Lett. 121 (2018) 011801 [arXiv:1801.07256] [INSPIRE].ADSCrossRefGoogle Scholar [42] W. Altmannshofer, P. Bhupal Dev and A. Soni, \( {R}_{D^{\left(*\right)}} \) anomaly: A possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D 96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].Google Scholar [43] A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in B → D (*) τν τ and B → τν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].ADSCrossRefGoogle Scholar [44] A. Crivellin, C. Greub and A. Kokulu, Explaining B → Dτν, B → D * τν and B → τν in a 2HDM of type III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].ADSGoogle Scholar [45] A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].ADSCrossRefGoogle Scholar [46] S. Iguro and K. Tobe, \( {R}_{D^{\left(*\right)}} \) in a general two Higgs doublet model, Nucl. Phys. B 925 (2017) 560 [arXiv:1708.06176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [47] R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B c− Constrains Explanations for Anomalies in B → D (*) τν, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].ADSCrossRefGoogle Scholar [48] A. Celis, M. Jung, X.-Q. Li and A. Pich, Scalar contributions to b → c(u)τν transitions, Phys. Lett. B 771 (2017) 168 [arXiv:1612.07757] [INSPIRE].ADSCrossRefGoogle Scholar [49] A.G. Akeroyd and C.-H. Chen, Constraint on the branching ratio of \( {B}_c\to \tau \overline{\nu} \) from LEP1 and consequences for \( {R}_{D^{\left(*\right)}} \) anomaly, Phys. Rev. D 96 (2017) 075011 [arXiv:1708.04072] [INSPIRE].ADSGoogle Scholar [50] LHCb collaboration, Test of lepton universality using B + → K + ℓ + ℓ − decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE]. [51] LHCb collaboration, Test of lepton universality with B 0 → K *0 ℓ + ℓ − decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE]. [52] G. Hiller and F. Krüger, More model-independent analysis of b → s processes, Phys. Rev. D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE]. [53] S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of b → sℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].ADSCrossRefGoogle Scholar [54] M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for R K and \( {R}_{K^{*}} \), Eur. Phys. J. C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].ADSCrossRefGoogle Scholar [55] W. Altmannshofer and D.M. Straub, New physics in b → s transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar [56] D. Ghosh, M. Nardecchia and S.A. Renner, Hint of Lepton Flavour Non-Universality in B Meson Decays, JHEP 12 (2014) 131 [arXiv:1408.4097] [INSPIRE].ADSCrossRefGoogle Scholar [57] T. Hurth, F. Mahmoudi and S. Neshatpour, Global fits to b → sℓℓ data and signs for lepton non-universality, JHEP 12 (2014) 053 [arXiv:1410.4545] [INSPIRE].ADSCrossRefGoogle Scholar [58] W. Altmannshofer and D.M. Straub, Implications of b → s measurements, in Proceedings, 50th Rencontres de Moriond Electroweak Interactions and Unified Theories: La Thuile, Italy, March 14–21, 2015, pp. 333–338, 2015, arXiv:1503.06199 [INSPIRE]. [59] L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of b → sℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].ADSGoogle Scholar [60] D. Bardhan, P. Byakti and D. Ghosh, Role of Tensor operators in R K and \( {R}_{K^{*}} \), Phys. Lett. B 773 (2017) 505 [arXiv:1705.09305] [INSPIRE].ADSCrossRefGoogle Scholar [61] B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in b → sℓ + ℓ − transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar [62] G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{*}} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].ADSCrossRefGoogle Scholar [63] M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar [64] D. Ghosh, Explaining the R K and \( {R}_{K^{*}} \) anomalies, Eur. Phys. J. C 77 (2017) 694 [arXiv:1704.06240] [INSPIRE].ADSCrossRefGoogle Scholar [65] T. Hurth, F. Mahmoudi, D. Martinez Santos and S. Neshatpour, Lepton nonuniversality in exclusive b→sℓℓ decays, Phys. Rev. D 96 (2017) 095034 [arXiv:1705.06274] [INSPIRE].ADSGoogle Scholar [66] A.K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Kumar and D. London, New Physics in b → sμ + μ − after the Measurement of \( {R}_{K^{*}} \), Phys. Rev. D 96 (2017) 095009 [arXiv:1704.07397] [INSPIRE].Google Scholar [67] W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].ADSGoogle Scholar [68] G. Hiller and I. Nisandzic, R K and \( {R}_{K^{*}} \) beyond the standard model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].ADSGoogle Scholar [69] D. Aristizabal Sierra, F. Staub and A. Vicente, Shedding light on the b → s anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001 [arXiv:1503.06077] [INSPIRE].ADSGoogle Scholar [70] A.J. Buras and J. Girrbach, Left-handed Z′ and Z FCNC quark couplings facing new b → sμ + μ − data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].ADSCrossRefGoogle Scholar [71] R. Gauld, F. Goertz and U. Haisch, An explicit Z′-boson explanation of the B → K * μ + μ − anomaly, JHEP 01 (2014) 069 [arXiv:1310.1082] [INSPIRE].ADSCrossRefGoogle Scholar [72] W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μ − L τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSCrossRefGoogle Scholar [73] A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining h → μ ± τ ∓ , B → K * μ + μ − and B → Kμ + μ − /B → Ke + e − in a two-Higgs-doublet model with gauged L μ −L τ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE]. [74] A. Crivellin, G. D’Ambrosio and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D 91 (2015) 075006 [arXiv:1503.03477] [INSPIRE].ADSGoogle Scholar [75] A. Celis, J. Fuentes-Martin, M. Jung and H. Serodio, Family nonuniversal Z′ models with protected flavor-changing interactions, Phys. Rev. D 92 (2015) 015007 [arXiv:1505.03079] [INSPIRE].ADSGoogle Scholar [76] Y. Tang and Y.-L. Wu, Flavor non-universal gauge interactions and anomalies in B-meson decays, Chin. Phys. C 42 (2018) 033104 [arXiv:1705.05643] [INSPIRE].ADSCrossRefGoogle Scholar [77] C.-W. Chiang, X.-G. He, J. Tandean and X.-B. Yuan, \( {R}_{K^{\left(*\right)}} \) and related \( b\to s\ell \overline{\ell} \) anomalies in minimal flavor violation framework with Z′ boson, Phys. Rev. D 96 (2017) 115022 [arXiv:1706.02696] [INSPIRE].ADSGoogle Scholar [78] S.F. King, Flavourful Z′ models for \( {R}_{K^{\left(*\right)}} \), JHEP 08 (2017) 019 [arXiv:1706.06100] [INSPIRE].ADSCrossRefGoogle Scholar [79] M. Chala and M. Spannowsky, On the behaviour of composite resonances breaking lepton flavour universality, Phys. Rev. D 98 (2018) 035010 [arXiv:1803.02364] [INSPIRE].ADSGoogle Scholar [80] D. Guadagnoli, M. Reboud and O. Sumensari, A gauged horizontal SU(2) symmetry and \( {R}_{K^{\left(*\right)}} \), arXiv:1807.03285 [INSPIRE]. [81] G. Hiller and M. Schmaltz, R K and future b → sℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].ADSGoogle Scholar [82] B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].ADSCrossRefGoogle Scholar [83] D. Bečirević, N. Košnik, O. Sumensari and R. Zukanovich Funchal, Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive b → sℓ 1 ℓ 2 modes, JHEP 11 (2016) 035 [arXiv:1608.07583] [INSPIRE].CrossRefGoogle Scholar [84] D. Bečirević and O. Sumensari, A leptoquark model to accommodate R Kexp < R KSM and R K *exp < R K *SM, JHEP 08 (2017) 104 [arXiv:1704.05835] [INSPIRE].ADSCrossRefGoogle Scholar [85] S. Iguro and Y. Omura, Status of the semileptonic B decays and muon g-2 in general 2HDMs with right-handed neutrinos, JHEP 05 (2018) 173 [arXiv:1802.01732] [INSPIRE].ADSCrossRefGoogle Scholar [86] R.N. Mohapatra et al., Theory of neutrinos: A white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].ADSCrossRefGoogle Scholar [87] R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar [88] M. Malinsky, T. Ohlsson and H. Zhang, Non-unitarity effects in a realistic low-scale seesaw model, Phys. Rev. D 79 (2009) 073009 [arXiv:0903.1961] [INSPIRE].ADSGoogle Scholar [89] P.S.B. Dev and A. Pilaftsis, Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].ADSGoogle Scholar [90] A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [INSPIRE]. [91] J. Kersten and A. Yu. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].ADSGoogle Scholar [92] H. Zhang and S. Zhou, The Minimal Seesaw Model at the TeV Scale, Phys. Lett. B 685 (2010) 297 [arXiv:0912.2661] [INSPIRE].ADSCrossRefGoogle Scholar [93] R. Adhikari and A. Raychaudhuri, Light neutrinos from massless texture and below TeV seesaw scale, Phys. Rev. D 84 (2011) 033002 [arXiv:1004.5111] [INSPIRE].ADSGoogle Scholar [94] A. Ibarra, E. Molinaro and S.T. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν -Decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSCrossRefGoogle Scholar [95] A. Ibarra, E. Molinaro and S.T. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].ADSGoogle Scholar [96] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar [97] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar [98] A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].ADSGoogle Scholar [99] B. Altunkaynak, W.-S. Hou, C. Kao, M. Kohda and B. McCoy, Flavor Changing Heavy Higgs Interactions at the LHC, Phys. Lett. B 751 (2015) 135 [arXiv:1506.00651] [INSPIRE].ADSCrossRefGoogle Scholar [100] A.G. Akeroyd and S. Recksiegel, The effect of H ± on B ± → τ ± ν τ and B ± → μ ± ν μ, J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [INSPIRE]. [101] Y. Sakaki and H. Tanaka, Constraints on the charged scalar effects using the forward-backward asymmetry on \( {B}^{-}\to {D}^{\left(\ast \right)}\tau \kern0.5em {\overline{\nu}}_{\tau } \), Phys. Rev. D 87 (2013) 054002 [arXiv:1205.4908] [INSPIRE].ADSGoogle Scholar [102] M. Beneke and G. Buchalla, The B c Meson Lifetime, Phys. Rev. D 53 (1996) 4991 [hep-ph/9601249] [INSPIRE]. [103] Belle collaboration, A. Abdesselam et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, in Proceedings, 51st Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 12–19, 2016, arXiv:1603.06711 [INSPIRE]. [104] M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].ADSGoogle Scholar [105] S. de Boer, T. Kitahara and I. Nisandzic, Soft-Photon Corrections to \( \overline{B}\to D{\tau}^{-}{\overline{\nu}}_{\tau } \) Relative to \( \overline{B}\to D{\mu}^{-}{\overline{\nu}}_{\mu } \), Phys. Rev. Lett. 120 (2018) 261804 [arXiv:1803.05881] [INSPIRE]. [106] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE]. [107] HPQCD collaboration, B. Colquhoun et al., B-meson decay constants: a more complete picture from full lattice QCD, Phys. Rev. D 91 (2015) 114509 [arXiv:1503.05762] [INSPIRE]. [108] Z.-C. Liu, C.-X. Yue and Z.-h. Zhao, Neutrino μ − τ reflection symmetry and its breaking in the minimal seesaw, JHEP 10 (2017) 102 [arXiv:1707.05535] [INSPIRE].ADSCrossRefGoogle Scholar [109] S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the Leptonic Mixing Matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE]. [110] E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos, JHEP 05 (2013) 081 [arXiv:1302.1872] [INSPIRE].ADSCrossRefGoogle Scholar [111] E. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon and M. Lucente, Loop level constraints on Seesaw neutrino mixing, JHEP 10 (2015) 130 [arXiv:1508.03051] [INSPIRE].ADSCrossRefGoogle Scholar [112] E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, Global constraints on heavy neutrino mixing, JHEP 08 (2016) 033 [arXiv:1605.08774] [INSPIRE].ADSCrossRefGoogle Scholar [113] X.-G. He and G. Valencia, Are the B-anomalies evidence for heavy neutrinos?, arXiv:1706.07570 [INSPIRE]. [114] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].ADSCrossRefGoogle Scholar [115] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar [116] M.D. Campos, D. Cogollo, M. Lindner, T. Melo, F.S. Queiroz and W. Rodejohann, Neutrino Masses and Absence of Flavor Changing Interactions in the 2HDM from Gauge Principles, JHEP 08 (2017) 092 [arXiv:1705.05388] [INSPIRE].ADSCrossRefGoogle Scholar [117] S.M. Bilenky and B. Pontecorvo, Lepton Mixing and Neutrino Oscillations, Phys. Rept. 41 (1978) 225 [INSPIRE].ADSCrossRefGoogle Scholar [118] P.S.B. Dev, A. Pilaftsis and U.-k. Yang, New Production Mechanism for Heavy Neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].ADSCrossRefGoogle Scholar [119] A. Das and N. Okada, Improved bounds on the heavy neutrino productions at the LHC, Phys. Rev. D 93 (2016) 033003 [arXiv:1510.04790] [INSPIRE].ADSGoogle Scholar [120] CMS collaboration, Search for heavy Majorana neutrinos in e ± e ± + jets and e ± μ ± + jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2016) 169 [arXiv:1603.02248] [INSPIRE]. [121] A. Das, P. Konar and S. Majhi, Production of Heavy neutrino in next-to-leading order QCD at the LHC and beyond, JHEP 06 (2016) 019 [arXiv:1604.00608] [INSPIRE].ADSCrossRefGoogle Scholar [122] A. Das, P.S.B. Dev and C.S. Kim, Constraining Sterile Neutrinos from Precision Higgs Data, Phys. Rev. D 95 (2017) 115013 [arXiv:1704.00880] [INSPIRE].ADSGoogle Scholar [123] A. Das, P. Konar and A. Thalapillil, Jet substructure shedding light on heavy Majorana neutrinos at the LHC, JHEP 02 (2018) 083 [arXiv:1709.09712] [INSPIRE].ADSCrossRefGoogle Scholar [124] A. Das and N. Okada, Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches, Phys. Lett. B 774 (2017) 32 [arXiv:1702.04668] [INSPIRE].ADSCrossRefGoogle Scholar [125] A. Das, Y. Gao and T. Kamon, Heavy Neutrino Search via the Higgs boson at the LHC, arXiv:1704.00881 [INSPIRE]. [126] A. Das, Searching for the minimal Seesaw models at the LHC and beyond, Adv. High Energy Phys. 2018 (2018) 9785318 [arXiv:1803.10940] [INSPIRE].Google Scholar [127] A. Bhardwaj, A. Das, P. Konar and A. Thalapillil, Challenging Sterile Neutrino Searches at the LHC Complemented by Jet Substructure Techniques, arXiv:1801.00797 [INSPIRE]. [128] A.G. Dias, C.A. de S. Pires and P.S.R. da Silva, How the Inverse See-Saw Mechanism Can Reveal Itself Natural, Canonical and Independent of the Right-Handed Neutrino Mass, Phys. Rev. D 84 (2011) 053011 [arXiv:1107.0739] [INSPIRE]. [129] P.S. Bhupal Dev, R. Franceschini and R.N. Mohapatra, Bounds on TeV Seesaw Models from LHC Higgs Data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].ADSGoogle Scholar [130] W. Loinaz, N. Okamura, T. Takeuchi and L.C.R. Wijewardhana, The NuTeV anomaly, neutrino mixing, and a heavy Higgs boson, Phys. Rev. D 67 (2003) 073012 [hep-ph/0210193] [INSPIRE]. [131] W. Loinaz, N. Okamura, S. Rayyan, T. Takeuchi and L.C.R. Wijewardhana, The NuTeV anomaly, lepton universality, and nonuniversal neutrino gauge couplings, Phys. Rev. D 70 (2004) 113004 [hep-ph/0403306] [INSPIRE]. [132] M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [133] G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar [134] I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar [135] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].ADSCrossRefGoogle Scholar [136] S.-P. Li, X.-Q. Li and Y.-D. Yang, Muon g − 2 in a U(1)-symmetric Two-Higgs-Doublet Model, arXiv:1808.02424 [INSPIRE]. [137] F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].ADSGoogle Scholar [138] E. Ma and M. Raidal, Neutrino mass, muon anomalous magnetic moment, and lepton flavor nonconservation, Phys. Rev. Lett. 87 (2001) 011802 [Erratum ibid. 87 (2001) 159901] [hep-ph/0102255] [INSPIRE]. [139] C.-H. Chen and T. Nomura, Charged-Higgs on \( {B}_q^{-}\to \ell \overline{\nu} \) and \( \overline{B}\to \left(P,V\right)\ell \overline{\nu} \) in a generic two-Higgs doublet model, arXiv:1803.00171 [INSPIRE]. [140] ATLAS collaboration, Search for charged Higgs bosons decaying into top and bottom quarks at \( \sqrt{s}=13 \) TeV with the ATLAS detector, [arXiv:1808.03599] [INSPIRE]. [141] LEP, DELPHI, OPAL, ALEPH and L3 collaborations, G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE]. [142] ATLAS collaboration, Search for charged Higgs bosons decaying via H ± → τ ± ν τ in the τ+jets and τ+lepton final states with 36 fb −1 of pp collision data recorded at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, [arXiv:1807.07915] [INSPIRE]. [143] CMS collaboration, Search for a charged Higgs boson in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2015) 018 [arXiv:1508.07774] [INSPIRE]. [144] S. Gori, C. Grojean, A. Juste and A. Paul, Heavy Higgs Searches: Flavour Matters, JHEP 01 (2018) 108 [arXiv:1710.03752] [INSPIRE].ADSCrossRefGoogle Scholar Copyright information © The Author(s) 2018 Authors and Affiliations Shao-Ping Li1Xin-Qiang Li1Email authorView author's OrcID profileYa-Dong Yang1Xin Zhang11.Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE)Central China Normal UniversityWuhanChina


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP09%282018%29149.pdf

Shao-Ping Li, Xin-Qiang Li, Ya-Dong Yang, Xin Zhang. \( {R}_{D^{\left(*\right)}},{R}_{K^{\left(*\right)}} \) and neutrino mass in the 2HDM-III with right-handed neutrinos, Journal of High Energy Physics, 2018, 149, DOI: 10.1007/JHEP09(2018)149