Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction

Nano Research, Oct 2018

Oxygen reduction efficiency holds the key for renewable energy technologies including fuel cells and metal-air batteries, which involves coupling diffusion-reaction-conduction processes at the interface of catalyst/electrolyte, and thus rational electrode design facilitating mass transportation stands as a key issue for fast oxygen reduction reaction (ORR). Herein, we report a Janus electrode with asymmetric wettability prepared by partly modifying aerophobic nitrogen doped carbon nanotube arrays with polytetrafluoroethylene (PTFE) as a high performance catalytic electrode for ORR. The Janus electrode with opposite wettability on adjacent sides maintains stable gas reservoir in the aerophilic side while shortening O2 pathway to catalysts in the aerophobic side, resulting in superior ORR performance (22.5 mA/cm2 @ 0.5 V) than merely aerophilic or aerophilic electrodes. The Janus electrode endows catalytic performance even comparable to commercial Pt/C in the alkaline electrolyte, exploiting a previously unrecognized opportunity that guides electrode design for the gas-consumption electrocatalysis. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2Fs12274-018-2199-1.pdf

Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction

Nano Research pp 1–6 | Cite as Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction AuthorsAuthors and affiliations Yingjie LiHaichuan ZhangNana HanYun KuangJunfeng LiuWen LiuHaohong DuanXiaoming Sun Open Access Research Article First Online: 15 October 2018 Abstract Oxygen reduction efficiency holds the key for renewable energy technologies including fuel cells and metal-air batteries, which involves coupling diffusion-reaction-conduction processes at the interface of catalyst/electrolyte, and thus rational electrode design facilitating mass transportation stands as a key issue for fast oxygen reduction reaction (ORR). Herein, we report a Janus electrode with asymmetric wettability prepared by partly modifying aerophobic nitrogen doped carbon nanotube arrays with polytetrafluoroethylene (PTFE) as a high performance catalytic electrode for ORR. The Janus electrode with opposite wettability on adjacent sides maintains stable gas reservoir in the aerophilic side while shortening O2 pathway to catalysts in the aerophobic side, resulting in superior ORR performance (22.5 mA/cm2 @ 0.5 V) than merely aerophilic or aerophilic electrodes. The Janus electrode endows catalytic performance even comparable to commercial Pt/C in the alkaline electrolyte, exploiting a previously unrecognized opportunity that guides electrode design for the gas-consumption electrocatalysis. Open image in new window KeywordsJanus materials electrode gas diffusion oxygen reduction reaction fuel cells  Yingjie Li and Haichuan Zhang contributed equally to this work. Electronic Supplementary Material Supplementary material (supplementary SEM and TEM images of N-CNTs electrode and its precursors materials, XPS and Raman spectra, ECSA measurement, wettability performance and bubble behavior on ORR electrodes as well as supplementary Table and Movies) is available in the online version of this article at  https://doi.org/10.1007/s12274-018-2199-1. Download to read the full article text Notes Acknowledgements We sincerely appreciate the helpful discussion with Prof. Lei Jiang. This work was financially supported by the National Natural Science Foundation of China (NSFC), the National Key Research and Development Project (No. 2016YFF0204402), the Program for Changjiang Scholars and Innovative Research Team in the University (No. IRT1205), the Fundamental Research Funds for the Central Universities, the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of PRC. Supplementary material 12274_2018_2199_MOESM1_ESM.avi (1.6 mb) Supplementary material, approximately 1.54 MB. 12274_2018_2199_MOESM2_ESM.avi (1.6 mb) Supplementary material, approximately 1.55 MB. 12274_2018_2199_MOESM3_ESM.avi (596 kb) Supplementary material, approximately 595 KB. 12274_2018_2199_MOESM4_ESM.avi (2 mb) Supplementary material, approximately 2.03 MB. 12274_2018_2199_MOESM5_ESM.avi (628 kb) Supplementary material, approximately 627 KB. 12274_2018_2199_MOESM6_ESM.avi (1.5 mb) Supplementary material, approximately 1.53 MB. 12274_2018_2199_MOESM7_ESM.avi (447 kb) Supplementary material, approximately 447 KB. 12274_2018_2199_MOESM8_ESM.pdf (3.4 mb) Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction References [1] Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B., Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.CrossRefGoogle Scholar [2] Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar [3] Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.CrossRefGoogle Scholar [4] Yin, P. Q.; Yao, T.; Wu, Y. E; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.CrossRefGoogle Scholar [5] Li, Y. G.; Dai, H. J. Recent advances in zinc–air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.CrossRefGoogle Scholar [6] Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on highperformance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.CrossRefGoogle Scholar [7] Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.CrossRefGoogle Scholar [8] Zhong, H. X.; Li, K.; Zhang, Q.; Wang, J.; Meng, F. L.; Wu, Z. J.; Yan, J. M.; Zhang, X. B. In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater. 2016, 8, e308.CrossRefGoogle Scholar [9] Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.CrossRefGoogle Scholar [10] Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar [11] Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar [12] Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; van der Vliet, D.; Wang, G. F.; Komanicky, V.; Chang, K. C.; Paulikas, A. P.; Tripkovic, D. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396–14403.CrossRefGoogle Scholar [13] He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y. E.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494–1497.CrossRefGoogle Scholar [14] Din, M. A. U.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.CrossRefGoogle Scholar [15] Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar [16] Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.CrossRefGoogle Scholar [17] Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.CrossRefGoogle Scholar [18] Meng, F. L.; Wang, Z. L.; Zhong, H. X.; Wang, J.; Yan, J. M.; Zhang, X. B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 2016, 28, 7948–7955.CrossRefGoogle Scholar [19] Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.CrossRefGoogle Scholar [20] Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogelderived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries. Nano Res. 2017, 10, 4436–4447.CrossRefGoogle Scholar [21] Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.CrossRefGoogle Scholar [22] Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.CrossRefGoogle Scholar [23] Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.CrossRefGoogle Scholar [24] Wu, Z. Y.; Liang, H. W.; Li, C.; Hu, B. C.; Xu, X. X.; Wang, Q.; Chen, J. F.; Yu, S. H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861–1872.CrossRefGoogle Scholar [25] Wang, P. W.; Hayashi, T.; Meng, Q. A.; Wang, Q. B.; Liu, H.; Hashimoto, K.; Jiang, L. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 2017, 13, 1601250.CrossRefGoogle Scholar [26] Brandon, N. P.; Brett, D. J. Engineering porous materials for fuel cell applications. Philos. Trans. Roy. Soc. A 2006, 364, 147–159.CrossRefGoogle Scholar [27] Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651.CrossRefGoogle Scholar [28] Cindrella, L.; Kannan, A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W.; Wertz, J. Gas diffusion layer for proton exchange membrane fuel cells —A review. J. Power Sources 2009, 194, 146–160.CrossRefGoogle Scholar [29] Park, S.; Lee, J. W.; Popov, B. N. A review of gas diffusion layer in PEM fuel cells: Materials and designs. Int. J. Hydrogen Energ. 2012, 37, 5850–5865.CrossRefGoogle Scholar [30] Du, H. Y.; Wang, C. H.; Hsu, H. C.; Chang, S. T.; Yen, S. C.; Chen, L. C.; Viswanathan, B.; Chen, K. H. High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell. J. Mater. Chem. 2011, 21, 2512–2516.CrossRefGoogle Scholar [31] Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.CrossRefGoogle Scholar [32] Forner-Cuenca, A.; Biesdorf, J.; Gubler, L.; Kristiansen, P.; Schmidt, T. J.; Boillat, P. Engineered water highways in fuel cells: Radiation grafting of gas diffusion layers. Adv. Mater. 2015, 27, 6317–6322.CrossRefGoogle Scholar [33] Yang, H. C.; Hou, J. W.; Chen, V.; Xu, Z. K. Janus membranes: Exploring duality for advanced separation. Angew. Chem., Int. Ed. 2016, 55, 13398–13407.CrossRefGoogle Scholar [34] Yang, H. C.; Hou, J. W.; Wan, L. S.; Chen, V.; Xu, Z. K. Janus membranes with asymmetric wettability for fine bubble aeration. Adv. Mater. Interfaces 2016, 3, 1500774.CrossRefGoogle Scholar [35] Cao, M. Y.; Xiao, J. S.; Yu, C. M.; Li, K.; Jiang, L. Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection. Small 2015, 11, 4379–4384.CrossRefGoogle Scholar [36] Chen, J. W.; Liu, Y. M.; Guo, D. W.; Cao, M. Y.; Jiang, L. Under-water unidirectional air penetration via a Janus mesh. Chem. Commun. 2015, 51, 11872–11875.CrossRefGoogle Scholar [37] Tian, X. L.; Jin, H.; Sainio, J.; Ras, R. H. A.; Ikkala, O. Droplet and fluid gating by biomimetic Janus membranes. Adv. Funct. Mater. 2014, 24, 6023–6028.CrossRefGoogle Scholar [38] Zhang, L. L.; Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.CrossRefGoogle Scholar Copyright information © The author(s) 2018 Authors and Affiliations Yingjie Li1Haichuan Zhang1Nana Han1Yun Kuang1Junfeng Liu1Wen Liu1Email authorHaohong Duan3Email authorXiaoming Sun12Email author1.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina2.College of EnergyBeijing University of Chemical TechnologyBeijingChina3.Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUK


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2Fs12274-018-2199-1.pdf

Yingjie Li, Haichuan Zhang, Nana Han, Yun Kuang, Junfeng Liu, Wen Liu, Haohong Duan, Xiaoming Sun. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction, Nano Research, 2018, 1-6, DOI: 10.1007/s12274-018-2199-1