Análise micromecânica dos compósitos com fibras curtas e partículas

Matéria (Rio de Janeiro), Feb 2019

The present work presents the investigation of the mechanical behavior of the composite materials, strengthened with short fibers and particles.  A simple model is presented, with purpose for prediction of the breaking stress of this class of composite material.  The model consists in the modification of the Rule of Mixture, with the introduction of a term, referring to the particle phase, present in the composite material.  It is introduced and investigated a correction factor (g), to adjust the magnitude of the phase particle contribution to composite material strength. It is developed, still, a simplified equation to correct the factor (b) - of fiber alignment - present in the equation of the Rule of Mixtures.  This correction needs to be made because of the preferential alignment of the fibers that occurs in the stage of material compaction process. Three different composite materials were produced, varying only the ratios of materials, maintaining the raw materials. The composite materials produced were tested by the three-point flexural method, in order to determine their mechanical properties. The comparison between mechanical properties obtained experimentally and the theoretical results demonstrate good agreement with the real behavior of the composite material strengthened with short fibers and particles.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://www.scielo.br/pdf/rmat/v12n2/v12n2a18.pdf

Análise micromecânica dos compósitos com fibras curtas e partículas

Análise micromecânica dos compósitos com fibras curtas e partículas   Micromechanical analysis of composites with short fibers and particles     Alexandre CasarilI; Eduardo Rovaris GomesI; Marcos Roberto SoaresI; Márcio Celso FredelII; Hazim Ali Al-QureshiII IFras-le S.A.: RS 122, Km 66, n° 10.945, Bairro Forqueta, Caxias do Sul-RS, CEP 95.010-550. e-mail: , , IIUniversidade Federal de Santa Catarina: Laboratório de Materiais, Departamento de Engenharia Mecânica, Campus Universitário, Trindade, Florianópolis-SC, CEP 88.040-900. e-mail: ,     RESUMO O presente trabalho diz respeito à investigação do comportamento mecânico de materiais compósitos reforçados com fibras curtas e partículas. É apresentado um modelo simples com o intuito de prever a resistência à ruptura desta classe de materiais compósitos. O modelo consiste na modificação da Lei da Mistura, com a introdução de um termo referente à fase partícula presente no compósito. É introduzido e investigado um fator de correção (g) nesse termo, para ajustar a magnitude de contribuição efetiva da fase partícula para a resistência do compósito. É desenvolvido, ainda, um equacionamento simplificado para correção do fator b - de alinhamento de fibras – presente na equação da Lei das Misturas, que é preciso ser feita por causa do alinhamento preferencial das fibras que ocorre durante a etapa de compactação do material durante o processamento. Foram produzidos três materiais compósitos diferentes entre si, empregando as mesmas matérias-primas. Os materiais foram ensaiados pelo método de flexão a três pontos, a fim de determinar suas propriedades mecânicas. A comparação entre as propriedades mecânicas obtidas experimentalmente e as propriedades previstas através do modelo indicam boa concordância do modelo com o comportamento real dos materiais compósitos reforçados com fibras curtas e partículas. Palavras chaves: Materiais compósitos, modelamento, alinhamento de fibras. ABSTRACT The present work presents the investigation of the mechanical behavior of the composite materials, strengthened with short fibers and particles.  A simple model is presented, with purpose for prediction of the breaking stress of this class of composite material.  The model consists in the modification of the Rule of Mixture, with the introduction of a term, referring to the particle phase, present in the composite material.  It is introduced and investigated a correction factor (g), to adjust the magnitude of the phase particle contribution to composite material strength. It is developed, still, a simplified equation to correct the factor (b) - of fiber alignment - present in the equation of the Rule of Mixtures.  This correction needs to be made because of the preferential alignment of the fibers that occurs in the stage of material compaction process. Three different composite materials were produced, varying only the ratios of materials, maintaining the raw materials. The composite materials produced were tested by the three-point flexural method, in order to determine their mechanical properties. The comparison between mechanical properties obtained experimentally and the theoretical results demonstrate good agreement with the real behavior of the composite material strengthened with short fibers and particles. Keywords: Composite materials, modeling, fibers alignment.     1  INTRODUÇÃO O emprego de materiais compósitos como materiais de engenharia têm ganhado cada vez mais espaço em vários segmentos da indústria. Isso ocorre pelo fato desses materiais possibilitarem uma boa sinergia na interação entre os diferentes componentes que o formam, dando como resultado uma gama de propriedades inerentes ao material, e atribuições – econômicas, ambientais, etc. – mais interessantes do que as dos componentes que o formam. A indústria de materiais de fricção tem nos compósitos (reforçados com partículas e fibras curtas) uma grande facilidade para reunir, em um material, uma gama enorme de propriedades como resistência mecânica, condutividade e estabilidade térmica, coeficiente de atrito, condições otimizadas de NVH (noise, vibration and harshness), dentre outras, as quais seriam difíceis de alcançar com algum outro material não compósito, a um custo viável. O desenvolvimento dos veículos e equipamentos de movimento tem possibilitado velocidades cada vez maiores, além da valorização cada vez maior dos requisitos de segurança e controle de movimento. Esses e outros fatores têm exigido um desenvolvimento tecnológico grande com relação aos materiais de fricção. A principal dificuldade em projetar produtos a partir de materiais compósitos reforçados com partículas e fibras curtas, é predizer as propriedades do material final. Isto porque a lei das misturas, originalmente desenvolvida para os materiais compósitos de fibras contínuas, não prevê de forma eficaz as propriedades deste tipo de material compósito. A ausência de modelos na literatura, que governem as propriedades mecânicas deste tipo de material de forma clara, pragmática e eficiente prejudica a utilização do mesmo no projeto de produtos e, pode, muitas vezes, depreciar o projeto, e até mesmo inviabilizá-lo. O objetivo do trabalho é investigar um compósito ternário (matriz, fibras curtas e partículas), simulando um material de fricção simples, de forma a modificar a Lei das Misturas clássica aplicada aos materiais compósitos de fibras contínuas adequando a mesma ao material compósito reforçado com partículas e fibras curtas, de forma a predizer a resistência à ruptura do mesmo, levando em consideração, inclusive, o processo de fabricação do produto. Modificação da Lei das Misturas - A Lei das Misturas está baseada no princípio da Aditividade, que estabelece que as propriedades do compósito serão intermediárias entre as propriedades dos componentes constituintes, segundo Barra [1]: (1) Em concordância com princípio da aditividade, para materiais compósitos contendo fibras curtas e partículas, a equação 1 torna-se: (2) Onde Pc representa a propriedade mecânica em questão do compósito, da mesma forma que Pf representa a propriedade mecânica em questão da fibra, Pm é a propriedade mecânica em questão da matriz e Pp é a propriedade em questão da fase partícula, vf, vm e vp são as frações volumétricas das fases fibra, matriz e partícula, respectivamente. Outro aspecto importante é o fato de o carregamento, nos compósitos reforçados com partículas e fibras curtas, ser feito na matriz, que transfere carga para as fibras e para as partículas através das interfaces. Dessa forma, a resistência ao cisalhamento interfacial e a efetividade do recobrimento destes componentes são aspectos críticos para o modelamento mecânico do compósito, segundo Al-Qureshi [2]. Dessa forma, cabe introduzir nos termos independentes da equação 2, fatores de correção de modo a ajustar a eficiência da contribuição de cada um para a resistência mecânica do compósito. Assim, a equação 2 pode ser reescrita da seguinte forma: (3) O fator b representa a eficiência do reforço da fibra, conforme Tabela 1. O fator l, diz respeito à eficiência do recobrimento das fases presentes por parte da matriz, mostrado por Al-Qureshi [2]. (4) O fator g, na equação 3, varia de 0 a 1 e é função da razão entre a tensão de cisalhamento na interface matriz/partícula e a tensão de cisalhamento da matriz. Como já explicitado na literatura por alguns autores, Al-Qureshi [2] e Callister [3], para um compósito de matriz polimérica reforçado com fibras curtas, a resistência à ruptura na direção preferencial das fibras (fibras alinhadas) pode ser escrita da seguinte forma: (5) Onde sfmédio é a tensão média desenvolvida na fibra e s’m é a tensão desenvolvida na matriz na deformação de quebra da fibra e igual a (Emsfu/Ef). Assim, de acordo com Al-Qureshi [2], a mesma equação torna-se: (6) Onde sc é a resistência à ruptura do compósito, sfu é a resistência à ruptura da fibra, vf e vm são as frações volumétricas da fibra e da matriz, respectivamente, Lc e L, são os comprimentos, crítico e comprimento, da fibra utilizada. Em e Ef são os módulos elásticos da matriz e da fibra. Considerando ainda a contribuição das partículas para a resistência do compósito, sabe-se, conforme Barra [1], Al-Qureshi [2] e Callister [3], que a geometria das mesmas não cumpre o requisito de comprimento critico para que atue como reforço devido a sua razão de aspecto próxima de 1. Nesse caso, a tensão suportada pela fase partícula é igual à tensão de cisalhamento na interface matriz/partícula, a qual é aproximadamente definida como [4]: (7) Considerando as equações 3, 5, 6 e 7, a resistência do compósito de matriz polimérica termofixa reforçada com fibras curtas e partículas pode ser determinada pela seguinte equação, quando a deformação de ruptura da matriz for maior do que a deformação de ruptura das fibras: (8) Segundo Matthews & Rawlings [5], a eficiência máxima das fibras é obtida quando grande parte do carregamento é transferido para as mesmas, e principalmente, quando o processo de ruptura é dominado pelas fibras e não pela matriz. Grande parte dos materiais de fricção são produzidos a partir de resinas fenólicas, que apresentam deformações muito pequenas (~1-2%), segundo Callister [3], empregando, como agente de reforço, fibras de vidro (deformação de ruptura 4,8%). Por tal, devemos adequar a equação 8, pois de fato, se a ruptura da matriz é o fator limitador da resistência à ruptura do material compósito, a fibra desenvolverá tensão igual a  ao invés de sfu. Já a tensão desenvolvida na matriz, nesse caso, é igual à própria tensão de ruptura da matriz, assim como a tensão de cisalhamento na interface matriz/partícula. A adequação da Equação 8 leva à seguinte relação: (9) Que pode descrever mais adequadamente o comportamento mecânico de materiais compósitos reforçados com partículas e fibras curtas, e cuja matriz tem capacidade de deformação na ruptura menor do que as fibras. Correção do Fator b - A etapa de compactação que faz parte do processo de fabricação da maioria dos materiais de fricção acarreta o alinhamento preferencial das fibras no plano ortogonal à direção de compactação. Em termos da Equação 3, a compactação altera o valor do parâmetro b, afetando diretamente a eficiência do reforço proporcionado pela fase fibra, tornando o compósito ortotrópico. Considere as Figuras 1 (fibras contidas no compósito) e 2 (fibra média que representa o conjunto das fibras no compósito).     No caso da figura 2, podemos deduzir que:     (10) E, por conseqüência: (11) Antes da compactação, as fibras estão distribuídas aleatoriamente. Então a=q=f=54,73º. A compactação tende a alinhar as fibras preferencialmente no plano ortogonal à direção de compactação (plano xz), conforme Figura 3.     Em relação à Figura 3, podemos estabelecer a seguinte relação: (12) Considerando o volume antes da compactação (V1) e depois (V2), e a densidade do material antes da compactação (r1) e depois (r2), temos que: (13) Tomando a área da base da câmara (A) como sendo constante, temos: (14) ou (15) Dessa forma, podemos estabelecer o fator R de alinhamento: (16) Em relação às direções x, y e z, pode-se estabelecer o que segue: Se R tende a 1, o fator de compactação tende a ser mínimo e o alinhamento das fibras tende a permanecer aleatório no espaço (b=0,2 nas direções x, y e z – com a=q=f=54,73º); Se R tende a 0, o fator de compactação tende ao máximo e as fibras tendem a se distribuir aleatoriamente no plano xz (b=0,375 nas direções contidas no plano xz e b=0 na direção y - com a=f=45° e q=90º). (17) (18) (19) (20)   2  MATERIAIS E MÉTODOS Os materiais compósitos empregados para avaliar a validade do modelo foram produzidos à base de resina fenólica em pó, fibras de vidro picadas, e alumina em pó. As propriedades relevantes das matérias-primas empregadas estão na Tabela 2. Foram elaboradas 3 formulações diferentes para os testes mecânicos, de acordo com a Tabela 3. O processo de produção dos materiais compósitos utilizados neste trabalho é semelhante ao processo de produção de lonas de freio comerciais. O processo consiste de três etapas básicas: homogeneização, compactação a quente e cozimento. A homogeneização é feita em moinho de pás (Figura 4). O moinho possui uma pá de homogeneização e um rotor "intensificador".     A pá de homogeneização é fixa. A cuba tem velocidade de 72 rpm e o intensificador tem velocidade de 1375 rpm. O processo de homogeneização é feito da seguinte forma: ®      Todas as matérias-primas são colocadas na cuba; ®      5 minutos com a cuba em movimento (72 rpm) e intensificador desligado; ®      20 segundos com a cuba e o intensificador ligado. O intensificador é muito importante para a homogeneização do material, porém, ele provoca a abertura dos feixes de fibras de vidro, se elas forem expostas durante muito tempo. A etapa seguinte é a compactação a quente. Para realização dessa etapa, foi utilizada uma prensa com aquecimento do molde, a qual pode ser vista na Figura 5.     A etapa de compactação é realizada a 160 ºC (a 160ºC, o tempo estimado de cura da resina é de 25 segundos), com pressão de 50 Kgf/cm2 (5 MPa), num tempo total de prensa de 12 minutos subdivididos da seguinte forma: 14 ciclos (20 segundos sob pressão + 10 segundos com prensa aberta), totalizando 7 minutos, mais 5 minutos sob pressão. Depois da etapa de compactação, as placas de material compósito são submetidas ao processo de cozimento, para cura residual da resina e estabilização do material. O processo de cozimento é realizado em estufa, e decorre por 4,5 horas, sendo que nas primeiras 3,5 horas, a temperatura da estufa é elevada da temperatura ambiente até 160ºC, a uma taxa constante de aquecimento. Em seguida o material é mantido em isoterma de 160ºC por 1,5 hora. O resfriamento é ao ar. A estufa pode ser visualizada na Figura 6.     Os materiais foram testados em flexão a três pontos, conforme ASTM D790-92 [8]. Foi utilizado o Método de Teste I, Procedimento A – designado principalmente para materiais que quebram em deflexões comparativamente pequenas. A Tabela 4 apresenta os parâmetros dos corpos de prova e do ensaio.     A determinação da densidade aparente dos materiais antes da compactação foi realizada através da NF 80004 (Norma Fras-le). A massa específica dos materiais após o tratamento térmico foi medida pelo método de volume de água deslocado, com base na NBR 5544 [9]. Foram medidos, com auxílio da análise de imagem, os ângulos em relação ao eixo y de compactação, das fibras nos materiais compósitos a fim de determinar a correlação dos mesmos com a Equação 20 e ter um indicativo da concordância do modelo apresentado para o alinhamento das fibras devido à compactação. A partir da análise de imagens da seção do plano xz normal à direção y (de compactação, Figura 6) devidamente preparada através de lixamento e polimento, foi feita a aquisição das duas dimensões referentes às fibras: o menor diâmetro (d) e o maior diâmetro (D) da elipse formada devido à inclinação da fibra. A partir da representação geométrica apresentada na figura 6, pode-se deduzir que o ângulo q, do eixo da fibra em relação à direção perpendicular ao plano pode ser dado pela equação 20. (21)   3  RESULTADOS E DISCUSSÕES Os resultados referentes à densidade dos materiais produzidos estão apresentados na Tabela 5. A partir dos mesmos, foi calculado o valor do parâmetro b da equação 9, com base na relação apresentada pela equação 17. Como já mencionado, a compactação tem o efeito de "alinhar" as fibras preferencialmente no plano ortogonal à direção de compactação. Por análise de micrografias feitas dos materiais, foram medidos os ângulos de inclinação das fibras contidas nos materiais (mais de 500 fibras medidas em cada material), estimando o ângulo médio das mesmas para os três materiais. Os resultados estão apresentados, também, na Tabela 5, juntamente com os resultados teóricos calculados a partir da relação mostrada na Equação 20. A boa concordância encontrada entre os resultados dos ângulos q para os materiais 1, 2 e 3, estimados através do equacionamento apresentado e os resultados experimentais das medidas desses ângulos mostra que a relação é significativamente válida para a classe de materiais compósitos abordada neste trabalho. Essa concordância em relação ao equacionamento do ângulo q, indiretamente, pode embasar o equacionamento do parâmetro b, visto que ambos estão intimamente relacionados entre si. Com os valores de b corrigidos, conforme a Tabela 5, é possível, fazendo uso da Equação 9 proposta, calcular teoricamente o valor da resistência à ruptura para os materiais 1, 2 e 3. Como não se dispõe do valor exato do módulo elástico e da resistência a ruptura da resina (a Tabela 2 fornece apenas uma faixa de valores), nem o valor de g (0<g<1), pode-se calcular apenas a faixa de valores dentro da qual o valor da resistência mecânica provavelmente se encontra. Para isso, empregam-se duas combinações, conforme Tabela 6, para estipular a faixa de valores da resistência à ruptura dos materiais 1, 2 e 3. O fator l foi tomado como sendo igual a 1, pois assim foi constatado pela análise de imagem dos materiais 1, 2 e 3, como pode ser observado na Figura 7. Na Tabela 6 estão os resultados relacionados a resistência mecânica para os materiais 1, 2 e 3, calculados através da relação mostrada na Equação 9, e os resultados experimentais obtidos no ensaio de flexão a três pontos. Os resultados apresentados na Tabela 7 mostram que os valores obtidos nos experimentos estão dentro da faixa calculada através da equação 9, apesar de a faixa de valores calculados através da equação ser grande. Para resultados mais exatos, se faz necessária a determinação das propriedades mecânicas adequadas da resina utilizada como matriz. Estas atividades estão dentre as estabelecidas como encaminhamento de trabalhos futuros.   4  CONCLUSÕES Foi apresentado um modelo simplificado, para prever a resistência a ruptura de materiais compósitos reforçados com partículas e fibras curtas, o qual foi elaborado a partir da modificação de equações de outros autores. A introdução do fator g pôde fornecer uma direção para as investigações da contribuição da fase partícula para a resistência do compósito. O modelo simplificado mostrou resultados encorajadores do ponto de vista da concordância encontrada entre os resultados experimentais e os resultados teóricos, apesar de a faixa da estimativa teórica ser grande. A inclusão, no modelo, do equacionamento do parâmetro b, relacionado ao alinhamento das fibras devido ao processo de produção, foi interessante para corrigi-lo e adequar melhor o modelo à classe de material compósito a qual este trabalho se dedica. A boa concordância encontrada entre os resultados teóricos e experimentais da medida do ângulo q aponta a validade do equacionamento proposto para o alinhamento das fibras. Alguns parâmetros presentes no modelo não foram abordados tão profundamente quanto deveriam. Porém, os resultados, de maneira geral, foram interessantes, e motivam a continuidade dos estudos sobre os compósitos reforçados com partículas e fibras curtas. Vários pontos importantes necessitam ser mais profundamente avaliados, como a caracterização adequada da resina utilizada como matriz, a investigação dos parâmetros no modelo, como g e l, a caracterização das interfaces matriz/fibra e matriz/partícula.   5  AGRADECIMENTOS Os autores agradecem enormemente a empresa Fras-le S/A, pelo completo suporte ao projeto que engloba este trabalho e à Universidade Federal de Santa Catarina, pela parceria e suporte tecnológico.   6  BIBLIOGRAFIA [1] BARRA, G., Compósitos Poliméricos, Apostila Curso EMC 5706 (EMC-UFSC), 2004.        [ Links ] [2] AL-QURESHI, H.A., Composite Materials: Fabrication and Analysis, 3ª Edição, ITA, 1988.        [ Links ] [3] CALLISTER Jr., W.D., Materials Science and Engineering: an Introduction, 5th. ed., New York, J. Wiley, 2000.        [ Links ] [4] DIETER, G.E., Mechanical Metallurgy, 2nd Edition International Student Edition, 1976.        [ Links ] [5] MATTHEWS, F.L., RAWLINGS, R.D., Composite Materials: Engineering and Science, London, Chapman and Hall, 1994.        [ Links ] [6] CASARIL, A., "Análise Micromecânica dos Compósitos com Fibras Curtas e Partículas", Trabalho de Graduação, Curso de Graduação em Engenharia de Materiais, UFSC, 2004.        [ Links ] [7] FIBERGLAS, Catálogo Owens Corning: Relação dos Produtos de Linha e suas Aplicações, Publicação Owens Corning FIBERGLAS®, junho 1996.         [ Links ] [8] ASTM STANDARD D 790-92, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Manual Book of ASTM Standard, 1992.        [ Links ] [9] NBR 5544, NBR 5544 - Guarnições da embreagem e do freio - Determinação da densidade relativa. ABNT.        [ Links ] [10] Al-QURESHI, H.A., STAEL, G.C., "Modified Rule of Mixtures for natural Fiber Composites",In: 16th Canadian Congress of Applied Mechanics, CANCAM-97, University of Laval, Québec, Canada, v. 1, pp. 49-50, 1997.        [ Links ] [11] DOTAN, A.L., SILVA, J.L.G., AL-QURESHI, H.A., "Macro and Micromechanical Behaviour of Natural Fibre Composites", In: Mechanics in Design – CSME Forum 96, May 7-9, Held at the University of Toronto, Toronto, Canada, v. 2, pp. 823-828, 1996.        [ Links ] [12] MITAL, S.K., MURTHY, P.L.N., GOLDBERG, R.K., "Micromechanics for Particulate Reinforced Composites", In: NASA Technical Memorandum 107276, 1996.        [ Links ]     Data de envio: 22/06/06 Data de aceite: 02/10/06


This is a preview of a remote PDF: http://www.scielo.br/pdf/rmat/v12n2/v12n2a18.pdf

Alexandre Casaril, Eduardo Rovaris Gomes, Marcos Roberto Soares, Márcio Celso Fredel, Hazim Ali Al-Qureshi. Análise micromecânica dos compósitos com fibras curtas e partículas, Matéria (Rio de Janeiro), 408-419, DOI: 10.1590/S1517-70762007000200019