Measurement of exclusive \(\mathrm {\Upsilon }\) photoproduction from protons in \(\mathrm {p}\) Pb collisions at \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \)

The European Physical Journal C, Mar 2019

The exclusive photoproduction of \(\mathrm {\Upsilon }\mathrm {(nS)} \) meson states from protons, \(\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon }\mathrm {(nS)} \,\mathrm {p}\) (with \(\mathrm {n}=1,2,3\)), is studied in ultraperipheral \(\mathrm {p}\)Pb collisions at a centre-of-mass energy per nucleon pair of \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \). The measurement is performed using the \(\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-\) decay mode, with data collected by the CMS experiment corresponding to an integrated luminosity of 32.6\(\,\text {nb}^{-1}\). Differential cross sections as functions of the \(\mathrm {\Upsilon }\mathrm {(nS)} \) transverse momentum squared \(p_{\mathrm {T}} ^2\), and rapidity y, are presented. The \(\mathrm {\Upsilon (1S)}\) photoproduction cross section is extracted in the rapidity range \(|y |< 2.2\), which corresponds to photon–proton centre-of-mass energies in the range \(91<W_{\gamma \mathrm {p}} <826\,\text {GeV} \). The data are compared to theoretical predictions based on perturbative quantum chromodynamics and to previous measurements.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-019-6774-8.pdf

Measurement of exclusive \(\mathrm {\Upsilon }\) photoproduction from protons in \(\mathrm {p}\) Pb collisions at \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \)

The European Physical Journal C March 2019, 79:277 | Cite as Measurement of exclusive \(\mathrm {\Upsilon }\) photoproduction from protons in \(\mathrm {p}\)Pb collisions at \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \) AuthorsAuthors and affiliations A. M. SirunyanA. TumasyanW. AdamF. AmbrogiE. AsilarT. BergauerJ. BrandstetterE. BrondolinM. DragicevicJ. EröA. Escalante Del ValleM. FlechlM. FriedlR. FrühwirthV. M. GheteJ. GrossmannJ. HrubecM. JeitlerA. KönigN. KrammerI. KrätschmerD. LikoT. MadlenerI. MikulecE. PreeN. RadH. RohringerJ. SchieckR. SchöfbeckM. SpanringD. SpitzbartA. TaurokW. WaltenbergerJ. WittmannC.-E. WulzM. ZaruckiV. ChekhovskyV. MossolovJ. Suarez GonzalezE. A. De WolfD. Di CroceX. JanssenJ. LauwersM. PietersM. Van De KlundertH. Van HaevermaetP. Van MechelenN. Van RemortelS. Abu ZeidF. BlekmanJ. D’HondtI. De BruynJ. De ClercqK. DerooverG. FlourisD. LontkovskyiS. LowetteI. MarchesiniS. MoortgatL. MoreelsQ. PythonK. SkovpenS. TavernierW. Van DoninckP. Van MuldersI. Van ParijsD. BeghinB. BilinH. BrunB. ClerbauxG. De LentdeckerH. DelannoyB. DorneyG. FasanellaL. FavartR. GoldouzianA. GrebenyukA. K. KalsiT. LenziJ. LueticT. SevaE. StarlingC. Vander VeldeP. VanlaerD. VanneromR. YonamineT. CornelisD. DoburA. FagotM. GulI. KhvastunovD. PoyrazC. RoskasD. TrocinoM. TytgatW. VerbekeB. VermassenM. VitN. ZaganidisH. BakhshiansohiO. BonduS. BrochetG. BrunoC. CaputoA. CaudronP. DavidS. De VisscherC. DelaereM. DelcourtB. FrancoisA. GiammancoG. KrintirasV. LemaitreA. MagitteriA. MertensM. MusichK. PiotrzkowskiL. QuertenmontA. SaggioM. Vidal MaronoS. WertzJ. ZobecW. L. Aldá JúniorF. L. AlvesG. A. AlvesL. BritoG. Correia SilvaC. HenselA. MoraesM. E. PolP. Rebello TelesE. Belchior Batista Das ChagasW. CarvalhoJ. ChinellatoE. CoelhoE. M. Da CostaG. G. Da SilveiraD. De Jesus DamiaoS. Fonseca De SouzaH. MalbouissonM. Medina JaimeM. Melo De AlmeidaC. Mora HerreraL. MundimH. NogimaL. J. Sanchez RosasA. SantoroA. SznajderM. ThielE. J. Tonelli ManganoteF. Torres Da Silva De AraujoA. Vilela PereiraS. AhujaC. A. BernardesA. CalligarisT. R. Fernandez Perez TomeiE. M. GregoresP. G. MercadanteS. F. NovaesSandra S. PadulaD. Romero AbadJ. C. Ruiz VargasA. AleksandrovR. HadjiiskaP. IaydjievA. MarinovM. MishevaM. RodozovM. ShopovaG. SultanovA. DimitrovL. LitovB. PavlovP. PetkovW. FangX. GaoL. YuanM. AhmadJ. G. BianG. M. ChenH. S. ChenM. ChenY. ChenC. H. JiangD. LeggatH. LiaoZ. LiuF. RomeoS. M. ShaheenA. SpieziaJ. TaoC. WangZ. WangE. YazganH. ZhangJ. ZhaoY. BanG. ChenJ. LiQ. LiS. LiuY. MaoS. J. QianD. WangZ. XuY. WangC. AvilaA. CabreraC. A. Carrillo MontoyaL. F. Chaparro SierraC. FlorezC. F. González HernándezM. A. Segura DelgadoB. CourbonN. GodinovicD. LelasI. PuljakP. M. Ribeiro CiprianoT. SculacZ. AntunovicM. KovacV. BrigljevicD. FerencekK. KadijaB. MesicA. StarodumovT. SusaM. W. AtherA. AttikisG. MavromanolakisJ. MousaC. NicolaouF. PtochosP. A. RazisH. RykaczewskiM. FingerM. FingerJr.E. Carrera JarrinS. KhalilM. A. MahmoudY. MohammedS. BhowmikR. K. DewanjeeM. KadastikL. PerriniM. RaidalC. VeelkenP. EerolaH. KirschenmannJ. PekkanenM. VoutilainenJ. HavukainenJ. K. HeikkiläT. JärvinenV. KarimäkiR. KinnunenT. LampénK. Lassila-PeriniS. LaurilaS. LehtiT. LindénP. LuukkaT. MäenpääH. SiikonenE. TuominenJ. TuominiemiT. TuuvaM. BesanconF. CoudercM. DejardinD. DenegriJ. L. FaureF. FerriS. GanjourS. GhoshA. GivernaudP. GrasG. Hamel de MonchenaultP. JarryC. LeloupE. LocciM. MachetJ. MalclesG. NegroJ. RanderA. RosowskyM. Ö. SahinM. TitovA. AbdulsalamC. AmendolaI. AntropovS. BaffioniF. BeaudetteP. BussonL. CadamuroC. CharlotR. Granier de CassagnacM. JoI. KucherS. LisniakA. LobanovJ. Martin BlancoM. NguyenC. OchandoG. OrtonaP. PaganiniP. PigardR. SalernoJ. B. SauvanY. SiroisA. G. Stahl LeitonY. YilmazA. ZabiA. ZghicheJ.-L. AgramJ. AndreaD. BlochJ.-M. BromE. C. ChabertC. CollardE. ConteX. CoubezF. DrouhinJ.-C. FontaineD. GeléU. GoerlachM. JansováP. JuillotA.-C. Le BihanN. TononP. Van HoveS. GadratS. BeauceronC. BernetG. BoudoulN. ChanonR. ChiericiD. ContardoP. DepasseH. El MamouniJ. FayL. FincoS. GasconM. GouzevitchG. GrenierB. IlleF. LagardeI. B. LaktinehH. LattaudM. LethuillierL. MirabitoA. L. PequegnotS. PerriesA. PopovV. SordiniM. Vander DoncktS. ViretS. ZhangT. ToriashviliZ. TsamalaidzeC. AutermannL. FeldM. K. KieselK. KleinM. LipinskiM. PreutenM. P. RauchC. SchomakersJ. SchulzM. TeroerdeB. WittmerV. ZhukovA. AlbertD. DuchardtM. EndresM. ErdmannS. ErdwegT. EschR. FischerA. GüthT. HebbekerC. HeidemannK. HoepfnerS. KnutzenM. MerschmeyerA. MeyerP. MilletS. MukherjeeT. PookM. RadziejH. ReithlerM. RiegerF. ScheuchD. TeyssierS. ThüerG. FlüggeB. KargollT. KressA. KünskenT. MüllerA. NehrkornA. NowackC. PistoneO. PoothA. StahlM. Aldaya MartinT. ArndtC. AsawatangtrakuldeeK. BeernaertO. BehnkeU. BehrensA. Bermúdez MartínezA. A. Bin AnuarK. BorrasV. BottaA. CampbellP. ConnorC. Contreras-CampanaF. CostanzaV. DanilovA. De WitC. Diez PardosD. Domínguez DamianiG. EckerlinD. EcksteinT. EichhornA. ElwoodE. ErenE. GalloJ. Garay GarciaA. GeiserJ. M. Grados LuyandoA. GrohsjeanP. GunnelliniM. GuthoffA. HarbJ. HaukM. HempelH. JungM. KasemannJ. KeaveneyC. KleinwortJ. KnolleI. KorolD. KrückerW. LangeA. LelekT. LenzK. LipkaW. LohmannR. MankelI.-A. Melzer-PellmannA. B. MeyerM. MeyerM. MissiroliG. MittagJ. MnichA. MussgillerD. PitzlA. RasperezaM. SavitskyiP. SaxenaR. ShevchenkoN. StefaniukH. TholenG. P. Van OnsemR. WalshY. WenK. WichmannC. WissingO. ZenaievR. AggletonS. BeinV. BlobelM. Centis VignaliT. DreyerE. GaruttiD. GonzalezJ. HallerA. HinzmannM. HoffmannA. KaravdinaG. KasieczkaR. KlannerR. KoglerN. KovalchukS. KurzV. KutznerJ. LangeD. MarconiJ. MulthaupM. NiedzielaD. NowatschinT. PeifferA. PerieanuA. ReimersC. ScharfP. SchleperA. SchmidtS. SchumannJ. SchwandtJ. SonneveldH. StadieG. SteinbrückF. M. StoberM. StöverD. TroendleE. UsaiA. VanhoeferB. VormwaldM. AkbiyikC. BarthM. BaselgaS. BaurE. ButzR. CaspartT. ChwalekF. ColomboW. De BoerA. DierlammN. FaltermannB. FreundR. FrieseM. GiffelsM. A. HarrendorfF. HartmannS. M. HeindlU. HusemannF. KasselS. KudellaH. MildnerM. U. MozerTh. MüllerM. PlaggeG. QuastK. RabbertzM. SchröderI. ShvetsovG. SieberH. J. SimonisR. UlrichS. WayandM. WeberT. WeilerS. WilliamsonC. WöhrmannR. WolfG. AnagnostouG. DaskalakisT. GeralisA. KyriakisD. LoukasI. Topsis-GiotisG. KarathanasisS. KesisoglouA. PanagiotouN. SaoulidouE. TziaferiK. KousourisI. PapakrivopoulosI. EvangelouC. FoudasP. GianneiosP. KatsoulisP. KokkasS. MalliosN. ManthosI. PapadopoulosE. ParadasJ. StrologasF. A. TriantisD. TsitsonisM. CsanadN. FilipovicG. PasztorO. SurányiG. I. VeresG. BenczeC. HajduD. HorvathÁ. HunyadiF. SiklerT. Á. VámiV. VeszpremiG. VesztergombiN. BeniS. CzellarJ. KarancsiA. MakovecJ. MolnarZ. SzillasiM. BartókP. RaicsZ. L. TrocsanyiB. UjvariS. ChoudhuryJ. R. KomaragiriS. BahinipatiP. MalK. MandalA. NayakD. K. SahooS. K. SwainS. BansalS. B. BeriV. BhatnagarS. ChauhanR. ChawlaN. DhingraR. GuptaA. KaurM. KaurS. KaurR. KumarP. KumariM. LohanA. MehtaS. SharmaJ. B. SinghG. WaliaA. BhardwajB. C. ChoudharyR. B. GargS. KeshriA. KumarAshok KumarS. MalhotraM. NaimuddinK. RanjanAashaq ShahR. SharmaR. BhardwajR. BhattacharyaS. BhattacharyaU. BhawandeepD. BhowmikS. DeyS. DuttS. DuttaS. GhoshN. MajumdarK. MondalS. MukhopadhyayS. NandanA. PurohitP. K. RoutA. RoyS. Roy ChowdhuryS. SarkarM. SharanB. SinghS. ThakurP. K. BeheraR. ChudasamaD. DuttaV. JhaV. KumarA. K. MohantyP. K. NetrakantiL. M. PantP. ShuklaA. TopkarT. AzizS. DugadB. MahakudS. MitraG. B. MohantyN. SurB. SutarS. BanerjeeS. BhattacharyaS. ChatterjeeP. DasM. GuchaitSa. JainS. KumarM. MaityG. MajumderK. MazumdarN. SahooT. SarkarN. WickramageS. ChauhanS. DubeV. HegdeA. KapoorK. KothekarS. PandeyA. RaneS. SharmaS. ChenaraniE. Eskandari TadavaniS. M. EtesamiM. KhakzadM. Mohammadi NajafabadiM. NaseriS. Paktinat MehdiabadiF. Rezaei HosseinabadiB. SafarzadehM. ZeinaliM. FelciniM. GrunewaldM. AbbresciaC. CalabriaA. ColaleoD. CreanzaL. CristellaN. De FilippisM. De PalmaA. Di FlorioF. ErricoL. FioreA. GelmiG. IaselliS. LezkiG. MaggiM. MaggiB. MarangelliG. MinielloS. MyS. NuzzoA. PompiliG. PuglieseR. RadognaA. RanieriG. SelvaggiA. SharmaL. SilvestrisR. VendittiP. VerwilligenG. ZitoG. AbbiendiC. BattilanaD. BonacorsiL. BorgonoviS. Braibant-GiacomelliR. CampaniniP. CapiluppiA. CastroF. R. CavalloS. S. ChhibraG. CodispotiM. CuffianiG. M. DallavalleF. FabbriA. FanfaniD. FasanellaP. GiacomelliC. GrandiL. GuiducciS. MarcelliniG. MasettiA. MontanariF. L. NavarriaF. OdoriciA. PerrottaA. M. RossiT. RovelliG. P. SiroliN. TosiS. AlbergoS. CostaA. Di MattiaF. GiordanoR. PotenzaA. TricomiC. TuveG. BarbagliK. ChatterjeeV. CiulliC. CivininiR. D’AlessandroE. FocardiG. LatinoP. LenziM. MeschiniS. PaolettiL. RussoG. SguazzoniD. StromL. VilianiL. BenussiS. BiancoF. FabbriD. PiccoloF. PrimaveraV. CalvelliF. FerroF. RaveraE. RobuttiS. TosiA. BenagliaA. BeschiL. BrianzaF. BrivioV. CirioloM. E. DinardoS. FiorendiS. GennaiA. GhezziP. GovoniM. MalbertiS. MalvezziR. A. ManzoniD. MenasceL. MoroniM. PaganoniK. PauwelsD. PedriniS. PigazziniS. RagazziT. Tabarelli de FatisS. BuontempoN. CavalloS. Di GuidaF. FabozziF. FiengaG. GalatiA. O. M. IorioW. A. KhanL. ListaS. MeolaP. PaolucciC. SciaccaF. ThyssenE. VoevodinaP. AzziN. BacchettaL. BenatoD. BiselloA. BolettiR. CarlinA. Carvalho Antunes De OliveiraP. ChecchiaP. De Castro ManzanoT. DorigoU. DosselliF. GaspariniU. GaspariniA. GozzelinoS. LacapraraP. LujanM. MargoniA. T. MeneguzzoN. PozzobonP. RoncheseR. RossinF. SimonettoA. TikoM. ZanettiP. ZottoG. ZumerleA. BraghieriA. MagnaniP. MontagnaS. P. RattiV. ReM. RessegottiC. RiccardiP. SalviniI. VaiP. VituloL. Alunni SolestiziM. BiasiniG. M. BileiC. CecchiD. CiangottiniL. FanòP. LaricciaR. LeonardiE. ManoniG. MantovaniV. MarianiM. MenichelliA. RossiA. SantocchiaD. SpigaK. AndrosovP. AzzurriG. BagliesiL. BianchiniT. BoccaliL. BorrelloR. CastaldiM. A. CiocciR. Dell’OrsoG. FediL. GianniniA. GiassiM. T. GrippoF. LigabueT. LomtadzeE. MancaG. MandorliA. MessineoF. PallaA. RizziP. SpagnoloR. TenchiniG. TonelliA. VenturiP. G. VerdiniL. BaroneF. CavallariM. CiprianiN. DaciD. Del ReE. Di MarcoM. DiemozS. GelliE. LongoB. MarzocchiP. MeridianiG. OrgantiniF. PandolfiR. ParamattiF. PreiatoS. RahatlouC. RovelliF. SantanastasioN. AmapaneR. ArcidiaconoS. ArgiroM. ArneodoN. BartosikR. BellanC. BiinoN. CartigliaR. CastelloF. CennaM. CostaR. CovarelliA. DeganoN. DemariaB. KianiC. MariottiS. MaselliE. MiglioreV. MonacoE. MonteilM. MontenoM. M. ObertinoL. PacherN. PastroneM. PelliccioniG. L. Pinna AngioniA. RomeroM. RuspaR. SacchiK. ShchelinaV. SolaA. SolanoA. StaianoS. BelforteM. CasarsaF. CossuttiG. Della RiccaA. ZanettiD. H. KimG. N. KimM. S. KimJ. LeeS. LeeS. W. LeeC. S. MoonY. D. OhS. SekmenD. C. SonY. C. YangH. KimD. H. MoonG. OhJ. A. Brochero CifuentesJ. GohT. J. KimS. ChoS. ChoiY. GoD. GyunS. HaB. HongY. JoY. KimK. LeeK. S. LeeS. LeeJ. LimS. K. ParkY. RohJ. AlmondJ. KimJ. S. KimH. LeeK. LeeK. NamS. B. OhB. C. Radburn-SmithS. h. SeoU. K. YangH. D. YooG. B. YuH. KimJ. H. KimJ. S. H. LeeI. C. ParkY. ChoiC. HwangJ. LeeI. YuV. DudenasA. JuodagalvisJ. VaitkusI. AhmedZ. A. IbrahimM. A. B. Md AliF. Mohamad IdrisW. A. T. Wan AbdullahM. N. YusliZ. ZolkapliH. Castilla-ValdezE. De La Cruz-BureloM. C. Duran-OsunaI. Heredia-De La CruzR. Lopez-FernandezJ. Mejia GuisaoR. I. Rabadan-TrejoG. Ramirez-SanchezR. Reyes-AlmanzaA. Sanchez-HernandezS. Carrillo MorenoC. Oropeza BarreraF. Vazquez ValenciaJ. EysermansI. PedrazaH. A. Salazar IbarguenC. Uribe EstradaA. Morelos PinedaD. KrofcheckS. BheesetteP. H. ButlerA. AhmadM. AhmadQ. HassanH. R. HooraniA. SaddiqueM. A. ShahM. ShoaibM. WaqasH. BialkowskaM. BlujB. BoimskaT. FrueboesM. GórskiM. KazanaK. NawrockiM. SzleperP. TraczykP. ZalewskiK. BunkowskiA. ByszukK. DorobaA. KalinowskiM. KoneckiJ. KrolikowskiM. MisiuraM. OlszewskiA. PyskirM. WalczakP. BargassaC. Beirão Da Cruz E SilvaA. Di FrancescoP. FaccioliB. GalinhasM. GallinaroJ. HollarN. LeonardoL. Lloret IglesiasM. V. NemallapudiJ. SeixasG. StrongO. ToldaievD. VadruccioJ. VarelaS. AfanasievP. BuninM. GavrilenkoI. GolutvinI. GorbunovA. KamenevV. KarjavinA. LanevA. MalakhovV. MatveevP. MoisenzV. PalichikV. PerelyginS. ShmatovS. ShulhaN. SkatchkovV. SmirnovN. VoytishinA. ZarubinY. IvanovV. KimE. KuznetsovaP. LevchenkoV. MurzinV. OreshkinI. SmirnovD. SosnovV. SulimovL. UvarovS. VavilovA. VorobyevYu. AndreevA. DermenevS. GninenkoN. GolubevA. KarneyeuM. KirsanovN. KrasnikovA. PashenkovD. TlisovA. ToropinV. EpshteynV. GavrilovN. LychkovskayaV. PopovI. PozdnyakovG. SafronovA. SpiridonovA. StepennovV. StolinM. TomsE. VlasovA. ZhokinT. AushevA. BylinkinV. AndreevM. AzarkinI. DreminM. KirakosyanS. V. RusakovA. TerkulovA. BaskakovA. BelyaevE. BoosA. ErshovA. GribushinL. KheinV. KlyukhinO. KodolovaI. LokhtinO. LukinaI. MiagkovS. ObraztsovS. PetrushankoV. SavrinA. SnigirevV. BlinovD. ShtolY. SkovpenI. AzhgireyI. BayshevS. BitioukovD. ElumakhovA. GodizovV. KachanovA. KalininD. KonstantinovP. MandrikV. PetrovR. RyutinA. SobolS. TroshinN. TyurinA. UzunianA. VolkovA. BabaevP. AdzicP. CirkovicD. DevetakM. DordevicJ. MilosevicJ. Alcaraz MaestreA. Álvarez FernándezI. BachillerM. Barrio LunaM. CerradaN. ColinoB. De La CruzA. Delgado PerisC. Fernandez BedoyaJ. P. Fernández RamosJ. FlixM. C. FouzO. Gonzalez LopezS. Goy LopezJ. M. HernandezM. I. JosaD. MoranA. Pérez-Calero YzquierdoJ. Puerta PelayoI. RedondoL. RomeroM. S. SoaresA. TriossiC. AlbajarJ. F. de TrocónizJ. CuevasC. EriceJ. Fernandez MenendezS. FolguerasI. Gonzalez CaballeroJ. R. González FernándezE. Palencia CortezonS. Sanchez CruzP. VischiaJ. M. Vizan GarciaI. J. CabrilloA. CalderonB. Chazin QueroJ. Duarte CampderrosM. FernandezP. J. Fernández MantecaA. García AlonsoJ. Garcia-FerreroG. GomezA. Lopez VirtoJ. MarcoC. Martinez RiveroP. Martinez Ruiz del ArbolF. MatorrasJ. Piedra GomezC. PrieelsT. RodrigoA. Ruiz-JimenoL. ScodellaroN. TrevisaniI. VilaR. Vilar CortabitarteD. AbbaneoB. AkgunE. AuffrayP. BaillonA. H. BallD. BarneyJ. BendavidM. BiancoA. BocciC. BottaT. CamporesiM. CepedaG. CerminaraE. ChaponY. ChenD. d’EnterriaA. DabrowskiV. DaponteA. DavidM. De GruttolaA. De RoeckN. DeelenM. DobsonT. du PreeM. DünserN. DupontA. Elliott-PeisertP. EveraertsF. FallavollitaG. FranzoniJ. FulcherW. FunkD. GigiA. GilbertK. GillF. GlegeD. GulhanJ. HegemanV. InnocenteA. JafariP. JanotO. KarachebanJ. KieselerV. KnünzA. KornmayerM. KrammerC. LangeP. LecoqC. LourençoM. T. LucchiniL. MalgeriM. MannelliA. MartelliF. MeijersJ. A. MerlinS. MersiE. MeschiP. MilenovicF. MoortgatM. MuldersH. NeugebauerJ. NgadiubaS. OrfanelliL. OrsiniF. PantaleoL. PapeE. PerezM. PeruzziA. PetrilliG. PetruccianiA. PfeifferM. PieriniF. M. PittersD. RabadyA. RaczT. ReisG. RolandiM. RovereH. SakulinC. SchäferC. SchwickM. SeidelM. SelvaggiA. SharmaP. SilvaP. SphicasA. StakiaJ. SteggemannM. StoyeM. TosiD. TreilleA. TsirouV. VeckalnsM. VerweijW. D. ZeunerW. BertlL. CaminadaK. DeitersW. ErdmannR. HorisbergerQ. IngramH. C. KaestliD. KotlinskiU. LangeneggerT. RoheS. A. WiederkehrM. BackhausL. BäniP. BergerB. CasalN. ChernyavskayaG. DissertoriM. DittmarM. DonegàC. DorferC. GrabC. HeideggerD. HitsJ. HossT. KlijnsmaW. LustermannM. MarionneauM. T. MeinhardD. MeisterF. MicheliP. MusellaF. Nessi-TedaldiJ. PataF. PaussG. PerrinL. PerrozziM. QuittnatM. ReichmannD. RuiniD. A. Sanz BecerraM. SchönenbergerL. ShchutskaV. R. TavolaroK. TheofilatosM. L. Vesterbacka OlssonR. WallnyD. H. ZhuT. K. AarrestadC. AmslerD. BrzhechkoM. F. CanelliA. De CosaR. Del BurgoS. DonatoC. GalloniT. HreusB. KilminsterI. NeutelingsD. PinnaG. RaucoP. RobmannD. SalernoK. SchweigerC. SeitzY. TakahashiA. ZucchettaV. CandeliseY. H. ChangK. y. ChengT. H. DoanSh. JainR. KhuranaC. M. KuoW. LinA. PozdnyakovS. S. YuP. ChangY. ChaoK. F. ChenP. H. ChenF. FioriW.-S. HouY. HsiungArun KumarY. F. LiuR.-S. LuE. PaganisA. PsallidasA. SteenJ. f. TsaiB. AsavapibhopK. KovitanggoonG. SinghN. SrimanobhasA. BatF. BoranS. CerciS. DamarseckinZ. S. DemirogluC. DozenI. DumanogluS. GirgisG. GokbulutY. GulerI. HosE. E. KangalO. KaraU. KiminsuM. OglakciG. OnengutK. OzdemirD. Sunar CerciB. TaliU. G. TokH. TopakliS. TurkcaparI. S. ZorbakirC. ZorbilmezG. KarapinarK. OcalanM. YalvacM. ZeyrekI. O. AtakisiE. GülmezM. KayaO. KayaS. TektenE. A. YetkinM. N. AgarasS. AtayA. CakirK. CankocakY. KomurcuB. GrynyovL. LevchukF. BallL. BeckJ. J. BrookeD. BurnsE. ClementD. CussansO. DavignonH. FlacherJ. GoldsteinG. P. HeathH. F. HeathL. KreczkoD. M. NewboldS. ParamesvaranT. SakumaS. Seif El Nasr-storeyD. SmithV. J. SmithK. W. BellA. BelyaevC. BrewR. M. BrownD. CieriD. J. A. CockerillJ. A. CoughlanK. HarderS. HarperJ. LinacreE. OlaiyaD. PetytC. H. Shepherd-ThemistocleousA. TheaI. R. TomalinT. WilliamsW. J. WomersleyG. AuzingerR. BainbridgeP. BlochJ. BorgS. BreezeO. BuchmullerA. BundockS. CasassoD. CollingL. CorpeP. DaunceyG. DaviesM. Della NegraR. Di MariaY. HaddadG. HallG. IlesT. JamesM. KommR. LaneC. LanerL. LyonsA.-M. MagnanS. MalikL. MastrolorenzoT. MatsushitaJ. NashA. NikitenkoV. PalladinoM. PesaresiA. RichardsA. RoseE. ScottC. SeezA. ShtipliyskiT. StreblerS. SummersA. TapperK. UchidaM. Vazquez AcostaT. VirdeeN. WardleD. WinterbottomJ. WrightS. C. ZenzJ. E. ColeP. R. HobsonA. KhanP. KyberdA. MortonI. D. ReidL. TeodorescuS. ZahidA. BorzouK. CallJ. DittmannK. HatakeyamaH. LiuN. PastikaC. SmithR. BartekA. DominguezA. BuccilliS. I. CooperC. HendersonP. RumerioC. WestD. ArcaroA. AvetisyanT. BoseD. GastlerD. RankinC. RichardsonJ. RohlfL. SulakD. ZouG. BenelliD. CuttsM. HadleyJ. HakalaU. HeintzJ. M. HoganK. H. M. KwokE. LairdG. LandsbergJ. LeeZ. MaoM. NarainJ. PazziniS. PiperovS. SagirR. SyarifD. YuR. BandC. BrainerdR. BreedonD. BurnsM. Calderon De La Barca SanchezM. ChertokJ. ConwayR. ConwayP. T. CoxR. ErbacherC. FloresG. FunkW. KoR. LanderC. McleanM. MulhearnD. PellettJ. PilotS. ShalhoutM. ShiJ. SmithD. StolpD. TaylorK. TosM. TripathiZ. WangF. ZhangM. BachtisC. BravoR. CousinsA. DasguptaA. FlorentJ. HauserM. IgnatenkoN. MccollS. RegnardD. SaltzbergC. SchnaibleV. ValuevE. BouvierK. BurtR. ClareJ. EllisonJ. W. GaryS. M. A. Ghiasi ShiraziG. HansonG. KarapostoliE. KennedyF. LacroixO. R. LongM. Olmedo NegreteM. I. PanevaW. SiL. WangH. WeiS. WimpennyB. R. YatesJ. G. BransonS. CittolinM. DerdzinskiR. GerosaD. GilbertB. HashemiA. HolznerD. KleinG. KoleV. KrutelyovJ. LettsM. MasciovecchioD. OlivitoS. PadhiM. PieriM. SaniV. SharmaS. SimonM. TadelA. VartakS. WasserbaechJ. WoodF. WürthweinA. YagilG. Zevi Della PortaN. AminR. BhandariJ. Bradmiller-FeldC. CampagnariM. CitronA. DishawV. DuttaM. Franco SevillaL. GouskosR. HellerJ. IncandelaA. OvcharovaH. QuJ. RichmanD. StuartI. SuarezJ. YooD. AndersonA. BornheimJ. BunnJ. M. LawhornH. B. NewmanT. Q. NguyenC. PenaM. SpiropuluJ. R. VlimantR. WilkinsonS. XieZ. ZhangR. Y. ZhuM. B. AndrewsT. FergusonT. MudholkarM. PauliniJ. RussM. SunH. VogelI. VorobievM. WeinbergJ. P. CumalatW. T. FordF. JensenA. JohnsonM. KrohnS. LeontsinisE. MacDonaldT. MulhollandK. StensonK. A. UlmerS. R. WagnerJ. AlexanderJ. ChavesY. ChengJ. ChuA. DattaK. McdermottN. MirmanJ. R. PattersonD. QuachA. RinkeviciusA. RydL. SkinnariL. SoffiS. M. TanZ. TaoJ. ThomJ. TuckerP. WittichM. ZientekS. AbdullinM. AlbrowM. AlyariG. ApollinariA. ApresyanA. ApyanS. BanerjeeL. A. T. BauerdickA. BeretvasJ. BerryhillP. C. BhatG. BollaK. BurkettJ. N. ButlerA. CanepaG. B. CeratiH. W. K. CheungF. ChlebanaM. CremonesiJ. DuarteV. D. ElviraJ. FreemanZ. GecseE. GottschalkL. GrayD. GreenS. GrünendahlO. GutscheJ. HanlonR. M. HarrisS. HasegawaJ. HirschauerZ. HuB. JayatilakaS. JindarianiM. JohnsonU. JoshiB. KlimaM. J. KortelainenB. KreisS. LammelD. LincolnR. LiptonM. LiuT. LiuR. Lopes De SáJ. LykkenK. MaeshimaN. MaginiJ. M. MarraffinoD. MasonP. McBrideP. MerkelS. MrennaS. NahnV. O’DellK. PedroO. ProkofyevG. RaknessL. RistoriA. Savoy-NavarroB. SchneiderE. Sexton-KennedyA. SohaW. J. SpaldingL. SpiegelS. StoynevJ. StraitN. StrobbeL. TaylorS. TkaczykN. V. TranL. UpleggerE. W. VaanderingC. VernieriM. VerzocchiR. VidalM. WangH. A. WeberA. WhitbeckW. WuD. AcostaP. AveryP. BortignonD. BourilkovA. BrinkerhoffA. CarnesM. CarverD. CurryR. D. FieldI. K. FuricS. V. GleyzerB. M. JoshiJ. KonigsbergA. KorytovK. KotovP. MaK. MatchevH. MeiG. MitselmakherK. ShiD. SperkaN. TerentyevL. ThomasJ. WangS. WangJ. YeltonY. R. JoshiS. LinnP. MarkowitzJ. L. RodriguezA. AckertT. AdamsA. AskewS. HagopianV. HagopianK. F. JohnsonT. KolbergG. MartinezT. PerryH. ProsperA. SahaA. SantraV. SharmaR. YohayM. M. BaarmandV. BhopatkarS. ColafranceschiM. HohlmannD. NoonanT. RoyF. YumicevaM. R. AdamsL. ApanasevichD. BerryR. R. BettsR. CavanaughX. ChenS. DittmerO. EvdokimovC. E. GerberD. A. HangalD. J. HofmanK. JungJ. KaminI. D. Sandoval GonzalezM. B. TonjesN. VarelasH. WangZ. WuJ. ZhangB. BilkiW. ClaridaK. DilsizS. DurgutR. P. GandrajulaM. HaytmyradovV. KhristenkoJ.-P. MerloH. MermerkayaA. MestvirishviliA. MoellerJ. NachtmanH. OgulY. OnelF. OzokA. PenzoC. SnyderE. TirasJ. WetzelK. YiB. BlumenfeldA. CocorosN. EminizerD. FehlingL. FengA. V. GritsanW. T. HungP. MaksimovicJ. RoskesU. SaricaM. SwartzM. XiaoC. YouA. Al-batainehP. BaringerA. BeanS. BorenJ. BowenJ. CastleS. KhalilA. KropivnitskayaD. MajumderW. McbrayerM. MurrayC. RoganC. RoyonS. SandersE. SchmitzJ. D. Tapia TakakiQ. WangA. IvanovK. KaadzeY. MaravinA. ModakA. MohammadiL. K. SainiN. SkhirtladzeF. RebassooD. WrightA. BadenO. BaronA. BelloniS. C. EnoY. FengC. FerraioliN. J. HadleyS. JabeenG. Y. JengR. G. KelloggJ. KunkleA. C. MignereyF. Ricci-TamY. H. ShinA. SkujaS. C. TonwarD. AbercrombieB. AllenV. AzzoliniR. BarbieriA. BatyG. BauerR. BiS. BrandtW. BuszaI. A. CaliM. D’AlfonsoZ. DemiragliG. Gomez CeballosM. GoncharovP. HarrisD. HsuM. HuY. IiyamaG. M. InnocentiM. KluteD. KovalskyiY.-J. LeeA. LevinP. D. LuckeyB. MaierA. C. MariniC. McginnC. MironovS. NarayananX. NiuC. PausC. RolandG. RolandG. S. F. StephansK. SumorokK. TatarD. VelicanuJ. WangT. W. WangB. WyslouchS. ZhaozhongA. C. BenvenutiR. M. ChatterjeeA. EvansP. HansenS. KalafutY. KubotaZ. LeskoJ. MansS. NourbakhshN. RuckstuhlR. RusackJ. TurkewitzM. A. WadudJ. G. AcostaS. OliverosE. AvdeevaK. BloomD. R. ClaesC. FangmeierF. GolfR. Gonzalez SuarezR. KamalieddinI. KravchenkoJ. MonroyJ. E. SiadoG. R. SnowB. StiegerA. GodshalkC. HarringtonI. IashviliD. NguyenA. ParkerS. RappoccioB. RoozbahaniG. AlversonE. BarberisC. FreerA. HortiangthamA. MassironiD. M. MorseT. OrimotoR. Teixeira De LimaT. WamorkarB. WangA. WisecarverD. WoodS. BhattacharyaO. CharafK. A. HahnN. MuciaN. OdellM. H. SchmittK. SungM. TrovatoM. VelascoR. BucciN. DevM. HildrethK. Hurtado AnampaC. JessopD. J. KarmgardN. KellamsK. LannonW. LiN. LoukasN. MarinelliF. MengC. MuellerY. MusienkoM. PlanerA. ReinsvoldR. RuchtiP. SiddireddyG. SmithS. TaroniM. WayneA. WightmanM. WolfA. WoodardJ. AlimenaL. AntonelliB. BylsmaL. S. DurkinS. FlowersB. FrancisA. HartC. HillW. JiT. Y. LingW. LuoB. L. WinerH. W. WulsinS. CoopersteinO. DrigaP. ElmerJ. HardenbrookP. HebdaS. HigginbothamA. KalogeropoulosD. LangeJ. LuoD. MarlowK. MeiI. OjalvoJ. OlsenC. PalmerP. PirouéJ. Salfeld-NebgenD. SticklandC. TullyS. MalikS. NorbergA. BarkerV. E. BarnesS. DasL. GutayM. JonesA. W. JungA. KhatiwadaD. H. MillerN. NeumeisterC. C. PengH. QiuJ. F. SchulteJ. SunF. WangR. XiaoW. XieT. ChengJ. DolenN. ParasharZ. ChenK. M. EcklundS. FreedF. J. M. GeurtsM. GuilbaudM. KilpatrickW. LiB. MichlinB. P. PadleyJ. RobertsJ. RorieW. ShiZ. TuJ. ZabelA. ZhangA. BodekP. de BarbaroR. DeminaY. t. DuhT. FerbelM. GalantiA. Garcia-BellidoJ. HanO. HindrichsA. KhukhunaishviliK. H. LoP. TanM. VerzettiR. CiesielskiK. GoulianosC. MesropianA. AgapitosJ. P. ChouY. GershteinT. A. Gómez EspinosaE. HalkiadakisM. HeindlE. HughesS. KaplanR. Kunnawalkam ElayavalliS. KyriacouA. LathR. MontalvoK. NashM. OshersonH. SakaS. SalurS. SchnetzerD. SheffieldS. SomalwarR. StoneS. ThomasP. ThomassenM. WalkerA. G. DelannoyJ. HeidemanG. RileyK. RoseS. SpanierK. ThapaO. BouhaliA. Castaneda HernandezA. CelikM. DalchenkoM. De MattiaA. DelgadoS. DildickR. EusebiJ. GilmoreT. HuangT. KamonR. MuellerY. PakhotinR. PatelA. PerloffL. PernièD. RathjensA. SafonovA. TatarinovN. AkchurinJ. DamgovF. De GuioP. R. DuderoJ. FaulknerE. GurpinarS. KunoriK. LamichhaneS. W. LeeT. MengkeS. MuthumuniT. PeltolaS. UndleebI. VolobouevZ. WangS. GreeneA. GurrolaR. JanjamW. JohnsC. MaguireA. MeloH. NiK. PadekenJ. D. Ruiz AlvarezP. SheldonS. TuoJ. VelkovskaQ. XuM. W. ArentonP. BarriaB. CoxR. HiroskyM. JoyceA. LedovskoyH. LiC. NeuT. SinthuprasithY. WangE. WolfeF. XiaR. HarrP. E. KarchinN. PoudyalJ. SturdyP. ThapaS. ZaleskiM. BrodskiJ. BuchananC. CaillolD. CarlsmithS. DasuL. DoddS. DuricB. GomberM. GrotheM. HerndonA. HervéU. HussainP. KlabbersA. LanaroA. LevineK. LongR. LovelessV. RekovicT. RugglesA. SavinN. SmithW. H. SmithN. WoodsCMS Collaboration Open Access Regular Article - Experimental Physics First Online: 26 March 2019 1 Shares 102 Downloads Abstract The exclusive photoproduction of \(\mathrm {\Upsilon }\mathrm {(nS)} \) meson states from protons, \(\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon }\mathrm {(nS)} \,\mathrm {p}\) (with \(\mathrm {n}=1,2,3\)), is studied in ultraperipheral \(\mathrm {p}\)Pb collisions at a centre-of-mass energy per nucleon pair of \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \). The measurement is performed using the \(\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-\) decay mode, with data collected by the CMS experiment corresponding to an integrated luminosity of 32.6\(\,\text {nb}^{-1}\). Differential cross sections as functions of the \(\mathrm {\Upsilon }\mathrm {(nS)} \) transverse momentum squared \(p_{\mathrm {T}} ^2\), and rapidity y, are presented. The \(\mathrm {\Upsilon (1S)}\) photoproduction cross section is extracted in the rapidity range \(|y |< 2.2\), which corresponds to photon–proton centre-of-mass energies in the range \(91<W_{\gamma \mathrm {p}} <826\,\text {GeV} \). The data are compared to theoretical predictions based on perturbative quantum chromodynamics and to previous measurements. KeywordsCMS UPC photoproduction Y pPb  W. Bertl, G. Bolla: Deceased. 1 Introduction This paper reports a first measurement of the exclusive photoproduction of \(\mathrm {\Upsilon }\) mesons from protons in \(\mathrm {p}\)Pb collisions at a nucleon–nucleon centre-of-mass energy of \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \), performed at the CERN LHC with the CMS detector. Exclusive photoproduction of vector mesons can be studied at the LHC in ultraperipheral collisions (UPCs) of protons and/or ions occurring at impact parameters larger than the sum of their radii, thereby largely suppressing their hadronic interaction [1]. In such UPCs, one of the incoming hadrons emits a quasi-real photon that converts into a \(\mathrm {q} \overline{\mathrm {q}} \) (vector meson) bound state following a colour-singlet gluon exchange with the other “target” proton or ion [2, 3]. Since the incoming hadrons remain intact after the interaction and only the vector meson is produced in the event, the process is called “exclusive”. Given that the photon flux scales with the square of the emitting electric charge, the radiation of quasi-real photons from the Pb ion is strongly enhanced compared to that from the proton. Figure 1a shows the dominant diagram for the exclusive \(\mathrm {\Upsilon }\) photoproduction signal in \(\mathrm {p}\)Pb collisions, \(\mathrm {p}\mathrm {Pb} \rightarrow (\gamma \mathrm {p})\mathrm {Pb}\rightarrow \mathrm {p}\,\mathrm {\Upsilon }\,\mathrm {Pb}\). If the \(\mathrm {\Upsilon }\) photoproduction is followed by the proton breakup, the process is called “semiexclusive” (Fig. 1b). The exchanged photon can also interact with a photon radiated from the proton [1, 4]. This two-photon collision can produce an exclusive dimuon state, as shown in Fig. 1c. Since we are interested in studying exclusive \(\mathrm {\Upsilon }\) production via its dimuon decay, the latter quantum electrodynamics (QED) continuum production constitutes a background process. Open image in new window Fig. 1 Diagrams representing a exclusive \(\mathrm {\Upsilon }\) photoproduction, b proton dissociative , or “semiexclusive”, \(\mathrm {\Upsilon }\) photoproduction, and c exclusive dimuon QED continuum production in \(\mathrm {p}\)Pb collisions The study of exclusive photoproduction of quarkonia offers a clean probe of the target hadron structure [1, 3, 5], with the large mass of the \(\mathrm {J}/\psi \) and \(\mathrm {\Upsilon }\) mesons providing a hard scale for calculations based on perturbative quantum chromodynamics (pQCD) [6, 7, 8, 9]. In the kinematic region studied here, the photoproduction of \(\mathrm {J}/\psi \) and \(\mathrm {\Upsilon }\) mesons from protons is sensitive to generalized parton distributions (GPDs), which can be approximated by the square of the gluon density in the proton [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Experimentally, exclusive \(\mathrm {J}/\psi \) and \(\mathrm {\Upsilon }\) photoproduction cross sections have been observed to rise with photon–proton centre-of-mass energy \(W_{\gamma \mathrm {p}} \), following a power-law dependence \(W_{\gamma \mathrm {p}} ^{\delta }\) with \(\delta =0.7\)–1.2 [20, 21]. This reflects the steep rise of the underlying gluon density in the proton for decreasing values of the momentum fraction x of the proton carried by the struck parton. The dependence of the exclusive vector meson photoproduction cross section on the squared four-momentum transfer at the proton vertex t, parameterized at low values of \(|t |\) with an exponential function of the form \(\exp (-b|t |)\) [20, 22, 23, 24], has also often been studied; the b slope parameter provides valuable information on the parton transverse density profile of the proton [7, 8, 25]. Exclusive \(\mathrm {\Upsilon }\) meson photoproduction was first observed in electron-proton collisions at HERA [20, 21, 22, 24] with the quasi-real photon radiated from the electron. At the CERN LHC, the LHCb [26, 27, 28], CMS [29], and ALICE [30, 31, 32, 33] experiments have measured exclusive photoproduction of \(\mathrm {J}/\psi \) mesons in ultraperipheral proton-proton and nuclear collisions. The LHCb experiment has also reported the measurement of the exclusive \(\mathrm {\Upsilon }\) photoproduction cross section in \(\mathrm {p}\mathrm {p}\) collisions at \(\sqrt{s} = 7\) and 8\(\,\text {TeV}\)  [34]. The larger mass of the \(\mathrm {\Upsilon }\) meson provides a larger perturbative scale at which the gluon distribution in the proton is sampled, and thereby reduces theoretical uncertainties in pQCD calculations. This allows the data to constrain the gluon distributions at low values of Bjorken x in global PDF fits for the first time [35]. The present paper reports the measurement of \(\mathrm {\Upsilon }\) photoproduction in \(\mathrm {p}\)Pb UPCs that probes the gluon density of the proton in the region \(x= m_{\mathrm {\Upsilon }}^2/W_{\gamma \mathrm {p}} ^2= 10^{-4}\)–\(10^{-2}\) [3], where \(m_{\mathrm {\Upsilon }}\) is the \(\mathrm {\Upsilon }\) meson mass. This CMS measurement spans a previously unexplored low-x region between the HERA and LHCb data, and provides additional experimental insights on the gluon content in the proton. In this low-x regime, nonlinear QCD effects (gluon recombination) may become important, possibly leading to the saturation of the parton distribution functions (PDFs) [36, 37, 38]. The measurements presented here are carried out using the \(\mu ^{+}\mu ^{-}\) decays of the \(\mathrm {\Upsilon }\mathrm {(nS)} \) (\(\mathrm {n}=1\), 2, 3) bottomonium mesons in the rapidity range \(|y |<2.2\) in the laboratory frame. These include differential cross sections as functions of the \(\mathrm {\Upsilon }\) rapidity and transverse momentum squared \(p_{\mathrm {T}} ^2\) (which approximates the absolute value of the four-momentum transfer squared at the proton vertex, \(|t |\)), as well as the total \(\mathrm {\Upsilon (1S)}\) cross section as a function of \(W_{\gamma \mathrm {p}} \). The results are compared to previous measurements and to theoretical predictions based on leading order (LO) and next-to-leading-order (NLO) pQCD calculations [10], as well as on colour dipole [15, 16] and gluon saturation [15, 16, 17, 18, 19] approaches. 2 Experimental setup The central feature of the CMS apparatus is a superconducting solenoid of 6\(\text { m}\) internal diameter, providing a magnetic field of 3.8\(\text { T}\). Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. The silicon pixel and strip tracker measures charged-particle trajectories within the pseudorapidity range \(|\eta |< 2.5\). It consists of 66 million pixel and 10 million strip sensor elements. For charged particles with \(1< p_{\mathrm {T}} < 10\,\text {GeV} \) and \(|\eta | < 1.4\), the track resolutions are typically 1.5% in \(p_{\mathrm {T}}\)  [39]. Muons are measured in gas-ionisation detectors embedded in the steel flux-return yoke outside the solenoid over the range \(|\eta |< 2.4\), with detection planes based on three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The reconstruction algorithm considers all tracks in the silicon tracker and identifies them as muons by looking for compatible signatures in the calorimeters and in the muon system. Because of the strong magnetic field and the fine granularity of the tracker, the muon \(p_{\mathrm {T}}\) measurement based on information from the tracker alone has a good resolution [40]. Extensive forward calorimetry, based on Cherenkov radiation detectors, complements the coverage provided by the barrel and endcap calorimeters. Two hadron forward (HF) calorimeters, consisting of iron absorbers and embedded radiation-hard quartz fibres, cover \(2.9< |\eta |< 5.2\), and two zero-degree calorimeters (ZDCs), with alternating layers of tungsten and quartz fibers, are sensitive to neutrons and photons with \(|\eta |> 8.3\) [41]. The data are collected with a two-level trigger system. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events [42]. The high-level trigger (HLT) processor farm runs a version of the full event reconstruction software optimized for fast processing. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [43]. 3 Data sample and Monte Carlo simulation The data set used in this analysis corresponds to 32.6\(\,\text {nb}^{-1}\) of integrated luminosity collected in \(\mathrm {p}\)Pb collisions by the CMS experiment in 2013, with beam energies of 4\(\,\text {TeV}\) for the protons and 1.58\(\,\text {TeV}\) per nucleon for the lead nuclei, resulting in a nucleon–nucleon centre-of-mass energy of \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \). The data are the sum of the collected \(\mathrm {p}\)Pb and Pb\(\mathrm {p}\) collision samples, with the incoming Pb ion going in the \(+z\) and \(-z\) beam directions, corresponding to integrated luminosities of 18.8 and 13.8\(\,\text {nb}^{-1}\), respectively. The photon–proton centre-of-mass energy, \(W_{\gamma \mathrm {p}} \), is related to the rapidity y of the \(\mathrm {\Upsilon }\) meson in the laboratory frame by \(W_{\gamma \mathrm {p}} ^{2}=2E_\mathrm {p}m_{\mathrm {\Upsilon }} \exp (\pm y)\), where \(E_\mathrm {p}\) is the proton energy, and the \(+(-)\) sign corresponds to the \(\mathrm {p}\)Pb (Pb\(\mathrm {p}\)) beam configuration. This formula, derived neglecting the transverse momenta involved in the interaction, approximates the true value of \(W_{\gamma \mathrm {p}} \) to better than 1 per mille in the \(W_{\gamma \mathrm {p}} \) range of this measurement. The data span the range \(91< W_{\gamma \mathrm {p}} < 826\,\text {GeV} \), with the limits given by the maximum and minimum rapidities, over \(|y |<2.2\), of the \(\mathrm {\Upsilon }\) mesons. Because the CMS detector is symmetric along z, the \(\mathrm {p}\)Pb and Pb\(\mathrm {p}\) data samples are merged in this analysis after changing the sign of \(p_{z}\) of the final state particles in the Pb\(\mathrm {p}\) sample. The starlight (v3.07) [44, 45] Monte Carlo (MC) event generator is used to simulate exclusive \(\mathrm {\Upsilon }\mathrm {(nS)} \) photoproduction events (Fig. 1a) and the exclusive QED background (Fig. 1c). The starlight MC assumes that the photon flux from the incoming hadron(s) is described by the Weizsäcker–Williams equivalent photon approximation [46, 47], and uses an empirical fit of the exclusive vector meson photoproduction cross sections to the existing HERA \(\gamma \mathrm {p} \) data. In the \(\mathrm {\Upsilon }\mathrm {(nS)} \) sample, two contributions are simulated, with the photon being emitted either from the Pb ion or from the proton. The \(\gamma \mathrm {p} \) events where the photon is emitted from the Pb ion constitute the signal, while the small fraction of \(\gamma \mathrm {Pb}\) events with the photon emitted from the proton is treated as a background. The signal events in the starlight MC are simulated assuming a \(|t |\)-differential cross section following an \(\exp (-b|t |)\) dependence, and a power law dependence of the cross section on the photon–proton centre-of-mass energy, \(W_{\gamma \mathrm {p}} ^{\delta }\), with the exponent \(\delta \). In this study, the b and \(\delta \) parameters are tuned to reproduce the data through a reweighting procedure described in Sect. 4. The backgrounds from inclusive and semiexclusive \(\mathrm {\Upsilon }\) and dimuon production processes are obtained using templates derived from control samples in the data, as explained in the next section. All simulated events are passed through the Geant4-based [48, 49, 50] detector simulation and the event reconstruction chain of CMS. 4 Event selection and background estimation The \(\mathrm {\Upsilon }\mathrm {(nS)} \) states are studied in their dimuon decay channel. The UPC dimuon events are selected at the trigger level with a dedicated HLT algorithm, requiring at least one muon and at least one, but not more than six, tracks in the event. At the offline level, additional selection criteria for muon quality requirements, are applied [40, 51]. In order to minimize the uncertainties related to the low-\(p_{\mathrm {T}} \) muon reconstruction inefficiencies, muons with \(p_{\mathrm {T}} ^{\mu }>3.3\,\text {GeV} \) are selected in the region \(|\eta ^{\mu } |<2.2\) in the laboratory frame. Exclusive events are selected by requiring two opposite-charge muons with a single vertex and no extra charged particles with \(p_{\mathrm {T}} >0.1\,\text {GeV} \) associated with it. In addition, no energy deposits in the HF calorimeters are allowed. This is achieved by requiring that the largest HF tower energy deposit be smaller than 5\(\,\text {GeV}\). The HF energy threshold is set to be larger than the detector noise, and is determined from the energy distributions collected in dedicated data taking with no LHC beams. Furthermore, the rapidity of the muon pair is required to be in the region \(|y |<2.2\) in the laboratory frame. Only events with the \(p_{\mathrm {T}} \) of the muon pair between 0.1 and 1\(\,\text {GeV}\) are considered, thereby reducing the contamination from QED pairs at very low \(p_{\mathrm {T}} \) and from \(\mathrm {\Upsilon }\) meson production in inclusive and semiexclusive (where the proton dissociates into a low-mass hadronic system, Fig. 1b) processes that dominate the region of large dimuon \(p_{\mathrm {T}} >1\,\text {GeV} \). Figure 2 shows the invariant mass distribution of \(\mu ^{+}\mu ^{-}\) pairs in the range between 8 and 12\(\,\text {GeV}\) that satisfy the selection criteria described above. An unbinned likelihood fit to the spectrum is performed using RooFit [52] with a linear function to describe the QED \(\gamma \gamma \rightarrow \mu ^+\mu ^-\) continuum background, where the background slope parameter is fixed to the starlight \(\gamma \gamma \rightarrow \mu ^+\mu ^-\) simulation, plus three Gaussian functions for the three \(\mathrm {\Upsilon }\) signal peaks, since the natural widths of the \(\mathrm {\Upsilon }\mathrm {(nS)} \) states are much smaller than their (Gaussian) experimental invariant mass resolutions. The six free parameters of the fit are the normalizations of the background and the three signal peaks, as well as the mass and the width of the \(\mathrm {\Upsilon (1S)}\) resonance. The \(\mathrm {\Upsilon (2S)}-\mathrm {\Upsilon (1S)}\) and \(\mathrm {\Upsilon (3S)}-\mathrm {\Upsilon (1S)}\) mass differences are fixed to their PDG values [53], while the widths of \(\mathrm {\Upsilon (2S)}\) and \(\mathrm {\Upsilon (3S)}\) are expressed in terms of the \(\mathrm {\Upsilon (1S)}\) width scaled by the ratio of their masses. The parameters describing the background plus the \(\mathrm {\Upsilon (1S)}\) and \(\mathrm {\Upsilon (2S)}\) resonances do not change if the \(\mathrm {\Upsilon (3S)}\) signal is neglected in the fit. The statistical significance of the \(\mathrm {\Upsilon (1S)}+\mathrm {\Upsilon (2S)}\) peaks over the background is \(3.9 \sigma \). The apparent excess at \(8.5\,\text {GeV} \) has a local significance of \(1.6\sigma \), and is consistent with a statistical fluctuation. Because of the overall small number of events in the data sample, a determination of the separate \(\mathrm {\Upsilon }\mathrm {(nS)} \) differential cross sections by fitting the invariant mass spectrum in each \(p_{\mathrm {T}} ^2\) and y bin leads to results with large statistical fluctuations. Instead, the cross sections are extracted by adding up the events, after background subtraction, in the 9.1–10.6\(\,\text {GeV}\) mass region corresponding to the three \(\mathrm {\Upsilon }\) states combined, and the \(\mathrm {\Upsilon (1S)}\) yield is derived from the \(\mathrm {\Upsilon (1S)}\)/\(\mathrm {\Upsilon }\mathrm {(sum)} \) ratio, where \(\mathrm {\Upsilon }\mathrm {(sum)} =\mathrm {\Upsilon (1S)}+\mathrm {\Upsilon (2S)}+\mathrm {\Upsilon (3S)}\), as described in Sect. 5. Open image in new window Fig. 2 Invariant mass distribution of the exclusive muon pair candidates in the range \(8< m_{\mu ^{+}\mu ^{-}}< 12\,\text {GeV} \) that pass all the selection criteria, fitted to a linear function for the two-photon QED continuum (blue dashed line) plus three Gaussian distributions corresponding to the \(\mathrm {\Upsilon (1S)}\), \(\mathrm {\Upsilon (2S)}\), and \(\mathrm {\Upsilon (3S)}\) mesons (dashed-dotted-red curves) Open image in new window Fig. 3 Distributions of the a transverse momentum squared \(p_{\mathrm {T}} ^2\), and b rapidity y of exclusive muon pairs with invariant mass \(9.1<m_{\mu ^{+}\mu ^{-}}<10.6~\,\text {GeV} \) after all selection criteria have been applied. Both distributions are compared to the expectations of signal and background contributions discussed in the text Figure 3 shows the dimuon \(p_{\mathrm {T}} ^2\) and rapidity distributions in the invariant mass interval \(9.1<m_{\mu ^{+}\mu ^{-}}<10.6\,\text {GeV} \) for events passing all the selection criteria for the combined \(\mathrm {p}\)Pb and Pb\(\mathrm {p}\) samples. The data, uncorrected for detector effects, are compared to the starlight simulation for exclusive \(\mathrm {\Upsilon }\mathrm {(nS)} \) and QED dimuon production, normalized to the recorded integrated luminosity, together with the inclusive and semiexclusive backgrounds derived from the data themselves as discussed below. The simulated \(\mathrm {\Upsilon }\mathrm {(nS)} \) events from starlight are shown separately for the \(\gamma \mathrm {p} \) and \(\gamma \mathrm {Pb} \) processes; the latter (with much smaller cross sections) are considered as a background in this analysis. The \(\mathrm {\Upsilon }\mathrm {(nS)} \) events generated with starlight are reweighted to describe the data, using the parameters \(b = 5.8\,\text {GeV} ^{-2}\) for the \(|t |\) distribution slope, and \(\delta =0.99\) for the cross section energy dependence. These parameters minimize the \(\chi ^2\) goodness-of-fit value calculated using the data and MC distributions of Fig. 3. The minimization is performed as a function of the rapidity simultaneously for the \(\gamma \mathrm {p} \) and \(\gamma \mathrm {Pb} \) samples, and as a function of \(p_{\mathrm {T}} ^2\) for the \(\gamma \mathrm {p} \) events. For \(\gamma \mathrm {Pb} \) events, the default starlight \(p_{\mathrm {T}} \) spectrum is used. In order to extract the exclusive \(\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon }(\mu ^+\mu ^-) \mathrm {p}\) signal events, the exclusive QED and other nonexclusive background contributions need to be subtracted. The QED \(\gamma \gamma \rightarrow \mu ^+\mu ^-\) continuum under the \(\mathrm {\Upsilon }\mathrm {(nS)} \) peaks is estimated with the starlight MC simulation. The absolute prediction of the cross section from this generator is cross-checked by comparing the data and the simulation in a control region, corresponding to small values of dimuon \(p_{\mathrm {T}} \), \(p_{\mathrm {T}} <0.15\,\text {GeV} \), and away from the \(\mathrm {\Upsilon }\) resonances, \(8<m_{\mu ^{+}\mu ^{-}}<9.1\,\text {GeV} \) and \(10.6<m_{\mu ^{+}\mu ^{-}}<12\,\text {GeV} \), where the QED process is dominant. The ratio of the measured yields in the data to those from the starlight MC in the control region is measured to be \(1.03 \pm 0.10\), confirming that this event generator reproduces the QED background well, as observed previously in \(\mathrm {p}\)Pb and PbPb collisions at the LHC [29, 30, 31, 32]. The QED contribution, estimated from the starlight MC in the signal region, amounts to 40% (64 and 8% in the lowest and highest dimuon \(p_{\mathrm {T}} ^2\) bins of the corresponding differential cross section, respectively). Backgrounds to the exclusive \(\mathrm {\Upsilon }\rightarrow \mu ^+\mu ^-\) signal also originate from semiexclusive and inclusive \(\mathrm {\Upsilon }\) meson and Drell–Yan (DY) continuum production, where any additional hadronic activity falls outside the detector acceptance or below the detection thresholds. These background contributions are estimated from the data, by removing selectively the neutral or charged exclusivity requirements. A template dominated by semiexclusive contributions is constructed using events with only two muon tracks in the tracker accompanied by at least one HF tower having an energy deposit larger than the noise threshold of 5\(\,\text {GeV}\), in the direction of the outgoing proton. Events with two muons satisfying the selection criteria, but with at least one additional track with \(p_{\mathrm {T}} >0.1\,\text {GeV} \), are used to build a template dominated by inclusive DY production events. The normalizations of the two templates are obtained from a fit to the measured \(p_{\mathrm {T}} ^2\) distribution extended up to \(p_{\mathrm {T}} ^2=10\,\text {GeV} ^2\), where proton dissociation and inclusive events dominate, as seen in the tail of the distribution of Fig. 3a. The combination of the normalized inclusive and semiexclusive templates describes the region of high dimuon \(p_{\mathrm {T}} ^2\) well in the data in all four y bins used for the cross section extraction. The overall fraction of both backgrounds in the signal sample is estimated to be 11% (3 and 48% in the lowest and highest dimuon \(p_{\mathrm {T}} ^2\) bin, respectively). As an extra cross check of the nonexclusive background subtraction, the signal extraction is repeated by requiring in addition no neutron detection in the ZDC calorimeters [29]. The extracted yield of exclusive \(\mathrm {\Upsilon }\) candidates at low \(p_{\mathrm {T}} \) is found to be consistent with the nominal results without applying the ZDC veto requirement, thereby confirming the efficiency of the nonexclusive background rejection. An additional background in this analysis originates from a small contribution of exclusive \(\gamma \mathrm {Pb} \rightarrow \mathrm {\Upsilon }\mathrm {Pb}\) events. It is estimated using the reweighted starlight \(\mathrm {\Upsilon }\) MC sample, and amounts to 6% (16 and 1% in the lowest and highest dimuon \(p_{\mathrm {T}} ^2\) bin, respectively) of the \(\gamma \mathrm {p} \) MC signal. Relative to the data, this contribution amounts to 3% (5 and 1% at the lowest and highest dimuon \(p_{\mathrm {T}} ^2\) bin, respectively). These simulation-based fractions are used to subtract the \(\gamma \mathrm {Pb} \rightarrow \mathrm {\Upsilon }\mathrm {Pb}\) contribution from the data. 5 Extraction of cross sections The dimuon events selected as described above are used to determine the differential \(\mathrm {\Upsilon }\) photoproduction cross sections in four bins of \(p_{\mathrm {T}} ^2\) over \(p_{\mathrm {T}} ^2=0.01\)–\(1\,\text {GeV} {}^2\), and in four bins of y over \(|y |<2.2\). Because of the limited size of the data sample, we first extract the differential cross sections for all \(\mathrm {\Upsilon }\mathrm {(nS)} \) resonances combined. Then, the total cross section as a function of \(W_{\gamma \mathrm {p}} \) is extracted for the \(\mathrm {\Upsilon (1S)}\) state alone, as described below, and is compared with previous experimental measurements and theoretical predictions. The background-subtracted \(p_{\mathrm {T}} ^2\) and y distributions are first unfolded over the region \(0.01<p_{\mathrm {T}} ^2<1\,\text {GeV} {}^2\), \(|y |<2.2\), and muon \(p_{\mathrm {T}} ^{\mu }>3.3\,\text {GeV} \), by using the Bayesian iterative unfolding technique [54], as implemented in the RooUnfold package [55], with four iterations. This procedure corrects for detector effects and data migration between bins. The response matrix is obtained from the starlight \(\gamma \mathrm {p} \) simulation. The differential cross section \(\mathrm {d}\sigma /\mathrm {d}p_{\mathrm {T}} ^2\) is further extrapolated to the full range of single-muon \(p_{\mathrm {T}} \) by means of an acceptance correction factor \(A^{\text {corr}}=N_{\mathrm {\Upsilon }\mathrm {(nS)}}(p_{\mathrm {T}} ^{\mu }>3.3\,\text {GeV} \) \()/N_{\mathrm {\Upsilon }\mathrm {(nS)}}(p_{\mathrm {T}} ^{\mu }>0)\), estimated with the starlight \(\gamma \mathrm {p} \) simulation. The measured \(\mathrm {d}\sigma /{\mathrm {d}}y\) values in each rapidity bin are also similarly extrapolated down to zero dimuon \(p_{\mathrm {T}} \). The \(A^{\text {corr}}\approx 0.6\) factor does not significantly depend on \(p_{\mathrm {T}} ^2\) but varies as a function of y as shown later in Table 3. The \(p_{\mathrm {T}} ^2\)- and y-differential cross sections, multiplied by the dimuon branching fraction, are extracted for the three \(\mathrm {\Upsilon }\mathrm {(nS)} \) states combined as follows, $$\begin{aligned} \begin{aligned} \sum _\mathrm {n}\mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\,\frac{\mathrm {d}\sigma _{\mathrm {\Upsilon }\mathrm {(nS)}}}{\mathrm {d}p_{\mathrm {T}} ^2}= & {} \frac{N^{\text {corr}}_{\mathrm {\Upsilon }\mathrm {(sum)}}}{\mathcal {L} \, \Delta p_{\mathrm {T}} ^2},\\ \sum _\mathrm {n}\mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\,\frac{\mathrm {d}\sigma _{\mathrm {\Upsilon }\mathrm {(nS)}}}{{\mathrm {d}}y}= & {} \frac{N^{\text {corr}}_{\mathrm {\Upsilon }\mathrm {(sum)}}}{\mathcal {L} \, \Delta y}. \end{aligned} \end{aligned}$$ (1) Here \(N^{\text {corr}}_{\mathrm {\Upsilon }\mathrm {(sum)}}\) denotes the background-subtracted, unfolded, and acceptance-corrected number of \(\mathrm {\Upsilon (1S)}\), \(\mathrm {\Upsilon (2S)}\) and \(\mathrm {\Upsilon (3S)}\) signal events in each \(p_{\mathrm {T}} ^2\) and y bin, \(\mathcal {L}\) is the integrated luminosity, \(\Delta p_{\mathrm {T}} ^2\) and \(\Delta y\) are the widths of the \(p_{\mathrm {T}} ^2\) and y bins, and \(\mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\) is the dimuon branching fraction [53]. The differential \(\mathrm {\Upsilon (1S)}\) photoproduction cross section \(\mathrm {d}\sigma _{\mathrm {\Upsilon }{\mathrm {(1S)}}}/{\mathrm {d}}y\) is then extracted via $$\begin{aligned} \frac{\mathrm {d}\sigma _{\mathrm {\Upsilon (1S)}}}{{\mathrm {d}}y}= & {} \frac{f_{\mathrm {\Upsilon (1S)}}}{\mathcal {B}_{\mathrm {\Upsilon (1S)}\rightarrow \mu ^+\mu ^-}(1+f_{\text {FD}})}\nonumber \\&\times \left[ \sum _\mathrm { n}\mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\frac{\mathrm {d}\sigma _{\mathrm {\Upsilon }\mathrm {(nS)}}}{{\mathrm {d}}y}\right] , \end{aligned}$$ (2) where the factor \(f_{\mathrm {\Upsilon (1S)}}\) is the ratio of \(\mathrm {\Upsilon (1S)}\) to \(\mathrm {\Upsilon }\mathrm {(sum)} =\mathrm {\Upsilon (1S)}+\mathrm {\Upsilon (2S)}+\mathrm {\Upsilon (3S)}\) events, \(f_{\text {FD}}\) is the feed-down contribution to the \(\mathrm {\Upsilon (1S)}\) events originating from the \(\mathrm {\Upsilon (2S)}\rightarrow \mathrm {\Upsilon (1S)}+ X\) decays (where \(X=\pi ^{+}\pi ^{-}\) or \(\pi ^{0}\pi ^{0}\)), and \(\mathcal {B}_{\mathrm {\Upsilon (1S)}\rightarrow \mu ^+\mu ^-} = (2.48\pm 0.05)\%\) [53] is the branching fraction for the dimuon \(\mathrm {\Upsilon (1S)}\) meson decay channel. The fraction of \(\mathrm {\Upsilon (1S)}\) to \(\mathrm {\Upsilon }\mathrm {(sum)} =\mathrm {\Upsilon (1S)}+\mathrm {\Upsilon (2S)}+\mathrm {\Upsilon (3S)}\) yields is first derived from the event yield ratios \(r_{21}=N_{\mathrm {\Upsilon (2S)}}/N_{\mathrm {\Upsilon (1S)}} = 0.78 \pm 0.31\) and \(r_{31}=N_{\mathrm {\Upsilon (3S)}}/N_{\mathrm {\Upsilon (1S)}} = 0.21 \pm 0.22\) extracted from the invariant mass fit shown in Fig. 2, giving \(f_{\mathrm {\Upsilon (1S)}}=(1+r_{21}+r_{31})^{-1} = 0.50 \pm 0.09\), where the correlation between the two fitted parameters was not taken into account. Since this fraction has a relatively large statistical uncertainty, we use the value derived from the analysis [51] of inclusive \(\mathrm {\Upsilon }\mathrm {(nS)} \) meson production instead, which is performed at the same nucleon–nucleon collision centre-of-mass energy and in a similar \(\mathrm {\Upsilon }\) rapidity range as the current \(\mathrm {p}\)Pb measurement, in which the fraction is expressed as a function of the number of additional charged particles in the event (\(N_{\text {ch}}\)) and extrapolated to \(N_{\text {ch}}=0\). This procedure yields \(f_{\mathrm {\Upsilon (1S)}}=0.68 \pm 0.04\), consistent within statistical uncertainties with the factor obtained from the current data, as well as with the \(f_{\mathrm {\Upsilon (1S)}}=0.71 \pm 0.03\) and \(0.73 \pm 0.05\) values obtained in the measurements based on proton-(anti)proton data by LHCb [34] and CDF [56], at very forward and central \(\mathrm {\Upsilon }\) rapidities, respectively. The feed-down contribution is estimated using the MC simulation in the following way: the initial \(\mathrm {\Upsilon (2S)}\) \(p_{\mathrm {T}} \) and y distributions are taken from the starlight generator, and their \(\mathrm {\Upsilon (1S)}+ \pi \pi \) decays, followed by \(\mathrm {\Upsilon (1S)}\rightarrow \mu ^{+}\mu ^{-}\) are simulated with pythia  6.4 [57]. After applying all selections, the fraction of dimuon events from \(\mathrm {\Upsilon (2S)}\) feed-down is found to be 8% of the exclusive signal \(\mathrm {\Upsilon (1S)}\) events reconstructed using the starlight simulation. The contribution from feed-down of exclusive \(\chi _{\mathrm {b}} \) states is neglected because these mesons can only be produced in double-pomeron exchange processes (or in pairs, via \(\gamma \gamma \rightarrow \chi _{\mathrm {b}} \chi _{\mathrm {b}} \), with very small cross sections), which have comparatively much smaller yields in proton-nucleus collisions [58, 59]. Finally, the exclusive \(\mathrm {\Upsilon (1S)}\) photoproduction cross section as a function of \(W_{\gamma \mathrm {p}} \), is obtained from the \(\mathrm {d}\sigma _{\mathrm {\Upsilon (1S)}}/{\mathrm {d}}y\) cross section via the relation $$\begin{aligned} \sigma _{\gamma \mathrm {p}\rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}(W_{\gamma \mathrm {p}} ^{2}) = \frac{1}{\Phi }\frac{\mathrm {d}\sigma _{\mathrm {\Upsilon (1S)}}}{{\mathrm {d}}y}, \end{aligned}$$ (3) in four different rapidity bins, with associated \(W_{\gamma \mathrm {p}} \) intervals, given in Table 3. The cross sections are given at the value \(W_{0}\), which corresponds to the average rapidity over a bin, \(\langle y\rangle \). The photon flux \(\Phi \) in Eq. (3), evaluated at \(\langle y\rangle \), is obtained from the starlight simulation and calculated in the impact parameter space requiring the \(\mathrm {p}\)Pb separation to be larger than the sum of their radii. 6 Systematic uncertainties The following sources of systematic uncertainty are taken into account in the measurements of all differential and total \(\mathrm {\Upsilon }\) meson production cross sections, as well as for the extraction of the exponential slope b of the \(p_{\mathrm {T}} ^2\) spectrum: The muon reconstruction and selection efficiency has three components: the efficiency to find a track in the inner tracker, the efficiency to pass the track quality requirements, and the probability to pass the HLT selection. These efficiencies are estimated following the ”tag-and-probe” method [51], using first a sample of inclusive \(\mathrm {\Upsilon (1S)}\) events selected with a trigger that requires two muons (to determine track and muon-quality efficiencies), and second a \(\mathrm {\Upsilon (1S)}\) event sample similar to the one used in the nominal analysis, but collected with an independent trigger (to determine the trigger efficiency). The associated systematic uncertainty is evaluated from the difference in efficiencies obtained from the data and simulation, and it leads to uncertainties of \(10.5\%\), \(4.1\%\) and \(1.7\%\) for track, muon-quality and trigger component, respectively. The overall uncertainty is estimated by adding the three numbers in quadrature, and leads to an \(11\%\) uncertainty in the normalization of the cross sections, but no effect on the b slope measurement. To estimate the systematic uncertainty due to the model dependence of the acceptance correction, the parameters b and \(\delta \) of the simulated starlight spectra are changed by ± 30% (chosen conservatively by the uncertainties of the corresponding fits to the data), and the resulting MC distributions are used for the determination of the extrapolation factor \(A^\mathrm {corr}\), the unfolding, and the \(\gamma \mathrm {Pb} \rightarrow \mathrm {\Upsilon }\mathrm {Pb}\) background subtraction, resulting in 2–3% changes in the measured observables. The uncertainty due to the unfolding procedure is studied by modifying the number of iterations used for the Bayesian unfolding from the nominal value of 4 to 3 and 5, resulting in an uncertainty of \(1\%\) for the \(p_{\mathrm {T}} ^2\) spectrum, \(0.2\%\) for the b slope, and no change for the much flatter \(\mathrm {d}\sigma /{\mathrm {d}}y\) distribution, which has negligible net bin-to-bin migrations. The uncertainty associated with the exclusive QED background contribution is estimated by comparing the starlight simulation to the data in sideband regions of the invariant mass distribution, \(8.0<m_{\mu ^{+}\mu ^{-}}<9.1\,\text {GeV} \) and \(10.6<m_{\mu ^{+}\mu ^{-}}<12.0\,\text {GeV} \), for \(p_{\mathrm {T}} <0.15\,\text {GeV} \). The ratio of the simulation to the data in that region is found to be unity with a statistical uncertainty of 5%. To estimate the uncertainty due to the QED background subtraction, the MC normalization is scaled by ± 5%, resulting in 3–4% changes in the experimental observables. The uncertainty in the nonexclusive background contributions is estimated by varying the HF energy threshold by ± 10%. The resulting uncertainties of the observables vary between 3 and 6%. The uncertainty introduced by the \(\mathrm {\Upsilon (2S)}\rightarrow \mathrm {\Upsilon (1S)}+X\) decays is estimated by modifying the values of the b and \(\delta \) parameters of the \(\mathrm {\Upsilon (2S)}\) spectra in the starlight MC to those obtained from the reweighting described in Sect. 4. This resulted in a ± 2% variation of the \(\mathrm {\Upsilon (1S)}\) cross sections. The uncertainty in \(f_{\mathrm {\Upsilon (1S)}}= \mathrm {\Upsilon (1S)}/\mathrm {\Upsilon }\mathrm {(sum)} \) is 7%, estimated as the quadratic sum of the uncertainty obtained from the extrapolation discussed in Sect. 5 and from the difference between this result and that obtained by LHCb in Ref. [34]. The latter takes into account possible differences between inclusive and exclusive processes in proton-proton and proton-lead collisions. An additional 2% uncertainty in the \(\mathrm {\Upsilon (1S)}\rightarrow \mu ^+\mu ^-\) branching fraction is taken from the PDG world average [53]. All these uncertainties affect only the \(\mathrm {\Upsilon (1S)}\) cross sections. The theoretical uncertainty in the photon flux affects only the total cross section \(\sigma _{\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}\) and is estimated by changing the Pb radius by ± 0.5\(\text { fm}\), conservatively covering different estimates of the neutron skin thickness [60]. It amounts to 2, 3, 3, and 9% in the four y bins, respectively. The photon flux uncertainty (listed in the bottom row of Table 3) is larger for higher photon energies as they are dominated by smaller impact parameters. A systematic normalization uncertainty of ± 4% associated with the integrated luminosity [61] is assigned to the measurement of differential and total cross sections, with no effect on the b slope uncertainty. Table 1 Relative systematic uncertainties in percent in the measurements of \(\sum \mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\mathrm {d}\sigma /\mathrm {d}p_{\mathrm {T}} ^2\), the exponential b slope of the \(p_{\mathrm {T}} ^2\) spectrum, \(\sum \mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\mathrm {d}\sigma /{\mathrm {d}}y\), \(\mathrm {d}\sigma _{\mathrm {\Upsilon (1S)}}/{\mathrm {d}}y\), and \(\sigma _{\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}\). Individual contributions, as well as total systematic uncertainties added in quadrature are presented. For the \(p_{\mathrm {T}} ^2\)- and y-differential cross sections, the values averaged over all bins are shown Source \(\sum \mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\mathrm {d}\sigma /\mathrm {d}p_{\mathrm {T}} ^2\) b \(\sum \mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\mathrm {d}\sigma /{\mathrm {d}}y\) \(\mathrm {d}\sigma _{\mathrm {\Upsilon (1S)}}/{\mathrm {d}}y\) \(\sigma _{\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}\) Muon efficiency ± 11 – ± 11 ± 11 ± 11 Acceptance ± 3 ± 2 ± 2 ± 2 ± 2 Unfolding ± 1 ± 0.2 – – – Exclusive QED background ± 4 ± 3 ± 4 ± 4 ± 4 Nonexclusive background ± 3 ± 3 ± 6 ± 6 ± 6 Integrated luminosity ± 4 – ± 4 ± 4 ± 4 Feed-down – – – ± 2 ± 2 Branching fraction \(\mathcal {B}_{\mathrm {\Upsilon (1S)}}\rightarrow \mu ^+\mu ^-\) – – – ± 2 ± 2 \(f_{\mathrm {\Upsilon (1S)}}\) fraction – – – ± 7 ± 7 Photon flux \(\Phi \) – – – – ± 4 Total ± 13 ± 5 ± 14 ± 16 ± 16 The summary of the systematic uncertainties for all measurements is presented in Table 1. The dominant sources are the muon reconstruction efficiency and the modeling of the nonexclusive backgrounds. The total uncertainty is calculated by adding in quadrature the individual contributions, and varies between ± 5% for the b slope to ± 16% for \(\sigma _{\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}\). Given the limited integrated luminosity available, the measurements are dominated by statistical uncertainties. 7 Results 7.1 Differential cross section as a function of \(p_{\mathrm {T}} ^2\) and y The differential cross sections (multiplied by the dimuon branching fractions) for exclusive \(\mathrm {\Upsilon }\mathrm {(nS)} \) photoproduction, \(\sum \mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\mathrm {d}\sigma _{\mathrm {\Upsilon }\mathrm {(nS)}}/\mathrm {d}p_{\mathrm {T}} ^2\) and \(\sum \mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\mathrm {d}\sigma _{\mathrm {\Upsilon }\mathrm {(nS)}}/{\mathrm {d}}y\), measured over \(|y |<2.2\), are shown in Fig. 4 and tabulated in Table  2. The \(p_{\mathrm {T}} ^2\)-differential cross section is fitted with an exponential function in the region \(0.01<p_{\mathrm {T}} ^2<1.0\,\text {GeV} \) \(^2\), using a \(\chi ^2\) goodness-of-fit minimization method. A slope of \(b=6.0 \pm 2.1 \,\text {(stat)} \pm 0.3 \,\text {(syst)} \,\text {GeV} ^{-2}\) is extracted, in agreement with the value \(b=4.3^{+2.0}_{-1.3} \,\text {(stat)} {}^{+0.5}_{-0.6} \,\text {(syst)} \,\text {GeV} ^{-2}\) measured by the ZEUS experiment [24] in the photon–proton centre-of-mass energy range \(60<W_{\gamma \mathrm {p}} <220\,\text {GeV} \), and with the predictions of pQCD-based models [10]. Open image in new window Fig. 4 Differential \(\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-\) photoproduction cross section as a function of a \(p_{\mathrm {T}} ^2\) and b rapidity y, measured in \(\mathrm {p}\)Pb collisions at \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \). In the left plot, the data points are placed along the abscissa following the prescription of [62], and the solid line is an exponential fit of the form \(e^{-bp_{\mathrm {T}} ^2}\). In the right plot, the horizontal bars are shown to indicate the width of each y bin. In both plots, the vertical bars represent the statistical uncertainties and the boxes represent the systematic uncertainties Table 2 Differential exclusive \(\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-\) photoproduction cross sections in four \(p_{\mathrm {T}} ^2\) and y bins. The first and second uncertainties correspond to statistical and systematic components, respectively \(p_{\mathrm {T}} ^2\) bin (\(\text {GeV} ^2\)) \(\sum \mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\,\mathrm {d}\sigma _{\mathrm {\Upsilon }\mathrm {(nS)}}/\mathrm {d}p_{\mathrm {T}} ^2\) (nb/\(\text {GeV} ^2\)) y bin \(\sum \mathcal {B}_{\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-}\,\mathrm {d}\sigma _{\mathrm {\Upsilon }\mathrm {(nS)}}/{\mathrm {d}}y\) (nb) (0.01,0.05) \(25.4 \pm 14.8 \pm 4.9\) \((-\,2.2, -\,0.7)\) \(0.8 \pm 0.4 \pm 0.1\) (0.05,0.20) \(9.5 \pm 3.4 \pm 1.1\) \((-\,0.7, 0.0)\) \(0.9 \pm 0.5 \pm 0.1\) (0.20,0.35) \(4.4 \pm 2.4 \pm 0.5\) (0.0, 0.7) \(1.2 \pm 0.5 \pm 0.1\) (0.35,1.00) \(0.7 \pm 0.6 \pm 0.1\) (0.7, 2.2) \(0.7 \pm 0.2 \pm 0.1\) Figure 5 shows the rapidity distribution of the \(\mathrm {\Upsilon (1S)}\) state obtained according to Eq. (2). The values of all relevant parameters needed to compute the \(\mathrm {\Upsilon (1S)}\) cross sections in the four rapidity bins under consideration are listed in Table  3. The CMS measurements are compared to the following theoretical predictions: The JMRT model [10], a pQCD approach that uses standard (collinear) PDFs with a skewness factor to approximate GPDs, including LO and NLO corrections, and a gap survival factor to account for the exclusive production; The factorized impact parameter saturation model, fIPsat, with an eikonalized gluon distribution function that uses the colour glass condensate (CGC) formalism to incorporate gluon saturation at low x [17, 18]; the Iancu, Itakura and Munier (IIM) colour dipole formalism [63] with two sets of meson wave functions, boosted Gaussian (BG) and light-cone Gaussian (LCG), which also incorporate saturation effects [15, 16]; the impact parameter CGC model (bCGC), which takes into account the t-dependence of the differential cross section, using the BG wave function [19, 64]. As shown in Fig. 5, most theoretical predictions are consistent with the data, within the relatively large experimental uncertainties, with the JMRT-LO results being systematically above the data points as well as all the other calculations. Open image in new window Fig. 5 Differential \(\mathrm {\Upsilon (1S)}\) photoproduction cross section as a function of rapidity measured in \(\mathrm {p}\)Pb collisions at \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \) in the dimuon rapidity region \(|y |<2.2\), compared to various theoretical predictions [10, 15, 16, 17, 18, 19]. The horizontal bars are plotted to indicate the width of each y bin. The vertical bars represent the statistical uncertainties and the boxes represent the systematic uncertainties Table 3 Values of the \(\mathrm {\Upsilon (1S)}\) photoproduction cross section in four rapidity y bins, corresponding to four photon–proton \(W_{\gamma \mathrm {p}} \) centre-of-mass energy ranges (with central \(W_{0}\) value obtained following the procedure outlined in Ref. [62]), in \(\mathrm {p}\)Pb collisions at \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \). The symbols \(N_{\mathrm {\Upsilon }\mathrm {(sum)}}^{\text {back-sub}}\), \(N_{\mathrm {\Upsilon }\mathrm {(sum)}}^{\text {unfol}}\), and \(N_{\mathrm {\Upsilon }\mathrm {(sum)}}^{\text {corr}} \) represent the numbers of \(\mathrm {\Upsilon }\mathrm {(sum)} =\mathrm {\Upsilon (1S)}+\mathrm {\Upsilon (2S)}+\mathrm {\Upsilon (3S)}\) candidates after background subtraction, unfolding, and extrapolation with the \(A^{\text {corr}}\) factor, respectively; \(N_{\mathrm {\Upsilon (1S)}}\) is the extracted number of \(\mathrm {\Upsilon (1S)}\) mesons, and \(\Phi \) is the theoretical effective photon flux (see text). The first (second, if given) uncertainty quoted corresponds to the statistical (systematic) component y range \((-\,2.2,-\,0.7)\) \((-\,0.7,0.0)\) (0.0, 0.7) (0.7, 2.2) \(\langle y\rangle \) \(-1.45\) \(-0.35\) 0.35 1.45 \(N_{\mathrm {\Upsilon }\mathrm {(sum)}}^{\text {back-sub}}\) \(14 \pm 6\) \( 9 \pm 5 \) \( 12 \pm 5\) \(12 \pm 5\) \(N_{\mathrm {\Upsilon }\mathrm {(sum)}}^{\text {unfol}}\) \(19 \pm 9\) \( 13 \pm 7 \) \( 17\pm 7\) \(16 \pm 6\) \(A^{\text {corr}}\) \(0.46 \pm 0.01\) \( 0.61 \pm 0.01\) \(0.61 \pm 0.01\) \( 0.50 \pm 0.01\) \(N_{\mathrm {\Upsilon }\mathrm {(sum)}}^{\text {corr}} \) \(41 \pm 19 \pm 7\) \( 21 \pm 11 \pm 3\) \(28 \pm 11 \pm 4\) \(33 \pm 13 \pm 5 \) \(N_{\mathrm {\Upsilon (1S)}}=\frac{f_{\mathrm {\Upsilon (1S)}}N_{\mathrm {\Upsilon }\mathrm {(sum)}}}{(1+f_{\mathrm {FD})}}\) \(26 \pm 12 \pm 4\) \(13 \pm 7 \pm 2\) \(18 \pm 7 \pm 2\) \(21 \pm 8 \pm 3\) \(\mathrm {d}\sigma _{\mathrm {\Upsilon (1S)}}/{\mathrm {d}}y\) (nb) \(21 \pm 10 \pm 4\) \(23 \pm 12 \pm 3\) \(31 \pm 12 \pm 4\) \(17 \pm 7 \pm 3\) \(W_{\gamma \mathrm {p}} \) range (\(\text {GeV}\)) 91–194 194–275 275–390 390–826 \(W_{0}\) (\(\text {GeV}\)) 133 231 328 568 Photon flux (\(\Phi \)) \(102.2 \pm 2.0\) \(68.3 \pm 2.0\) \(46.9 \pm 1.4\) \(17.9 \pm 1.6\) \(\sigma _{\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}\) (pb) \(208\pm 96 \pm 37\) \(343\pm 180 \pm 51\) \(663 \pm 260 \pm 93\) \(956 \pm 376 \pm 162\) 7.2 Cross section as a function of \(W_{\gamma \mathrm {p}} \) The values of the \(\sigma _{\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}\) cross section obtained via Eq. (3) are plotted as a function of \(W_{\gamma \mathrm {p}} \) in Fig. 6, together with the previous measurements from H1 [20], ZEUS [21, 22], and LHCb [34], and the five model predictions described in the previous section. The CMS results (listed in Table 3) cover the range of energies between the HERA and LHCb data. As \(\sigma (W_{\gamma \mathrm {p}})\) is, to first approximation, proportional to the square of the gluon density of the proton, and since the gluon distribution at low Bjorken x is well described by a power law, the cross section also follows a power-law energy dependence. A fit of the extracted CMS \(\sigma _{\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}\) cross section with a function of the form \(A\,(W_{\gamma \mathrm {p}} [\text {GeV} ]/400)^{\delta }\) (with the constant A corresponding to the cross section at the middle value, \(W_{\gamma \mathrm {p}} = 400\,\text {GeV} \), over the range of energies covered) gives \(\delta =1.08\pm 0.42\) and \(A=690\pm 183\text { pb} \) (black solid line in Fig 6), consistent with the value \(\delta =1.2 \pm 0.8\) obtained by ZEUS [21]. A similar fit to the CMS, H1 [20], and ZEUS [21] data together gives \(\delta =0.99\pm 0.27\), in good agreement with the results of the fit to the CMS data alone. The fit over the whole kinematic range, including the higher-\(W_{\gamma \mathrm {p}} \) LHCb data, yields an exponent of \(\delta =0.77\pm 0.14\), consistent with the collision-energy dependence of the \(\mathrm {J}/\psi \) photoproduction and light vector meson electroproduction cross sections [65]. Open image in new window Fig. 6 Cross section for exclusive \(\mathrm {\Upsilon (1S)}\) photoproduction, \(\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}\), as a function of photon–proton centre-of-mass energy, \(W_{\gamma \mathrm {p}} \), compared to previous HERA [20, 21, 22] and LHCb [34] data as well as to various theoretical predictions [10, 15, 16, 17, 18, 19]. The vertical bars represent the statistical uncertainties and the boxes represent the systematic uncertainties The data are compared to the predictions of the JMRT model, including LO and NLO corrections. A fit with the power-law function in the entire \(W_{\gamma \mathrm {p}} \) range of the data yields \(\delta =1.39\) and \(\delta =0.84\) for the LO and NLO calculations, respectively. The LO predictions show a steeper increase of the cross section with energy than seen in the data over the full kinematic range. The NLO prediction reproduces the measured rise of the cross section with \(W_{\gamma \mathrm {p}} \). The recent LHCb results at higher \(W_{\gamma \mathrm {p}} \) [34] also disfavour the JMRT LO prediction. Figure 6 shows theoretical predictions from the fIPsat, IIM, and bCGC models, which overall bracket the combined HERA and LHC results. The fIPsat calculations are consistent with the CMS measurement, but predict a somewhat higher cross section than that measured by LHCb. The IIM and bCGC predictions satisfactorily describe the rise of the cross section with \(\gamma \mathrm {p} \) centre-of-mass energy. As discussed in Ref. [10], the gluon PDF associated with the JMRT NLO prediction, which is consistent with the CMS+LHCb data presented here, has a somewhat different shape at low-x than that predicted by standard pQCD collinear fits used at the LHC such as CT14 [66], NNPDF3.0 [67], and MMHT [68]. However, given the currently large statistical uncertainty of the results presented here, an improved understanding of the low-x gluon density, and its evolution with energy scale, will require more precise measurements with larger integrated luminosities and/or at higher centre-of-mass energies. 8 Summary The first study of the exclusive photoproduction of \(\mathrm {\Upsilon }\)(1S,2S,3S) mesons, in the \(\mu ^{+}\mu ^{-}\) decay mode, from protons in ultraperipheral \(\mathrm {p}\)Pb collisions at \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \), has been reported using data collected with the CMS detector corresponding to an integrated luminosity of 32.6\(\,\text {nb}^{-1}\). The differential cross section \(\mathrm {d}\sigma /\mathrm {d}p_{\mathrm {T}} ^2\) and associated exponential slope b have been measured in the squared transverse momentum range \(p_{\mathrm {T}} ^2<1.0\,\text {GeV} ^2\). The extracted value of \(b=6.0 \pm 2.1 \,\text {(stat)} \pm 0.3 \,\text {(syst)} \,\text {GeV} ^{-2}\) is consistent with the slope measurement at other centre-of-mass energies. The exclusive \(\mathrm {\Upsilon (1S)}\) photoproduction cross sections, differential in rapidity y and as a function of the photon–proton centre-of-mass energy \(W_{\gamma \mathrm {p}} \), have been measured in the range \(91< W_{\gamma \mathrm {p}} < 826\,\text {GeV} \). Such measurements probe the region of parton fractional momenta \(x\approx 10^{-4}\)–\(10^{-2}\) in the proton, bridging a previously unexplored region between the HERA and LHCb measurements. The dependence of \(\sigma _{\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon (1S)}\mathrm {p}}\) on \(W_{\gamma \mathrm {p}} \) is well described by a power law with an exponent smaller than that predicted by leading order perturbative quantum chromodynamics (pQCD) approaches. The exponent is, however, consistent with that extracted from a fit to the HERA and LHCb data, and with that predicted by next-to-leading-order pQCD calculations. The data, within their currently large statistical uncertainties, are consistent with various pQCD approaches that model the behaviour of the low-x gluon density, and provide new insights on the gluon distribution in the proton in this poorly explored region. Notes Acknowledgements We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (UK); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract no. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research Grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, Grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). References 1. A.J. Baltz et al., The physics of ultraperipheral collisions at the LHC. Phys. Rep. 458, 1 (2008).  https://doi.org/10.1016/j.physrep.2007.12.001. arXiv:0706.3356 ADSCrossRefGoogle Scholar 2. S. Klein, J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions. Phys. Rev. C 60, 014903 (1999).  https://doi.org/10.1103/PhysRevC.60.014903. arXiv:hep-ph/9902259 ADSCrossRefGoogle Scholar 3. D. d’Enterria, Quarkonia photoproduction at nucleus colliders. Nucl. Phys. B Proc. Suppl. 184, 158 (2008).  https://doi.org/10.1016/j.nuclphysbps.2008.09.155. arXiv:0711.1123 ADSCrossRefGoogle Scholar 4. V. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, The two photon particle production mechanism. Physical problems, applications, equivalent photon approximation. Phys. Rep. 15, 181 (1975).  https://doi.org/10.1016/0370-1573(75)90009-5 ADSCrossRefGoogle Scholar 5. J.P. Lansberg et al., Perspectives on heavy-quarkonium production at the LHC. AIP Conf. Proc. 1038, 15 (2008).  https://doi.org/10.1063/1.2987169. arXiv:0807.3666 ADSCrossRefGoogle Scholar 6. S.J. Brodsky et al., Diffractive leptoproduction of vector mesons in QCD. Phys. Rev. D 50, 3134 (1994).  https://doi.org/10.1103/PhysRevD.50.3134. arXiv:hep-ph/9402283 ADSCrossRefGoogle Scholar 7. L.L. Frankfurt, A. Freund, M. Strikman, Diffractive exclusive photoproduction in DIS at HERA. Phys. Rev. D 58, 114001 (1998).  https://doi.org/10.1103/PhysRevD.58.114001. arXiv:hep-ph/9710356. [Erratum: 10.1103/PhysRevD.59.119901]ADSCrossRefGoogle Scholar 8. L. Frankfurt, M. McDermott, M. Strikman, A fresh look at diffractive \({\text{ J }/\psi }\) photoproduction at HERA, with predictions for THERA. JHEP 03, 045 (2001).  https://doi.org/10.1088/1126-6708/2001/03/045. arXiv:hep-ph/0009086 ADSCrossRefGoogle Scholar 9. A.D. Martin, C. Nockles, M.G. Ryskin, T. Teubner, Small \(x\) gluon from exclusive \({\text{ J }/\psi }\) production. Phys. Lett. B 662, 252 (2008).  https://doi.org/10.1140/j.physletb.2008.02.067. arXiv:0709.4406 ADSCrossRefGoogle Scholar 10. S.P. Jones, A.D. Martin, M.G. Ryskin, T. Teubner, Probes of the small \(x\) gluon via exclusive \({\text{ J }/\psi }\) and \(\Upsilon \) production at HERA and LHC. JHEP 11, 085 (2013).  https://doi.org/10.1007/JHEP11(2013)085. arXiv:1307.7099 ADSCrossRefGoogle Scholar 11. A. Adeluyi, C.A. Bertulani, M.J. Murray, Nuclear effects in photoproduction of heavy quarks and vector mesons in ultraperipheral PbPb and pPb collisions at the LHC. Phys. Rev. C 86, 047901 (2012).  https://doi.org/10.1103/PhysRecC.86.047901. arXiv:1208.6258 ADSCrossRefGoogle Scholar 12. A. Adeluyi, T. Nguyen, Coherent photoproduction of \(\psi \) and \(\Upsilon \) mesons in ultraperipheral pPb and PbPb collsions at the CERN LHC. Phys. Rev. C 87, 027901 (2013).  https://doi.org/10.1103/PhysRecC.87.027901. arXiv:1302.4288 ADSCrossRefGoogle Scholar 13. V. Guzey, M. Zhalov, Exclusive \({\text{ J }/\psi }\) production in ultraperipheral collisions at the LHC: constraints on the gluon distributions in the proton and nuclei. JHEP 10, 207 (2013).  https://doi.org/10.1007/JHEP10(2013)207. arXiv:1307.4526 ADSCrossRefGoogle Scholar 14. V. Guzey, E. Kryshen, M. Strikman, M. Zhalov, Evidence for nuclear gluon shadowing from the ALICE measurements of PbPb ultraperipheral exclusive \({\text{ J }/\psi }\) production. Phys. Lett. B 726, 290 (2013).  https://doi.org/10.1016/j.physletb.2013.08.043. arXiv:1305.1724 ADSCrossRefGoogle Scholar 15. G. Sampaio dos Santos, M.V.T. Machado, Exclusive photoproduction of quarkonium in proton-nucleus collisions at the CERN Large Hadron Collider. Phys. Rev. C 89, 025201 (2014).  https://doi.org/10.1103/Phys.RevC.89.025201. arXiv:1312.0770 ADSCrossRefGoogle Scholar 16. G. Sampaio dos Santos, M.V.T. Machado, On theoretical uncertainty of color dipole phenomenology in the \({\text{ J }/\psi }\) and \(\Upsilon \) photoproduction in pA and AA collisions at the CERN Large Hadron Collider. J. Phys. G 42, 105001 (2015).  https://doi.org/10.1088/0954-3899/42/10/105001. arXiv:1411.7918 ADSCrossRefGoogle Scholar 17. T. Lappi, H. Mantysaari, Incoherent diffractive \({\text{ J }/\psi }\) production in high energy nuclear DIS. Phys. Rev. C 83, 065202 (2011).  https://doi.org/10.1103/PhysRevC.83.065202. arXiv:1011.1988 ADSCrossRefGoogle Scholar 18. T. Lappi, H. Mantysaari, \({\text{ J }/\psi }\) production in ultraperipheral Pb+Pb and p+Pb collisions at energies available at the CERN large Hadron collider. Phys. Rev. C 87, 032201 (2013).  https://doi.org/10.1103/PhysRevC.87.032201. arXiv:1301.4095 ADSCrossRefGoogle Scholar 19. V.P. Goncalves, B.D. Moreira, F.S. Navarra, Exclusive heavy vector meson photoproduction in hadronic collisions at LHC: predictions of the color glass condensate model for run 2 energies. Phys. Rev. D 95, 054011 (2017).  https://doi.org/10.1103/PhysRevD.95.054011. arXiv:1612.06254 ADSCrossRefGoogle Scholar 20. H1 Collaboration, Elastic photoproduction of \({\text{ J }/\psi }\) and \(\Upsilon \) mesons at HERA. Phys. Lett. B 483, 23 (2000).  https://doi.org/10.1016/S0370-2693(00)00530-X. arXiv:hep-ex/0003020 21. ZEUS Collaboration, Exclusive photoproduction of \(\Upsilon \) mesons at HERA. Phys. Lett. B 680, 4 (2009).  https://doi.org/10.1016/j.physletb.2009.07.066. arXiv:0903.4205 22. ZEUS Collaboration, Measurement of elastic \(\Upsilon \) photoproduction at HERA. Phys. Lett. B 437, 432 (1998).  https://doi.org/10.1016/S0370-2693(98)01081-8. arXiv:hep-ex/9807020 23. H1 Collaboration, Elastic and proton-dissociative photoproduction of \({\text{ J }/\psi }\) mesons at HERA. Eur. Phys. J. C 73, 2466 (2013).  https://doi.org/10.1140/epjc/s10052-013-2466-y. arXiv:1304.5162 24. ZEUS Collaboration, Measurement of the \(t\) dependence in exclusive photoproduction of \(\Upsilon \text{(1S) }\) mesons at HERA. Phys. Lett. B 708, 14 (2012).  https://doi.org/10.1016/j.physletb.2012.01.009. arXiv:1111.2133 25. S.J. Brodsky et al., The QCD pomeron with optimal renormalization. JETP 70, 155 (1999).  https://doi.org/10.1134/1.568145. arXiv:hep-ph/9901229 CrossRefGoogle Scholar 26. LHCb Collaboration, Exclusive \({\text{ J }/\psi }\) and \(\psi \)(2S) production in pp collisions at \(\sqrt{s}=7\) TeV. J. Phys. G 40, 045001 (2013).  https://doi.org/10.1088/0954-3899/40/4/045001. arXiv:1301.7084 27. LHCb Collaboration, Updated measurements of exclusive \({\text{ J }/\psi }\) and \(\psi \)(2S) production cross-sections in pp collisions at \(\sqrt{s}=7\) TeV. J. Phys. G. 41, 055002 (2014).  https://doi.org/10.1088/0954-3899/41/5/055002. arXiv:1401.3288 28. LHCb Collaboration, Central exclusive production of \({\text{ J }/\psi }\) and \(\psi \)(2S) mesons in pp collisions at \(\sqrt{s}=13\) TeV. JHEP. 10, 167 (2018).  https://doi.org/10.1007/JHEP10(2018)167. arXiv:1806.04079 29. CMS Collaboration, Coherent \({\text{ J }/\psi }\) photoproduction in ultra-peripheral PbPb collisions \(\sqrt{{s_{{\rm NN}}}} = 5.02 \text{ TeV } = 2.76 \text{ TeV }\) with the CMS experiment. Phys. Lett. B 772, 489 (2017).  https://doi.org/10.1016/j.physletb.2017.07.001. arXiv:1605.06966 30. ALICE Collaboration, Coherent \({\text{ J }/\psi }\) photoproduction in ultra-peripheral PbPb collisions at \(\sqrt{{s_{_{\rm NN}}}} = 5.02 \text{ TeV } = 2.76 \text{ TeV }\). Phys. Lett. B, 718, 1273 (2013).  https://doi.org/10.1016/j.physletb.2012.11.059. arXiv:1209.3715 31. ALICE Collaboration, Charmonium and \(e^+e^-\) pair photoproduction at mid-rapidity in ultra-peripheral PbPb collisions at \(\sqrt{{s_{{\rm NN}}}} = 5.02 \text{ TeV } = 2.76 \text{ TeV }\). Eur. Phys. J. C, 73, 2617 (2013).  https://doi.org/10.1140/epjc/s10052-013-2617-1. arXiv:1305.1467 32. ALICE Collaboration, Exclusive \({\text{ J }/\psi }\) photoproduction off protons in ultra-peripheral pPb collisions at \(\sqrt{{s_{{\rm NN}}}} = 5.02 \text{ TeV } = 5.02 \text{ TeV }\). Phys. Rev. Lett. 113, 232504 (2014).  https://doi.org/10.1103/PhysRevLett.113.232504. arXiv:1406.7819 33. ALICE Collaboration, Energy dependence of exclusive \({\text{ J }/\psi }\) photoproduction off protons in ultra-peripheral pPb collisions at \(\sqrt{{s_{{\rm NN}}}} = 5.02 \text{ TeV } = 5.02 \text{ TeV }\). (2018). arXiv:1809.03235 34. LHCb Collaboration, Measurement of the exclusive \(\Upsilon \) production cross section in pp collisions at \(\sqrt{s}=7\) TeV and 8 TeV. JHEP, 09, 084 (2015).  https://doi.org/10.1007/JHEP09(2015)084. arXiv:1505.08139 35. S.P. Jones, A.D. Martin, M.G. Ryskin, T. Teubner, Exclusive \({\text{ J }/\psi }\) and \(\Upsilon \) photoproduction and the low \(x\) gluon. J. Phys. G 43, 035002 (2016).  https://doi.org/10.1088/0954-3899/43/3/035002. arXiv:1507.06942 ADSCrossRefGoogle Scholar 36. L.V. Gribov, E.M. Levin, M.G. Ryskin, Semihard processes in QCD. Phys. Rep. 100, 1 (1983).  https://doi.org/10.1016/0370-1573(83)90022-4 ADSCrossRefGoogle Scholar 37. A.H. Mueller, J.-W. Qiu, Gluon recombination and shadowing at small values of \(x\). Nucl. Phys. B 268, 427 (1986).  https://doi.org/10.1016/0550-3213(86)90164-1 ADSCrossRefGoogle Scholar 38. L.D. McLerran, R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum. Phys. Rev. D 49, 3352 (1994).  https://doi.org/10.1103/PhysRevD.49.3352. arXiv:hep-ph/9311205 ADSCrossRefGoogle Scholar 39. CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014).  https://doi.org/10.1088/1748-0221/9/10/P10009. arXiv:1405.6569 40. CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at \(\sqrt{s}=7\) TeV. JINST 7, P10002 (2012).  https://doi.org/10.1088/1748-0221/7/10/P10002. arXiv:1206.4071 41. CMS Collaboration, Status of zero degree calorimeter for CMS experiment. AIP Conf. Proc. 867, 258 (2006).  https://doi.org/10.1063/1.2396962. arXiv:nucl-ex/0608052 42. CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017).  https://doi.org/10.1088/1748-0221/12/01/P01020. arXiv:1609.02366 43. CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008).  https://doi.org/10.1088/1748-0221/3/08/S08004 44. S.R. Klein, J. Nystrand, Photoproduction of quarkonium in proton-proton and nucleus-nucleus collisions. Phys. Rev. Lett. 92, 142003 (2004).  https://doi.org/10.1103/PhysRevLett.92.142003. arXiv:hep-ex/0311164 ADSCrossRefGoogle Scholar 45. J. Nystrand, Photons and exclusive processes at hadron colliders. Proceedings of PHOTON2009, Hamburg, Germany, 286 (2009).  https://doi.org/10.3204/DESY-PROC-2009-03/Nystrand, arXiv:1001.4746 46. C.F.V. Weizsäcker, Radiation emitted in collisions of very fast electrons. Z. Phys. 88, 612 (1934).  https://doi.org/10.1007/BF01333110 ADSCrossRefGoogle Scholar 47. E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae. Phys. Rev. 45, 729 (1934).  https://doi.org/10.1103/PhysRev.45.729 ADSCrossRefGoogle Scholar 48. GEANT4 Collaboration, Geant4–a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003).  https://doi.org/10.1016/S0168-9002(03)01368-8 49. J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006).  https://doi.org/10.1109/TNS.2006.869826 ADSCrossRefGoogle Scholar 50. J. Allison et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186 (2016).  https://doi.org/10.1016/j.nima.2016.06.125 ADSCrossRefGoogle Scholar 51. CMS Collaboration, Event activity dependence of \(\Upsilon \)(nS) production in \(\sqrt{{s_{{\rm NN}}}} = 5.02 \text{ TeV }\) pPb and \(\sqrt{s}= 2.76\) TeV pp collisions. JHEP 04, 103 (2014).  https://doi.org/10.1007/JHEP04(2014)103, arXiv:1312.6300 52. W. Verkerke, D. P. Kirkby, The RooFit toolkit for data modeling, in 13th International Conference for Computing in High-Energy and Nuclear Physics (CHEP 2003), p. MOLT007. SLAC, La Jolla, CA, US, March, 2003. arXiv:physics/0306116. eConf:C0303241/MOLT007 53. Particle Data Group, Review of particle physics. Chin. Phys. C 40, 100001 (2016).  https://doi.org/10.1008/1674-1137/40/10/100001 54. G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A 362, 487 (1995).  https://doi.org/10.1016/0168-9002(95)00274-X ADSCrossRefGoogle Scholar 55. T. Adye, Unfolding algorithms and tests using RooUnfold, in H. Prosper and L. Lyons, (eds.) PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, p. 313. Geneva, Switzerland, 2011.  https://doi.org/10.5170/CERN-2011-006.313. arXiv:1105.1160 56. CDF Collaboration, \(\Upsilon \) production and polarization in \({\text{ p }}\bar{\text{ p }}\) collisions at \(\sqrt{s}=\) 1.8 TeV. Phys. Rev. Lett. 88, 161802 (2002)  https://doi.org/10.1103/PhysRevLett.88.161802 57. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006).  https://doi.org/10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175 ADSCrossRefzbMATHGoogle Scholar 58. A.J. Schramm, D.H. Reeves, Production of \(\eta \) mesons in double pomeron exchange. Phys. Rev. D 55, 7312 (1997).  https://doi.org/10.1103/PhysRevD.55.7312. arXiv:hep-ph/9611330 ADSCrossRefGoogle Scholar 59. L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Standard candle central exclusive processes at the Tevatron and LHC. Eur. Phys. J. C 69, 179 (2010).  https://doi.org/10.1140/epjc/s10052-010-1404-5. arXiv:1005.0695 ADSCrossRefGoogle Scholar 60. C. Loizides, J. Kamin, D. d’Enterria, Improved Monte Carlo Glauber predictions at present and future nuclear colliders. Phys. Rev. C 97, 054910 (2018).  https://doi.org/10.1103/PhysRevC.97.054910. arXiv:1710.07098 ADSCrossRefGoogle Scholar 61. CMS Collaboration, Luminosity calibration for the 2013 proton-lead and proton-proton data taking, CMS Physics Analysis Summary CMS-PAS-LUM-13-002 (2013)Google Scholar 62. G.D. Lafferty, T.R. Wyatt, Where to stick your data points: the treatment of measurements within wide bins. Nucl. Instrum. Methods A 355, 541 (1995).  https://doi.org/10.1016/0168-9002(94)01112-5 ADSCrossRefGoogle Scholar 63. E. Iancu, K. Itakura, S. Munier, Saturation and BFKL dynamics in the HERA data at small x. Phys. Lett. B 590, 199 (2004).  https://doi.org/10.1016/j.physletb.2004.02.040. arXiv:hep-ph/0310338 ADSCrossRefGoogle Scholar 64. V.P. Goncalves et al., Color dipole predictions for the exclusive vector meson photoproduction in pp/pPb/PbPb collisions at Run 2 LHC energies. Phys. Rev. D 96, 094027 (2017).  https://doi.org/10.1103/PhysRevD.96.094027. arXiv:1710.10070 ADSCrossRefGoogle Scholar 65. L. Favart, M. Guidal, T. Horn, P. Kroll, Deeply virtual meson production on the nucleon. Eur. Phys. J. A 52, 158 (2016).  https://doi.org/10.1140/epja/i2016-16158-2. arXiv:1511.04535 ADSCrossRefGoogle Scholar 66. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016).  https://doi.org/10.1103/PhysRevD.93.033006. arXiv:1506.07443 ADSCrossRefGoogle Scholar 67. NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP 04, 040 (2015).  https://doi.org/10.1007/JHEP04(2015)040. arXiv:1410.8849 68. L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015).  https://doi.org/10.1140/epjc/s10052-015-3397-6. arXiv:1412.3989 ADSCrossRefGoogle Scholar Copyright information © CERN for the benefit of the CMS collaboration 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3 Authors and Affiliations A. M. Sirunyan1A. Tumasyan1W. Adam2F. Ambrogi2E. Asilar2T. Bergauer2J. Brandstetter2E. Brondolin2M. Dragicevic2J. Erö2A. Escalante Del Valle2M. Flechl2M. Friedl2R. Frühwirth2V. M. Ghete2J. Grossmann2J. Hrubec2M. Jeitler2A. König2N. Krammer2I. Krätschmer2D. Liko2T. Madlener2I. Mikulec2E. Pree2N. Rad2H. Rohringer2J. Schieck2R. Schöfbeck2M. Spanring2D. Spitzbart2A. Taurok2W. Waltenberger2J. Wittmann2C.-E. Wulz2M. Zarucki2V. Chekhovsky3V. Mossolov3J. Suarez Gonzalez3E. A. De Wolf4D. Di Croce4X. Janssen4J. Lauwers4M. Pieters4M. Van De Klundert4H. Van Haevermaet4P. Van Mechelen4N. Van Remortel4S. Abu Zeid5F. Blekman5J. D’Hondt5I. De Bruyn5J. De Clercq5K. Deroover5G. Flouris5D. Lontkovskyi5S. Lowette5I. Marchesini5S. Moortgat5L. Moreels5Q. Python5K. Skovpen5S. Tavernier5W. Van Doninck5P. Van Mulders5I. Van Parijs5D. Beghin6B. Bilin6H. Brun6B. Clerbaux6G. De Lentdecker6H. Delannoy6B. Dorney6G. Fasanella6L. Favart6R. Goldouzian6A. Grebenyuk6A. K. Kalsi6T. Lenzi6J. Luetic6T. Seva6E. Starling6C. Vander Velde6P. Vanlaer6D. Vannerom6R. Yonamine6T. Cornelis7D. Dobur7A. Fagot7M. Gul7I. Khvastunov7D. Poyraz7C. Roskas7D. Trocino7M. Tytgat7W. Verbeke7B. Vermassen7M. Vit7N. Zaganidis7H. Bakhshiansohi8O. Bondu8S. Brochet8G. Bruno8C. Caputo8A. Caudron8P. David8S. De Visscher8C. Delaere8M. Delcourt8B. Francois8A. Giammanco8G. Krintiras8V. Lemaitre8A. Magitteri8A. Mertens8M. Musich8K. Piotrzkowski8L. Quertenmont8A. Saggio8M. Vidal Marono8S. Wertz8J. Zobec8W. L. Aldá Júnior9F. L. Alves9G. A. Alves9L. Brito9G. Correia Silva9C. Hensel9A. Moraes9M. E. Pol9P. Rebello Teles9E. Belchior Batista Das Chagas10W. Carvalho10J. Chinellato10E. Coelho10E. M. Da Costa10G. G. Da Silveira10D. De Jesus Damiao10S. Fonseca De Souza10H. Malbouisson10M. Medina Jaime10M. Melo De Almeida10C. Mora Herrera10L. Mundim10H. Nogima10L. J. Sanchez Rosas10A. Santoro10A. Sznajder10M. Thiel10E. J. Tonelli Manganote10F. Torres Da Silva De Araujo10A. Vilela Pereira10S. Ahuja11C. A. Bernardes11A. Calligaris11T. R. Fernandez Perez Tomei11E. M. Gregores11P. G. Mercadante11S. F. Novaes11Sandra S. Padula11D. Romero Abad11J. C. Ruiz Vargas11A. Aleksandrov12R. Hadjiiska12P. Iaydjiev12A. Marinov12M. Misheva12M. Rodozov12M. Shopova12G. Sultanov12A. Dimitrov13L. Litov13B. Pavlov13P. Petkov13W. Fang14X. Gao14L. Yuan14M. Ahmad15J. G. Bian15G. M. Chen15H. S. Chen15M. Chen15Y. Chen15C. H. Jiang15D. Leggat15H. Liao15Z. Liu15F. Romeo15S. M. Shaheen15A. Spiezia15J. Tao15C. Wang15Z. Wang15E. Yazgan15H. Zhang15J. Zhao15Y. Ban16G. Chen16J. Li16Q. Li16S. Liu16Y. Mao16S. J. Qian16D. Wang16Z. Xu16Y. Wang17C. Avila18A. Cabrera18C. A. Carrillo Montoya18L. F. Chaparro Sierra18C. Florez18C. F. González Hernández18M. A. Segura Delgado18B. Courbon19N. Godinovic19D. Lelas19I. Puljak19P. M. Ribeiro Cipriano19T. Sculac19Z. Antunovic20M. Kovac20V. Brigljevic21D. Ferencek21K. Kadija21B. Mesic21A. Starodumov21T. Susa21M. W. Ather22A. Attikis22G. Mavromanolakis22J. Mousa22C. Nicolaou22F. Ptochos22P. A. Razis22H. Rykaczewski22M. Finger23M. FingerJr.23E. Carrera Jarrin24S. Khalil25M. A. Mahmoud25Y. Mohammed25S. Bhowmik26R. K. Dewanjee26M. Kadastik26L. Perrini26M. Raidal26C. Veelken26P. Eerola27H. Kirschenmann27J. Pekkanen27M. Voutilainen27J. Havukainen28J. K. Heikkilä28T. Järvinen28V. Karimäki28R. Kinnunen28T. Lampén28K. Lassila-Perini28S. Laurila28S. Lehti28T. Lindén28P. Luukka28T. Mäenpää28H. Siikonen28E. Tuominen28J. Tuominiemi28T. Tuuva29M. Besancon30F. Couderc30M. Dejardin30D. Denegri30J. L. Faure30F. Ferri30S. Ganjour30S. Ghosh30A. Givernaud30P. Gras30G. Hamel de Monchenault30P. Jarry30C. Leloup30E. Locci30M. Machet30J. Malcles30G. Negro30J. Rander30A. Rosowsky30M. Ö. Sahin30M. Titov30A. Abdulsalam31C. Amendola31I. Antropov31S. Baffioni31F. Beaudette31P. Busson31L. Cadamuro31C. Charlot31R. Granier de Cassagnac31M. Jo31I. Kucher31S. Lisniak31A. Lobanov31J. Martin Blanco31M. Nguyen31C. Ochando31G. Ortona31P. Paganini31P. Pigard31R. Salerno31J. B. Sauvan31Y. Sirois31A. G. Stahl Leiton31Y. Yilmaz31A. Zabi31A. Zghiche31J.-L. Agram32J. Andrea32D. Bloch32J.-M. Brom32E. C. Chabert32C. Collard32E. Conte32X. Coubez32F. Drouhin32J.-C. Fontaine32D. Gelé32U. Goerlach32M. Jansová32P. Juillot32A.-C. Le Bihan32N. Tonon32P. Van Hove32S. Gadrat33S. Beauceron34C. Bernet34G. Boudoul34N. Chanon34R. Chierici34D. Contardo34P. Depasse34H. El Mamouni34J. Fay34L. Finco34S. Gascon34M. Gouzevitch34G. Grenier34B. Ille34F. Lagarde34I. B. Laktineh34H. Lattaud34M. Lethuillier34L. Mirabito34A. L. Pequegnot34S. Perries34A. Popov34V. Sordini34M. Vander Donckt34S. Viret34S. Zhang34T. Toriashvili35Z. Tsamalaidze36C. Autermann37L. Feld37M. K. Kiesel37K. Klein37M. Lipinski37M. Preuten37M. P. Rauch37C. Schomakers37J. Schulz37M. Teroerde37B. Wittmer37V. Zhukov37A. Albert38D. Duchardt38M. Endres38M. Erdmann38S. Erdweg38T. Esch38R. Fischer38A. Güth38T. Hebbeker38C. Heidemann38K. Hoepfner38S. Knutzen38M. Merschmeyer38A. Meyer38P. Millet38S. Mukherjee38T. Pook38M. Radziej38H. Reithler38M. Rieger38F. Scheuch38D. Teyssier38S. Thüer38G. Flügge39B. Kargoll39T. Kress39A. Künsken39T. Müller39A. Nehrkorn39A. Nowack39C. Pistone39O. Pooth39A. Stahl39M. Aldaya Martin40T. Arndt40C. Asawatangtrakuldee40K. Beernaert40O. Behnke40U. Behrens40A. Bermúdez Martínez40A. A. Bin Anuar40K. Borras40V. Botta40A. Campbell40P. Connor40C. Contreras-Campana40F. Costanza40V. Danilov40A. De Wit40C. Diez Pardos40D. Domínguez Damiani40G. Eckerlin40D. Eckstein40T. Eichhorn40A. Elwood40E. Eren40E. Gallo40J. Garay Garcia40A. Geiser40J. M. Grados Luyando40A. Grohsjean40P. Gunnellini40M. Guthoff40A. Harb40J. Hauk40M. Hempel40H. Jung40M. Kasemann40J. Keaveney40C. Kleinwort40J. Knolle40I. Korol40D. Krücker40W. Lange40A. Lelek40T. Lenz40K. Lipka40W. Lohmann40R. Mankel40I.-A. Melzer-Pellmann40A. B. Meyer40M. Meyer40M. Missiroli40G. Mittag40J. Mnich40A. Mussgiller40D. Pitzl40A. Raspereza40M. Savitskyi40P. Saxena40R. Shevchenko40N. Stefaniuk40H. Tholen40G. P. Van Onsem40R. Walsh40Y. Wen40K. Wichmann40C. Wissing40O. Zenaiev40R. Aggleton41S. Bein41V. Blobel41M. Centis Vignali41T. Dreyer41E. Garutti41D. Gonzalez41J. Haller41A. Hinzmann41M. Hoffmann41A. Karavdina41G. Kasieczka41R. Klanner41R. Kogler41N. Kovalchuk41S. Kurz41V. Kutzner41J. Lange41D. Marconi41J. Multhaup41M. Niedziela41D. Nowatschin41T. Peiffer41A. Perieanu41A. Reimers41C. Scharf41P. Schleper41A. Schmidt41S. Schumann41J. Schwandt41J. Sonneveld41H. Stadie41G. Steinbrück41F. M. Stober41M. Stöver41D. Troendle41E. Usai41A. Vanhoefer41B. Vormwald41M. Akbiyik42C. Barth42M. Baselga42S. Baur42E. Butz42R. Caspart42T. Chwalek42F. Colombo42W. De Boer42A. Dierlamm42N. Faltermann42B. Freund42R. Friese42M. Giffels42M. A. Harrendorf42F. Hartmann42S. M. Heindl42U. Husemann42F. Kassel42S. Kudella42H. Mildner42M. U. Mozer42Th. Müller42M. Plagge42G. Quast42K. Rabbertz42M. Schröder42I. Shvetsov42G. Sieber42H. J. Simonis42R. Ulrich42S. Wayand42M. Weber42T. Weiler42S. Williamson42C. Wöhrmann42R. Wolf42G. Anagnostou43G. Daskalakis43T. Geralis43A. Kyriakis43D. Loukas43I. Topsis-Giotis43G. Karathanasis44S. Kesisoglou44A. Panagiotou44N. Saoulidou44E. Tziaferi44K. Kousouris45I. Papakrivopoulos45I. Evangelou46C. Foudas46P. Gianneios46P. Katsoulis46P. Kokkas46S. Mallios46N. Manthos46I. Papadopoulos46E. Paradas46J. Strologas46F. A. Triantis46D. Tsitsonis46M. Csanad47N. Filipovic47G. Pasztor47O. Surányi47G. I. Veres47G. Bencze48C. Hajdu48D. Horvath48Á. Hunyadi48F. Sikler48T. Á. Vámi48V. Veszpremi48G. Vesztergombi48N. Beni49S. Czellar49J. Karancsi49A. Makovec49J. Molnar49Z. Szillasi49M. Bartók50P. Raics50Z. L. Trocsanyi50B. Ujvari50S. Choudhury51J. R. Komaragiri51S. Bahinipati52P. Mal52K. Mandal52A. Nayak52D. K. Sahoo52S. K. Swain52S. Bansal53S. B. Beri53V. Bhatnagar53S. Chauhan53R. Chawla53N. Dhingra53R. Gupta53A. Kaur53M. Kaur53S. Kaur53R. Kumar53P. Kumari53M. Lohan53A. Mehta53S. Sharma53J. B. Singh53G. Walia53A. Bhardwaj54B. C. Choudhary54R. B. Garg54S. Keshri54A. Kumar54Ashok Kumar54S. Malhotra54M. Naimuddin54K. Ranjan54Aashaq Shah54R. Sharma54R. Bhardwaj55R. Bhattacharya55S. Bhattacharya55U. Bhawandeep55D. Bhowmik55S. Dey55S. Dutt55S. Dutta55S. Ghosh55N. Majumdar55K. Mondal55S. Mukhopadhyay55S. Nandan55A. Purohit55P. K. Rout55A. Roy55S. Roy Chowdhury55S. Sarkar55M. Sharan55B. Singh55S. Thakur55P. K. Behera56R. Chudasama57D. Dutta57V. Jha57V. Kumar57A. K. Mohanty57P. K. Netrakanti57L. M. Pant57P. Shukla57A. Topkar57T. Aziz58S. Dugad58B. Mahakud58S. Mitra58G. B. Mohanty58N. Sur58B. Sutar58S. Banerjee59S. Bhattacharya59S. Chatterjee59P. Das59M. Guchait59Sa. Jain59S. Kumar59M. Maity59G. Majumder59K. Mazumdar59N. Sahoo59T. Sarkar59N. Wickramage59S. Chauhan60S. Dube60V. Hegde60A. Kapoor60K. Kothekar60S. Pandey60A. Rane60S. Sharma60S. Chenarani61E. Eskandari Tadavani61S. M. Etesami61M. Khakzad61M. Mohammadi Najafabadi61M. Naseri61S. Paktinat Mehdiabadi61F. Rezaei Hosseinabadi61B. Safarzadeh61M. Zeinali61M. Felcini62M. Grunewald62M. Abbrescia63C. Calabria63A. Colaleo63D. Creanza63L. Cristella63N. De Filippis63M. De Palma63A. Di Florio63F. Errico63L. Fiore63A. Gelmi63G. Iaselli63S. Lezki63G. Maggi63M. Maggi63B. Marangelli63G. Miniello63S. My63S. Nuzzo63A. Pompili63G. Pugliese63R. Radogna63A. Ranieri63G. Selvaggi63A. Sharma63L. Silvestris63R. Venditti63P. Verwilligen63G. Zito63G. Abbiendi64C. Battilana64D. Bonacorsi64L. Borgonovi64S. Braibant-Giacomelli64R. Campanini64P. Capiluppi64A. Castro64F. R. Cavallo64S. S. Chhibra64G. Codispoti64M. Cuffiani64G. M. Dallavalle64F. Fabbri64A. Fanfani64D. Fasanella64P. Giacomelli64C. Grandi64L. Guiducci64S. Marcellini64G. Masetti64A. Montanari64F. L. Navarria64F. Odorici64A. Perrotta64A. M. Rossi64T. Rovelli64G. P. Siroli64N. Tosi64S. Albergo65S. Costa65A. Di Mattia65F. Giordano65R. Potenza65A. Tricomi65C. Tuve65G. Barbagli66K. Chatterjee66V. Ciulli66C. Civinini66R. D’Alessandro66E. Focardi66G. Latino66P. Lenzi66M. Meschini66S. Paoletti66L. Russo66G. Sguazzoni66D. Strom66L. Viliani66L. Benussi67S. Bianco67F. Fabbri67D. Piccolo67F. Primavera67V. Calvelli68F. Ferro68F. Ravera68E. Robutti68S. Tosi68A. Benaglia69A. Beschi69L. Brianza69F. Brivio69V. Ciriolo69M. E. Dinardo69S. Fiorendi69S. Gennai69A. Ghezzi69P. Govoni69M. Malberti69S. Malvezzi69R. A. Manzoni69D. Menasce69L. Moroni69M. Paganoni69K. Pauwels69D. Pedrini69S. Pigazzini69S. Ragazzi69T. Tabarelli de Fatis69S. Buontempo70N. Cavallo70S. Di Guida70F. Fabozzi70F. Fienga70G. Galati70A. O. M. Iorio70W. A. Khan70L. Lista70S. Meola70P. Paolucci70C. Sciacca70F. Thyssen70E. Voevodina70P. Azzi71N. Bacchetta71L. Benato71D. Bisello71A. Boletti71R. Carlin71A. Carvalho Antunes De Oliveira71P. Checchia71P. De Castro Manzano71T. Dorigo71U. Dosselli71F. Gasparini71U. Gasparini71A. Gozzelino71S. Lacaprara71P. Lujan71M. Margoni71A. T. Meneguzzo71N. Pozzobon71P. Ronchese71R. Rossin71F. Simonetto71A. Tiko71M. Zanetti71P. Zotto71G. Zumerle71A. Braghieri72A. Magnani72P. Montagna72S. P. Ratti72V. Re72M. Ressegotti72C. Riccardi72P. Salvini72I. Vai72P. Vitulo72L. Alunni Solestizi73M. Biasini73G. M. Bilei73C. Cecchi73D. Ciangottini73L. Fanò73P. Lariccia73R. Leonardi73E. Manoni73G. Mantovani73V. Mariani73M. Menichelli73A. Rossi73A. Santocchia73D. Spiga73K. Androsov74P. Azzurri74G. Bagliesi74L. Bianchini74T. Boccali74L. Borrello74R. Castaldi74M. A. Ciocci74R. Dell’Orso74G. Fedi74L. Giannini74A. Giassi74M. T. Grippo74F. Ligabue74T. Lomtadze74E. Manca74G. Mandorli74A. Messineo74F. Palla74A. Rizzi74P. Spagnolo74R. Tenchini74G. Tonelli74A. Venturi74P. G. Verdini74L. Barone75F. Cavallari75M. Cipriani75N. Daci75D. Del Re75E. Di Marco75M. Diemoz75S. Gelli75E. Longo75B. Marzocchi75P. Meridiani75G. Organtini75F. Pandolfi75R. Paramatti75F. Preiato75S. Rahatlou75C. Rovelli75F. Santanastasio75N. Amapane76R. Arcidiacono76S. Argiro76M. Arneodo76N. Bartosik76R. Bellan76C. Biino76N. Cartiglia76R. Castello76F. Cenna76M. Costa76R. Covarelli76A. Degano76N. Demaria76B. Kiani76C. Mariotti76S. Maselli76E. Migliore76V. Monaco76E. Monteil76M. Monteno76M. M. Obertino76L. Pacher76N. Pastrone76M. Pelliccioni76G. L. Pinna Angioni76A. Romero76M. Ruspa76R. Sacchi76K. Shchelina76V. Sola76A. Solano76A. Staiano76S. Belforte77M. Casarsa77F. Cossutti77G. Della Ricca77A. Zanetti77D. H. Kim78G. N. Kim78M. S. Kim78J. Lee78S. Lee78S. W. Lee78C. S. Moon78Y. D. Oh78S. Sekmen78D. C. Son78Y. C. Yang78H. Kim79D. H. Moon79G. Oh79J. A. Brochero Cifuentes80J. Goh80T. J. Kim80S. Cho81S. Choi81Y. Go81D. Gyun81S. Ha81B. Hong81Y. Jo81Y. Kim81K. Lee81K. S. Lee81S. Lee81J. Lim81S. K. Park81Y. Roh81J. Almond82J. Kim82J. S. Kim82H. Lee82K. Lee82K. Nam82S. B. Oh82B. C. Radburn-Smith82S. h. Seo82U. K. Yang82H. D. Yoo82G. B. Yu82H. Kim83J. H. Kim83J. S. H. Lee83I. C. Park83Y. Choi84C. Hwang84J. Lee84I. Yu84V. Dudenas85A. Juodagalvis85J. Vaitkus85I. Ahmed86Z. A. Ibrahim86M. A. B. Md Ali86F. Mohamad Idris86W. A. T. Wan Abdullah86M. N. Yusli86Z. Zolkapli86H. Castilla-Valdez87E. De La Cruz-Burelo87M. C. Duran-Osuna87I. Heredia-De La Cruz87R. Lopez-Fernandez87J. Mejia Guisao87R. I. Rabadan-Trejo87G. Ramirez-Sanchez87R. Reyes-Almanza87A. Sanchez-Hernandez87S. Carrillo Moreno88C. Oropeza Barrera88F. Vazquez Valencia88J. Eysermans89I. Pedraza89H. A. Salazar Ibarguen89C. Uribe Estrada89A. Morelos Pineda90D. Krofcheck91S. Bheesette92P. H. Butler92A. Ahmad93M. Ahmad93Q. Hassan93H. R. Hoorani93A. Saddique93M. A. Shah93M. Shoaib93M. Waqas93H. Bialkowska94M. Bluj94B. Boimska94T. Frueboes94M. Górski94M. Kazana94K. Nawrocki94M. Szleper94P. Traczyk94P. Zalewski94K. Bunkowski95A. Byszuk95K. Doroba95A. Kalinowski95M. Konecki95J. Krolikowski95M. Misiura95M. Olszewski95A. Pyskir95M. Walczak95P. Bargassa96C. Beirão Da Cruz E Silva96A. Di Francesco96P. Faccioli96B. Galinhas96M. Gallinaro96J. Hollar96N. Leonardo96L. Lloret Iglesias96M. V. Nemallapudi96J. Seixas96G. Strong96O. Toldaiev96D. Vadruccio96J. Varela96S. Afanasiev97P. Bunin97M. Gavrilenko97I. Golutvin97I. Gorbunov97A. Kamenev97V. Karjavin97A. Lanev97A. Malakhov97V. Matveev97P. Moisenz97V. Palichik97V. Perelygin97S. Shmatov97S. Shulha97N. Skatchkov97V. Smirnov97N. Voytishin97A. Zarubin97Y. Ivanov98V. Kim98E. Kuznetsova98P. Levchenko98V. Murzin98V. Oreshkin98I. Smirnov98D. Sosnov98V. Sulimov98L. Uvarov98S. Vavilov98A. Vorobyev98Yu. Andreev99A. Dermenev99S. Gninenko99N. Golubev99A. Karneyeu99M. Kirsanov99N. Krasnikov99A. Pashenkov99D. Tlisov99A. Toropin99V. Epshteyn100V. Gavrilov100N. Lychkovskaya100V. Popov100I. Pozdnyakov100G. Safronov100A. Spiridonov100A. Stepennov100V. Stolin100M. Toms100E. Vlasov100A. Zhokin100T. Aushev101A. Bylinkin101V. Andreev102M. Azarkin102I. Dremin102M. Kirakosyan102S. V. Rusakov102A. Terkulov102A. Baskakov103A. Belyaev103E. Boos103A. Ershov103A. Gribushin103L. Khein103V. Klyukhin103O. Kodolova103I. Lokhtin103O. Lukina103I. Miagkov103S. Obraztsov103S. Petrushanko103V. Savrin103A. Snigirev103V. Blinov104D. Shtol104Y. Skovpen104I. Azhgirey105I. Bayshev105S. Bitioukov105D. Elumakhov105A. Godizov105V. Kachanov105A. Kalinin105D. Konstantinov105P. Mandrik105V. Petrov105R. Ryutin105A. Sobol105S. Troshin105N. Tyurin105A. Uzunian105A. Volkov105A. Babaev106P. Adzic107P. Cirkovic107D. Devetak107M. Dordevic107J. Milosevic107J. Alcaraz Maestre108A. Álvarez Fernández108I. Bachiller108M. Barrio Luna108M. Cerrada108N. Colino108B. De La Cruz108A. Delgado Peris108C. Fernandez Bedoya108J. P. Fernández Ramos108J. Flix108M. C. Fouz108O. Gonzalez Lopez108S. Goy Lopez108J. M. Hernandez108M. I. Josa108D. Moran108A. Pérez-Calero Yzquierdo108J. Puerta Pelayo108I. Redondo108L. Romero108M. S. Soares108A. Triossi108C. Albajar109J. F. de Trocóniz109J. Cuevas110C. Erice110J. Fernandez Menendez110S. Folgueras110I. Gonzalez Caballero110J. R. González Fernández110E. Palencia Cortezon110S. Sanchez Cruz110P. Vischia110J. M. Vizan Garcia110I. J. Cabrillo111A. Calderon111B. Chazin Quero111J. Duarte Campderros111M. Fernandez111P. J. Fernández Manteca111A. García Alonso111J. Garcia-Ferrero111G. Gomez111A. Lopez Virto111J. Marco111C. Martinez Rivero111P. Martinez Ruiz del Arbol111F. Matorras111J. Piedra Gomez111C. Prieels111T. Rodrigo111A. Ruiz-Jimeno111L. Scodellaro111N. Trevisani111I. Vila111R. Vilar Cortabitarte111D. Abbaneo112B. Akgun112E. Auffray112P. Baillon112A. H. Ball112D. Barney112J. Bendavid112M. Bianco112A. Bocci112C. Botta112T. Camporesi112M. Cepeda112G. Cerminara112E. Chapon112Y. Chen112D. d’Enterria112A. Dabrowski112V. Daponte112A. David112M. De Gruttola112A. De Roeck112N. Deelen112M. Dobson112T. du Pree112M. Dünser112N. Dupont112A. Elliott-Peisert112P. Everaerts112F. Fallavollita112G. Franzoni112J. Fulcher112W. Funk112D. Gigi112A. Gilbert112K. Gill112F. Glege112D. Gulhan112J. Hegeman112V. Innocente112A. Jafari112P. Janot112O. Karacheban112J. Kieseler112V. Knünz112A. Kornmayer112M. Krammer112C. Lange112P. Lecoq112C. Lourenço112M. T. Lucchini112L. Malgeri112M. Mannelli112A. Martelli112F. Meijers112J. A. Merlin112S. Mersi112E. Meschi112P. Milenovic112F. Moortgat112M. Mulders112H. Neugebauer112J. Ngadiuba112S. Orfanelli112L. Orsini112F. Pantaleo112L. Pape112E. Perez112M. Peruzzi112A. Petrilli112G. Petrucciani112A. Pfeiffer112M. Pierini112F. M. Pitters112D. Rabady112A. Racz112T. Reis112G. Rolandi112M. Rovere112H. Sakulin112C. Schäfer112C. Schwick112M. Seidel112M. Selvaggi112A. Sharma112P. Silva112P. Sphicas112A. Stakia112J. Steggemann112M. Stoye112M. Tosi112D. Treille112A. Tsirou112V. Veckalns112M. Verweij112W. D. Zeuner112W. Bertl113L. Caminada113K. Deiters113W. Erdmann113R. Horisberger113Q. Ingram113H. C. Kaestli113D. Kotlinski113U. Langenegger113T. Rohe113S. A. Wiederkehr113M. Backhaus114L. Bäni114P. Berger114B. Casal114N. Chernyavskaya114G. Dissertori114M. Dittmar114M. Donegà114C. Dorfer114C. Grab114C. Heidegger114D. Hits114J. Hoss114T. Klijnsma114W. Lustermann114M. Marionneau114M. T. Meinhard114D. Meister114F. Micheli114P. Musella114F. Nessi-Tedaldi114J. Pata114F. Pauss114G. Perrin114L. Perrozzi114M. Quittnat114M. Reichmann114D. Ruini114D. A. Sanz Becerra114M. Schönenberger114L. Shchutska114V. R. Tavolaro114K. Theofilatos114M. L. Vesterbacka Olsson114R. Wallny114D. H. Zhu114T. K. Aarrestad115C. Amsler115D. Brzhechko115M. F. Canelli115A. De Cosa115R. Del Burgo115S. Donato115C. Galloni115T. Hreus115B. Kilminster115I. Neutelings115D. Pinna115G. Rauco115P. Robmann115D. Salerno115K. Schweiger115C. Seitz115Y. Takahashi115A. Zucchetta115V. Candelise116Y. H. Chang116K. y. Cheng116T. H. Doan116Sh. Jain116R. Khurana116C. M. Kuo116W. Lin116A. Pozdnyakov116S. S. Yu116P. Chang117Y. Chao117K. F. Chen117P. H. Chen117F. Fiori117W.-S. Hou117Y. Hsiung117Arun Kumar117Y. F. Liu117R.-S. Lu117E. Paganis117A. Psallidas117A. Steen117J. f. Tsai117B. Asavapibhop118K. Kovitanggoon118G. Singh118N. Srimanobhas118A. Bat119F. Boran119S. Cerci119S. Damarseckin119Z. S. Demiroglu119C. Dozen119I. Dumanoglu119S. Girgis119G. Gokbulut119Y. Guler119I. Hos119E. E. Kangal119O. Kara119U. Kiminsu119M. Oglakci119G. Onengut119K. Ozdemir119D. Sunar Cerci119B. Tali119U. G. Tok119H. Topakli119S. Turkcapar119I. S. Zorbakir119C. Zorbilmez119G. Karapinar120K. Ocalan120M. Yalvac120M. Zeyrek120I. O. Atakisi121E. Gülmez121M. Kaya121O. Kaya121S. Tekten121E. A. Yetkin121M. N. Agaras122S. Atay122A. Cakir122K. Cankocak122Y. Komurcu122B. Grynyov123L. Levchuk124F. Ball125L. Beck125J. J. Brooke125D. Burns125E. Clement125D. Cussans125O. Davignon125H. Flacher125J. Goldstein125G. P. Heath125H. F. Heath125L. Kreczko125D. M. Newbold125S. Paramesvaran125T. Sakuma125S. Seif El Nasr-storey125D. Smith125V. J. Smith125K. W. Bell126A. Belyaev126C. Brew126R. M. Brown126D. Cieri126D. J. A. Cockerill126J. A. Coughlan126K. Harder126S. Harper126J. Linacre126E. Olaiya126D. Petyt126C. H. Shepherd-Themistocleous126A. Thea126I. R. Tomalin126T. Williams126W. J. Womersley126G. Auzinger127R. Bainbridge127P. Bloch127J. Borg127S. Breeze127O. Buchmuller127A. Bundock127S. Casasso127D. Colling127L. Corpe127P. Dauncey127G. Davies127M. Della Negra127R. Di Maria127Y. Haddad127G. Hall127G. Iles127T. James127M. Komm127R. Lane127C. Laner127L. Lyons127A.-M. Magnan127S. Malik127L. Mastrolorenzo127T. Matsushita127J. Nash127A. Nikitenko127V. Palladino127M. Pesaresi127A. Richards127A. Rose127E. Scott127C. Seez127A. Shtipliyski127T. Strebler127S. Summers127A. Tapper127K. Uchida127M. Vazquez Acosta127T. Virdee127N. Wardle127D. Winterbottom127J. Wright127S. C. Zenz127J. E. Cole128P. R. Hobson128A. Khan128P. Kyberd128A. Morton128I. D. Reid128L. Teodorescu128S. Zahid128A. Borzou129K. Call129J. Dittmann129K. Hatakeyama129H. Liu129N. Pastika129C. Smith129R. Bartek130A. Dominguez130A. Buccilli131S. I. Cooper131C. Henderson131P. Rumerio131C. West131D. Arcaro132A. Avetisyan132T. Bose132D. Gastler132D. Rankin132C. Richardson132J. Rohlf132L. Sulak132D. Zou132G. Benelli133D. Cutts133M. Hadley133J. Hakala133U. Heintz133J. M. Hogan133K. H. M. Kwok133E. Laird133G. Landsberg133J. Lee133Z. Mao133M. Narain133J. Pazzini133S. Piperov133S. Sagir133R. Syarif133D. Yu133R. Band134C. Brainerd134R. Breedon134D. Burns134M. Calderon De La Barca Sanchez134M. Chertok134J. Conway134R. Conway134P. T. Cox134R. Erbacher134C. Flores134G. Funk134W. Ko134R. Lander134C. Mclean134M. Mulhearn134D. Pellett134J. Pilot134S. Shalhout134M. Shi134J. Smith134D. Stolp134D. Taylor134K. Tos134M. Tripathi134Z. Wang134F. Zhang134M. Bachtis135C. Bravo135R. Cousins135A. Dasgupta135A. Florent135J. Hauser135M. Ignatenko135N. Mccoll135S. Regnard135D. Saltzberg135C. Schnaible135V. Valuev135E. Bouvier136K. Burt136R. Clare136J. Ellison136J. W. Gary136S. M. A. Ghiasi Shirazi136G. Hanson136G. Karapostoli136E. Kennedy136F. Lacroix136O. R. Long136M. Olmedo Negrete136M. I. Paneva136W. Si136L. Wang136H. Wei136S. Wimpenny136B. R. Yates136J. G. Branson137S. Cittolin137M. Derdzinski137R. Gerosa137D. Gilbert137B. Hashemi137A. Holzner137D. Klein137G. Kole137V. Krutelyov137J. Letts137M. Masciovecchio137D. Olivito137S. Padhi137M. Pieri137M. Sani137V. Sharma137S. Simon137M. Tadel137A. Vartak137S. Wasserbaech137J. Wood137F. Würthwein137A. Yagil137G. Zevi Della Porta137N. Amin138R. Bhandari138J. Bradmiller-Feld138C. Campagnari138M. Citron138A. Dishaw138V. Dutta138M. Franco Sevilla138L. Gouskos138R. Heller138J. Incandela138A. Ovcharova138H. Qu138J. Richman138D. Stuart138I. Suarez138J. Yoo138D. Anderson139A. Bornheim139J. Bunn139J. M. Lawhorn139H. B. Newman139T. Q. Nguyen139C. Pena139M. Spiropulu139J. R. Vlimant139R. Wilkinson139S. Xie139Z. Zhang139R. Y. Zhu139M. B. Andrews140T. Ferguson140T. Mudholkar140M. Paulini140J. Russ140M. Sun140H. Vogel140I. Vorobiev140M. Weinberg140J. P. Cumalat141W. T. Ford141F. Jensen141A. Johnson141M. Krohn141S. Leontsinis141E. MacDonald141T. Mulholland141K. Stenson141K. A. Ulmer141S. R. Wagner141J. Alexander142J. Chaves142Y. Cheng142J. Chu142A. Datta142K. Mcdermott142N. Mirman142J. R. Patterson142D. Quach142A. Rinkevicius142A. Ryd142L. Skinnari142L. Soffi142S. M. Tan142Z. Tao142J. Thom142J. Tucker142P. Wittich142M. Zientek142S. Abdullin143M. Albrow143M. Alyari143G. Apollinari143A. Apresyan143A. Apyan143S. Banerjee143L. A. T. Bauerdick143A. Beretvas143J. Berryhill143P. C. Bhat143G. Bolla143K. Burkett143J. N. Butler143A. Canepa143G. B. Cerati143H. W. K. Cheung143F. Chlebana143M. Cremonesi143J. Duarte143V. D. Elvira143J. Freeman143Z. Gecse143E. Gottschalk143L. Gray143D. Green143S. Grünendahl143O. Gutsche143J. Hanlon143R. M. Harris143S. Hasegawa143J. Hirschauer143Z. Hu143B. Jayatilaka143S. Jindariani143M. Johnson143U. Joshi143B. Klima143M. J. Kortelainen143B. Kreis143S. Lammel143D. Lincoln143R. Lipton143M. Liu143T. Liu143R. Lopes De Sá143J. Lykken143K. Maeshima143N. Magini143J. M. Marraffino143D. Mason143P. McBride143P. Merkel143S. Mrenna143S. Nahn143V. O’Dell143K. Pedro143O. Prokofyev143G. Rakness143L. Ristori143A. Savoy-Navarro143B. Schneider143E. Sexton-Kennedy143A. Soha143W. J. Spalding143L. Spiegel143S. Stoynev143J. Strait143N. Strobbe143L. Taylor143S. Tkaczyk143N. V. Tran143L. Uplegger143E. W. Vaandering143C. Vernieri143M. Verzocchi143R. Vidal143M. Wang143H. A. Weber143A. Whitbeck143W. Wu143D. Acosta144P. Avery144P. Bortignon144D. Bourilkov144A. Brinkerhoff144A. Carnes144M. Carver144D. Curry144R. D. Field144I. K. Furic144S. V. Gleyzer144B. M. Joshi144J. Konigsberg144A. Korytov144K. Kotov144P. Ma144K. Matchev144H. Mei144G. Mitselmakher144K. Shi144D. Sperka144N. Terentyev144L. Thomas144J. Wang144S. Wang144J. Yelton144Y. R. Joshi145S. Linn145P. Markowitz145J. L. Rodriguez145A. Ackert146T. Adams146A. Askew146S. Hagopian146V. Hagopian146K. F. Johnson146T. Kolberg146G. Martinez146T. Perry146H. Prosper146A. Saha146A. Santra146V. Sharma146R. Yohay146M. M. Baarmand147V. Bhopatkar147S. Colafranceschi147M. Hohlmann147D. Noonan147T. Roy147F. Yumiceva147M. R. Adams148L. Apanasevich148D. Berry148R. R. Betts148R. Cavanaugh148X. Chen148S. Dittmer148O. Evdokimov148C. E. Gerber148D. A. Hangal148D. J. Hofman148K. Jung148J. Kamin148I. D. Sandoval Gonzalez148M. B. Tonjes148N. Varelas148H. Wang148Z. Wu148J. Zhang148B. Bilki149W. Clarida149K. Dilsiz149S. Durgut149R. P. Gandrajula149M. Haytmyradov149V. Khristenko149J.-P. Merlo149H. Mermerkaya149A. Mestvirishvili149A. Moeller149J. Nachtman149H. Ogul149Y. Onel149F. Ozok149A. Penzo149C. Snyder149E. Tiras149J. Wetzel149K. Yi149B. Blumenfeld150A. Cocoros150N. Eminizer150D. Fehling150L. Feng150A. V. Gritsan150W. T. Hung150P. Maksimovic150J. Roskes150U. Sarica150M. Swartz150M. Xiao150C. You150A. Al-bataineh151P. Baringer151A. Bean151S. Boren151J. Bowen151J. Castle151S. Khalil151A. Kropivnitskaya151D. Majumder151W. Mcbrayer151M. Murray151C. Rogan151C. Royon151S. Sanders151E. Schmitz151J. D. Tapia Takaki151Q. Wang151A. Ivanov152K. Kaadze152Y. Maravin152A. Modak152A. Mohammadi152L. K. Saini152N. Skhirtladze152F. Rebassoo153D. Wright153A. Baden154O. Baron154A. Belloni154S. C. Eno154Y. Feng154C. Ferraioli154N. J. Hadley154S. Jabeen154G. Y. Jeng154R. G. Kellogg154J. Kunkle154A. C. Mignerey154F. Ricci-Tam154Y. H. Shin154A. Skuja154S. C. Tonwar154D. Abercrombie155B. Allen155V. Azzolini155R. Barbieri155A. Baty155G. Bauer155R. Bi155S. Brandt155W. Busza155I. A. Cali155M. D’Alfonso155Z. Demiragli155G. Gomez Ceballos155M. Goncharov155P. Harris155D. Hsu155M. Hu155Y. Iiyama155G. M. Innocenti155M. Klute155D. Kovalskyi155Y.-J. Lee155A. Levin155P. D. Luckey155B. Maier155A. C. Marini155C. Mcginn155C. Mironov155S. Narayanan155X. Niu155C. Paus155C. Roland155G. Roland155G. S. F. Stephans155K. Sumorok155K. Tatar155D. Velicanu155J. Wang155T. W. Wang155B. Wyslouch155S. Zhaozhong155A. C. Benvenuti156R. M. Chatterjee156A. Evans156P. Hansen156S. Kalafut156Y. Kubota156Z. Lesko156J. Mans156S. Nourbakhsh156N. Ruckstuhl156R. Rusack156J. Turkewitz156M. A. Wadud156J. G. Acosta157S. Oliveros157E. Avdeeva158K. Bloom158D. R. Claes158C. Fangmeier158F. Golf158R. Gonzalez Suarez158R. Kamalieddin158I. Kravchenko158J. Monroy158J. E. Siado158G. R. Snow158B. Stieger158A. Godshalk159C. Harrington159I. Iashvili159D. Nguyen159A. Parker159S. Rappoccio159B. Roozbahani159G. Alverson160E. Barberis160C. Freer160A. Hortiangtham160A. Massironi160D. M. Morse160T. Orimoto160R. Teixeira De Lima160T. Wamorkar160B. Wang160A. Wisecarver160D. Wood160S. Bhattacharya161O. Charaf161K. A. Hahn161N. Mucia161N. Odell161M. H. Schmitt161K. Sung161M. Trovato161M. Velasco161R. Bucci162N. Dev162M. Hildreth162K. Hurtado Anampa162C. Jessop162D. J. Karmgard162N. Kellams162K. Lannon162W. Li162N. Loukas162N. Marinelli162F. Meng162C. Mueller162Y. Musienko162M. Planer162A. Reinsvold162R. Ruchti162P. Siddireddy162G. Smith162S. Taroni162M. Wayne162A. Wightman162M. Wolf162A. Woodard162J. Alimena163L. Antonelli163B. Bylsma163L. S. Durkin163S. Flowers163B. Francis163A. Hart163C. Hill163W. Ji163T. Y. Ling163W. Luo163B. L. Winer163H. W. Wulsin163S. Cooperstein164O. Driga164P. Elmer164J. Hardenbrook164P. Hebda164S. Higginbotham164A. Kalogeropoulos164D. Lange164J. Luo164D. Marlow164K. Mei164I. Ojalvo164J. Olsen164C. Palmer164P. Piroué164J. Salfeld-Nebgen164D. Stickland164C. Tully164S. Malik165S. Norberg165A. Barker166V. E. Barnes166S. Das166L. Gutay166M. Jones166A. W. Jung166A. Khatiwada166D. H. Miller166N. Neumeister166C. C. Peng166H. Qiu166J. F. Schulte166J. Sun166F. Wang166R. Xiao166W. Xie166T. Cheng167J. Dolen167N. Parashar167Z. Chen168K. M. Ecklund168S. Freed168F. J. M. Geurts168M. Guilbaud168M. Kilpatrick168W. Li168B. Michlin168B. P. Padley168J. Roberts168J. Rorie168W. Shi168Z. Tu168J. Zabel168A. Zhang168A. Bodek169P. de Barbaro169R. Demina169Y. t. Duh169T. Ferbel169M. Galanti169A. Garcia-Bellido169J. Han169O. Hindrichs169A. Khukhunaishvili169K. H. Lo169P. Tan169M. Verzetti169R. Ciesielski170K. Goulianos170C. Mesropian170A. Agapitos171J. P. Chou171Y. Gershtein171T. A. Gómez Espinosa171E. Halkiadakis171M. Heindl171E. Hughes171S. Kaplan171R. Kunnawalkam Elayavalli171S. Kyriacou171A. Lath171R. Montalvo171K. Nash171M. Osherson171H. Saka171S. Salur171S. Schnetzer171D. Sheffield171S. Somalwar171R. Stone171S. Thomas171P. Thomassen171M. Walker171A. G. Delannoy172J. Heideman172G. Riley172K. Rose172S. Spanier172K. Thapa172O. Bouhali173A. Castaneda Hernandez173A. Celik173M. Dalchenko173M. De Mattia173A. Delgado173S. Dildick173R. Eusebi173J. Gilmore173T. Huang173T. Kamon173R. Mueller173Y. Pakhotin173R. Patel173A. Perloff173L. Perniè173D. Rathjens173A. Safonov173A. Tatarinov173N. Akchurin174J. Damgov174F. De Guio174P. R. Dudero174J. Faulkner174E. Gurpinar174S. Kunori174K. Lamichhane174S. W. Lee174T. Mengke174S. Muthumuni174T. Peltola174S. Undleeb174I. Volobouev174Z. Wang174S. Greene175A. Gurrola175R. Janjam175W. Johns175C. Maguire175A. Melo175H. Ni175K. Padeken175J. D. Ruiz Alvarez175P. Sheldon175S. Tuo175J. Velkovska175Q. Xu175M. W. Arenton176P. Barria176B. Cox176R. Hirosky176M. Joyce176A. Ledovskoy176H. Li176C. Neu176T. Sinthuprasith176Y. Wang176E. Wolfe176F. Xia176R. Harr177P. E. Karchin177N. Poudyal177J. Sturdy177P. Thapa177S. Zaleski177M. Brodski178J. Buchanan178C. Caillol178D. Carlsmith178S. Dasu178L. Dodd178S. Duric178B. Gomber178M. Grothe178M. Herndon178A. Hervé178U. Hussain178P. Klabbers178A. Lanaro178A. Levine178K. Long178R. Loveless178V. Rekovic178T. Ruggles178A. Savin178N. Smith178W. H. Smith178N. Woods178CMS Collaboration179Email author1.Yerevan Physics InstituteYerevanArmenia2.Institut für HochenergiephysikWienAustria3.Institute for Nuclear ProblemsMinskBelarus4.Universiteit AntwerpenAntwerpenBelgium5.Vrije Universiteit BrusselBrusselsBelgium6.Université Libre de BruxellesBrusselsBelgium7.Ghent UniversityGhentBelgium8.Université Catholique de LouvainLouvain-la-NeuveBelgium9.Centro Brasileiro de Pesquisas FisicasRio de JaneiroBrazil10.Universidade do Estado do Rio de JaneiroRio de JaneiroBrazil11.Universidade Estadual Paulista , Universidade Federal do ABCSão PauloBrazil12.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria13.University of SofiaSofiaBulgaria14.Beihang UniversityBeijingChina15.Institute of High Energy PhysicsBeijingChina16.State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina17.Tsinghua UniversityBeijingChina18.Universidad de Los AndesBogotaColombia19.University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval ArchitectureSplitCroatia20.Faculty of ScienceUniversity of SplitSplitCroatia21.Institute Rudjer BoskovicZagrebCroatia22.University of CyprusNicosiaCyprus23.Charles UniversityPragueCzech Republic24.Universidad San Francisco de QuitoQuitoEcuador25.Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy PhysicsCairoEgypt26.National Institute of Chemical Physics and BiophysicsTallinnEstonia27.Department of PhysicsUniversity of HelsinkiHelsinkiFinland28.Helsinki Institute of PhysicsHelsinkiFinland29.Lappeenranta University of TechnologyLappeenrantaFinland30.IRFU, CEA, Université Paris-SaclayGif-sur-YvetteFrance31.Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3Université Paris-SaclayPalaiseauFrance32.Université de Strasbourg, CNRS, IPHC UMR 7178StrasbourgFrance33.Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3VilleurbanneFrance34.Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de LyonVilleurbanneFrance35.Georgian Technical UniversityTbilisiGeorgia36.Tbilisi State UniversityTbilisiGeorgia37.RWTH Aachen University, I. Physikalisches InstitutAachenGermany38.RWTH Aachen University, III. Physikalisches Institut AAachenGermany39.RWTH Aachen University, III. Physikalisches Institut BAachenGermany40.Deutsches Elektronen-SynchrotronHamburgGermany41.University of HamburgHamburgGermany42.Karlsruher Institut fuer TechnologieKarlsruheGermany43.Institute of Nuclear and Particle Physics (INPP), NCSR DemokritosAghia ParaskeviGreece44.National and Kapodistrian University of AthensAthensGreece45.National Technical University of AthensAthensGreece46.University of IoánninaIoanninaGreece47.MTA-ELTE Lendület CMS Particle and Nuclear Physics GroupEötvös Loránd UniversityBudapestHungary48.Wigner Research Centre for PhysicsBudapestHungary49.Institute of Nuclear Research ATOMKIDebrecenHungary50.Institute of Physics, University of DebrecenDebrecenHungary51.Indian Institute of Science (IISc)BangaloreIndia52.National Institute of Science Education and Research, HBNIBhubaneswarIndia53.Panjab UniversityChandigarhIndia54.University of DelhiDelhiIndia55.Saha Institute of Nuclear Physics, HBNIKolkataIndia56.Indian Institute of Technology MadrasMadrasIndia57.Bhabha Atomic Research CentreMumbaiIndia58.Tata Institute of Fundamental Research-AMumbaiIndia59.Tata Institute of Fundamental Research-BMumbaiIndia60.Indian Institute of Science Education and Research (IISER)PuneIndia61.Institute for Research in Fundamental Sciences (IPM)TehranIran62.University College DublinDublinIreland63.INFN Sezione di Bari , Università di Bari , Politecnico di BariBariItaly64.INFN Sezione di Bologna , Università di BolognaBolognaItaly65.INFN Sezione di Catania , Università di CataniaCataniaItaly66.INFN Sezione di Firenze , Università di FirenzeFirenzeItaly67.INFN Laboratori Nazionali di FrascatiFrascatiItaly68.INFN Sezione di Genova , Università di GenovaGenoaItaly69.INFN Sezione di Milano-Bicocca , Università di Milano-BicoccaMilanItaly70.INFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. MarconiRomeItaly71.INFN Sezione di Padova , Università di Padova , Padova, Italy, Università di TrentoTrentoItaly72.INFN Sezione di Pavia , Università di PaviaPaviaItaly73.INFN Sezione di Perugia , Università di PerugiaPerugiaItaly74.INFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di PisaPisaItaly75.INFN Sezione di Roma , Sapienza Università di RomaRomeItaly76.INFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte OrientaleNovaraItaly77.INFN Sezione di Trieste , Università di TriesteTriesteItaly78.Kyungpook National UniversityDaeguKorea79.Chonnam National University, Institute for Universe and Elementary ParticlesKwangjuKorea80.Hanyang UniversitySeoulKorea81.Korea UniversitySeoulKorea82.Seoul National UniversitySeoulKorea83.University of SeoulSeoulKorea84.Sungkyunkwan UniversitySuwonKorea85.Vilnius UniversityVilniusLithuania86.National Centre for Particle Physics, Universiti MalayaKuala LumpurMalaysia87.Centro de Investigacion y de Estudios Avanzados del IPNMexico CityMexico88.Universidad IberoamericanaMexico CityMexico89.Benemerita Universidad Autonoma de PueblaPueblaMexico90.Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico91.University of AucklandAucklandNew Zealand92.University of CanterburyChristchurchNew Zealand93.National Centre for Physics, Quaid-I-Azam UniversityIslamabadPakistan94.National Centre for Nuclear ResearchSwierkPoland95.Institute of Experimental Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland96.Laboratório de Instrumentação e Física Experimental de PartículasLisbonPortugal97.Joint Institute for Nuclear ResearchDubnaRussia98.Petersburg Nuclear Physics InstituteGatchina (St. Petersburg)Russia99.Institute for Nuclear ResearchMoscowRussia100.Institute for Theoretical and Experimental PhysicsMoscowRussia101.Moscow Institute of Physics and TechnologyMoscowRussia102.P.N. Lebedev Physical InstituteMoscowRussia103.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia104.Novosibirsk State University (NSU)NovosibirskRussia105.Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’ProtvinoRussia106.National Research Tomsk Polytechnic UniversityTomskRussia107.Faculty of Physics and Vinca Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia108.Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT)MadridSpain109.Universidad Autónoma de MadridMadridSpain110.Universidad de OviedoOviedoSpain111.Instituto de Física de Cantabria (IFCA), CSIC-Universidad de CantabriaSantanderSpain112.CERN, European Organization for Nuclear ResearchGenevaSwitzerland113.Paul Scherrer InstitutVilligenSwitzerland114.ETH Zurich-Institute for Particle Physics and Astrophysics (IPA)ZurichSwitzerland115.Universität ZürichZurichSwitzerland116.National Central UniversityChung-LiTaiwan117.National Taiwan University (NTU)TaipeiTaiwan118.Chulalongkorn University, Faculty of Science, Department of PhysicsBangkokThailand119.Çukurova University, Physics Department, Science and Art FacultyAdanaTurkey120.Middle East Technical University, Physics DepartmentAnkaraTurkey121.Bogazici UniversityIstanbulTurkey122.Istanbul Technical UniversityIstanbulTurkey123.Institute for Scintillation Materials of National Academy of Science of UkraineKharkovUkraine124.National Scientific Center, Kharkov Institute of Physics and TechnologyKharkovUkraine125.University of BristolBristolUK126.Rutherford Appleton LaboratoryDidcotUK127.Imperial CollegeLondonUK128.Brunel UniversityUxbridgeUK129.Baylor UniversityWacoUSA130.Catholic University of AmericaWashingtonUSA131.The University of AlabamaTuscaloosaUSA132.Boston UniversityBostonUSA133.Brown UniversityProvidenceUSA134.University of California, DavisDavisUSA135.University of CaliforniaLos AngelesUSA136.University of California, RiversideRiversideUSA137.University of California, San DiegoLa JollaUSA138.Department of PhysicsUniversity of California, Santa BarbaraSanta BarbaraUSA139.California Institute of TechnologyPasadenaUSA140.Carnegie Mellon UniversityPittsburghUSA141.University of Colorado BoulderBoulderUSA142.Cornell UniversityIthacaUSA143.Fermi National Accelerator LaboratoryBataviaUSA144.University of FloridaGainesvilleUSA145.Florida International UniversityMiamiUSA146.Florida State UniversityTallahasseeUSA147.Florida Institute of TechnologyMelbourneUSA148.University of Illinois at Chicago (UIC)ChicagoUSA149.The University of IowaIowa CityUSA150.Johns Hopkins UniversityBaltimoreUSA151.The University of KansasLawrenceUSA152.Kansas State UniversityManhattanUSA153.Lawrence Livermore National LaboratoryLivermoreUSA154.University of MarylandCollege ParkUSA155.Massachusetts Institute of TechnologyCambridgeUSA156.University of MinnesotaMinneapolisUSA157.University of MississippiOxfordUSA158.University of Nebraska-LincolnLincolnUSA159.State University of New York at BuffaloBuffaloUSA160.Northeastern UniversityBostonUSA161.Northwestern UniversityEvanstonUSA162.University of Notre DameNotre DameUSA163.The Ohio State UniversityColumbusUSA164.Princeton UniversityPrincetonUSA165.University of Puerto RicoMayaguezUSA166.Purdue UniversityWest LafayetteUSA167.Purdue University NorthwestHammondUSA168.Rice UniversityHoustonUSA169.University of RochesterRochesterUSA170.The Rockefeller UniversityNew YorkUSA171.Rutgers, The State University of New JerseyPiscatawayUSA172.University of TennesseeKnoxvilleUSA173.Texas A&M UniversityCollege StationUSA174.Texas Tech UniversityLubbockUSA175.Vanderbilt UniversityNashvilleUSA176.University of VirginiaCharlottesvilleUSA177.Wayne State UniversityDetroitUSA178.University of Wisconsin-MadisonMadisonUSA179.CERNGeneva 23Switzerland


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-019-6774-8.pdf

A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A. K. Kalsi, T. Lenzi, J. Luetic, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, H. Malbouisson, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L. J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, A. Calligaris, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov, A. Dimitrov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, L. Yuan, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, Y. Wang, C. Avila, A. Cabrera, C. A. Carrillo Montoya, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, M. A. Segura Delgado, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, S. Khalil, M. A. Mahmoud, Y. Mohammed, S. Bhowmik, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken, P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen, J. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E. C. Chabert, C. Collard, E. Conte, X. Coubez, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang, T. Toriashvili, Z. Tsamalaidze, C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M. P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov, A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen. Measurement of exclusive \(\mathrm {\Upsilon }\) photoproduction from protons in \(\mathrm {p}\) Pb collisions at \(\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} \), The European Physical Journal C, 2019, 277, DOI: 10.1140/epjc/s10052-019-6774-8