Broadband Acoustic Vibration Sensor Based on Cladding-Mode Resonance of Double-Cladding Fiber

Photonic Sensors, Apr 2019

We have proposed and demonstrated a double-cladding fiber (DCF) with cladding-mode resonance property for broadband acoustic vibration sensing. Since the fundamental mode in the core waveguide is able to be coupled to LP05 mode in the tube waveguide once the phase-matching condition is fulfilled, the transmission spectrum can exhibit a dip with a large extinction ratio. An acoustic vibration could induce the wavelength shift of such transmission spectrum, so that the intensity variation at a wavelength near the dip is coded with the information of the acoustic vibration signal. By demodulating the response of intensity variation, the frequency of the applied acoustic vibration signal can be recovered. Such a DCF-based sensor with an intensity modulation could measure the acoustic vibration with a broadband frequency range from 1 Hz to 400 kHz and exhibits the maximum signal-to-noise ratio (SNR) of ~80.79 dB when the vibration frequency is 20 kHz. The obtained results show that the proposed DCF-based acoustic vibration sensor has a potential application in environmental assessment, structural damage detection, and health monitoring.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2Fs13320-019-0548-7.pdf

Broadband Acoustic Vibration Sensor Based on Cladding-Mode Resonance of Double-Cladding Fiber

Photonic Sensors pp 1–9 | Cite as Broadband Acoustic Vibration Sensor Based on Cladding-Mode Resonance of Double-Cladding Fiber AuthorsAuthors and affiliations Guanghui SuiHuanhuan LiuFufei PangJiajing ChengTingyun Wang Open Access Regular First Online: 23 April 2019 44 Downloads Abstract We have proposed and demonstrated a double-cladding fiber (DCF) with cladding-mode resonance property for broadband acoustic vibration sensing. Since the fundamental mode in the core waveguide is able to be coupled to LP05 mode in the tube waveguide once the phase-matching condition is fulfilled, the transmission spectrum can exhibit a dip with a large extinction ratio. An acoustic vibration could induce the wavelength shift of such transmission spectrum, so that the intensity variation at a wavelength near the dip is coded with the information of the acoustic vibration signal. By demodulating the response of intensity variation, the frequency of the applied acoustic vibration signal can be recovered. Such a DCF-based sensor with an intensity modulation could measure the acoustic vibration with a broadband frequency range from 1 Hz to 400 kHz and exhibits the maximum signal-to-noise ratio (SNR) of ~80.79 dB when the vibration frequency is 20 kHz. The obtained results show that the proposed DCF-based acoustic vibration sensor has a potential application in environmental assessment, structural damage detection, and health monitoring. KeywordsDouble-cladding fiber acoustic vibration sensor coaxial coupler  Download to read the full article text Notes Acknowledgement This project was funded by the National Key Research and Development Program of China (Grant No. 2016YFF0100600) and the National Natural Science Foundation of China (Grant Nos. 61735009 and 61635006). References [1] Y. Ishihara, M. Kanao, M. Yamamoto, T. Shigeru, M. Takeshi, and M. Takahiko, “Infrasound observations at syowa station, east antarctica: Implications for detecting the surface environmental variations in the polar regions,” Geoscience Frontiers, 2015, 6(2): 285–296.CrossRefGoogle Scholar [2] V. Arora, Y. H. Wijnant, and A. de Boer, “Acoustic-based damage detection method,” Applied Acoustics, 2014, 80: 23–27.CrossRefGoogle Scholar [3] R. Mazlan, J. Kei, L. Hickson, J. Gavranich, and R. Linning, “Test-retest reproducibility of the 1000Hz tympanometry test in newborn and six-week-old healthy infants,” International Journal of Audiology, 2010, 49(11): 815–822.CrossRefGoogle Scholar [4] G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sensors Journal, 2008, 8(7): 1184–1193.ADSGoogle Scholar [5] J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazão, “Advanced fiber-optic acoustic sensors,” Photonic Sensors, 2014, 4(3): 198–208.ADSCrossRefGoogle Scholar [6] L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Lfuniu, et al., “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sensors Journal, 2016, 16(9): 3054–3058.ADSCrossRefGoogle Scholar [7] C. Sun, “Multiplexing of fiber-optic acoustic sensors in a Michelson interferometer configuration,” Optics Letters, 2003, 28(12): 1001–1003.ADSCrossRefGoogle Scholar [8] T. Zhang, F. Pang, H. Liu, J. Cheng, L. Lv, X. Zhang, et al., “A fiber-optic sensor for acoustic emission detection in a high voltage cable system,” Sensors, 2016, 16(12): 2026–2036.CrossRefGoogle Scholar [9] Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Optics Communications, 2008, 281(6): 1538–1544.ADSCrossRefGoogle Scholar [10] J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1995, 42(5): 820–824.CrossRefGoogle Scholar [11] K. Wada, H. Narui, D. Yamamoto, T. Matsuyama, and H. Horinaka, “Balanced polarization maintaining fiber Sagnac interferometer vibration sensor,” Optics Express, 2011, 19(22): 21467–21474.ADSCrossRefGoogle Scholar [12] L. Wang, N. Fang, C. Wu, H. Qin, and Z. Huang, “A fiber optic PD sensor using a balanced Sagnac interferometer and an EDFA-Based DOP Tunable fiber ring laser,” Sensors, 2014, 14(5): 8398–8422.CrossRefGoogle Scholar [13] S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, et al., “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors, 2009, 9(6): 4446–4454.CrossRefGoogle Scholar [14] N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics, 2000, 38: 581–585.CrossRefGoogle Scholar [15] A. V. Harisha, B. Varghesea, B. Raob, K. Balasubramaniamc, and B. Srinivasan, “Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings,” Ultrasonics, 2015, 22: 103–108.CrossRefGoogle Scholar [16] S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Intensity demodulation-based acoustic sensor using dual fiber Bragg gratings and a titanium film,” Journal of Modern Optics, 2014, 61(12): 1033–1038.ADSCrossRefGoogle Scholar [17] J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensors and Actuators A: Physical, 2012, 173(1): 97–101.CrossRefGoogle Scholar [18] D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Applied Physics Letters, 2016, 108(4): 041912.ADSCrossRefGoogle Scholar [19] A. Sun, Z. Wu, C. Wan, and C. Yang, “All-fiber optic acoustic sensor based on multimode-single mode-multimode structure,” Optik, 2012, 123(13): 1138–1139.ADSCrossRefGoogle Scholar [20] C. S. Fernandes, M. T. M. R. Giraldi, M. J. Souza, J. C. W. A. Costa, C. Golveia, P. Jorge, et al., “Curvature and vibration sensing based on core diameter mismatch structures,” IEEE Transactions on Instrumentation and Measurement, 2016, 65(9): 2120–2128.CrossRefGoogle Scholar [21] Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, et al., “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics Journal, 2015, 7(2): 1–7.CrossRefGoogle Scholar [22] Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, V. Bhardwaj, et al., “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Optics Express, 2013, 21(3): 3031–3042.ADSCrossRefGoogle Scholar [23] Y. Li, X. Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Applied Optics, 2011, 50: 1873–1878.ADSCrossRefGoogle Scholar [24] I. R. Matłas, M. L. Amo, F. Montero, C. F. Valdivielso, F. J. Arregui, and C. Bariin, “Low-cost optical amplitude modulator based on a tapered single-mode optical fiber,” Applied Optics, 2001, 42(2): 228–234.ADSGoogle Scholar [25] W. Ni, P. Lu, X. Fu, S. Wang, Y. Sun, D. Liu, et al., “Highly sensitive optical fiber curvature and acoustic sensor based on thin core ultralong period fiber grating,” IEEE Photonics Journal, 2017, 9(2): 43–45.Google Scholar [26] F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, et al., “Special optical fiber for temperature sensing based on cladding-mode resonance,” Optics Express, 2008, 16(17): 12967–16972.ADSCrossRefGoogle Scholar [27] J. Zhang, F. Pang, H. Guo, Z. Chen, and T. Wang, “A strain sensor based on cladding mode resonance of double-cladding fiber,” Proceedings of SPIE − The International Society for Optical Engineering, 2010, 7853: 78533U.ADSGoogle Scholar [28] S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil,” IEEE Sensors Journal, 2014, 14(7): 2293–2298.ADSGoogle Scholar [29] B. Xu, Y. Li, M. Sun, Z. Zhang, X. Dong, Z. Zhang, et al., “Acoustic vibration sensor based on nonadiabatic tapered fibers,” Optics Letters, 2012, 37(22): 4768–4770.ADSCrossRefGoogle Scholar [30] P. Lu, Y. Xu, F. Baset, X. Bao, and R. Bhardwaj, “In-line fiber microcantilever vibration sensor,” Applied Physics Letters, 2013, 103(21): 211113-1–211113-5.ADSCrossRefGoogle Scholar [31] J. Villatoro, E. Antonio-lopez, J. Zubia, A. Schulzgen, and R. Amezcua-Correa, “Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing,” Optics Express, 2017, 25(21): 25734–25740.ADSCrossRefGoogle Scholar [32] Y. Li, X, Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Applied Optics, 2011, 50(13): 1873–1878.ADSCrossRefGoogle Scholar [33] T. Zhang, F. Pang, H. Liu, J. Cheng, L. Lv, X. Zhang, et al., “A fiber-optic sensor for acoustic emission detection in a high voltage cable system,” Sensors, 2016, 16(12): 2026–2036.CrossRefGoogle Scholar Copyright information © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Authors and Affiliations Guanghui Sui1Huanhuan Liu2Fufei Pang2Email authorJiajing Cheng2Tingyun Wang21.Changcheng Institute of Metrology & MeasurementBeijingChina2.Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data ScienceShanghai UniversityShanghaiChina


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2Fs13320-019-0548-7.pdf

Guanghui Sui, Huanhuan Liu, Fufei Pang, Jiajing Cheng, Tingyun Wang. Broadband Acoustic Vibration Sensor Based on Cladding-Mode Resonance of Double-Cladding Fiber, Photonic Sensors, 2019, 1-9, DOI: 10.1007/s13320-019-0548-7