A modular toolkit for bulk reconstruction

Journal of High Energy Physics, Apr 2019

Abstract We introduce new tools for studying modular flow in AdS/CFT. These tools allow us to efficiently extract bulk information related to causality and locality. For example, we discuss the relation between analyticity in modular time and entanglement wedge nesting which can then be used to extract the location of the Ryu-Takayanagi (RT) surface directly from the boundary theory. Probing the RT surface close to the boundary our results reduce to the recent proof of the Quantum Null Energy Condition. We focus on heavy probe operators whose correlation functions are determined by spacelike geodesics. These geodesics interplay with the RT surface via a set of rules that we conjecture and give evidence for using the replica trick.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP04%282019%29119.pdf

A modular toolkit for bulk reconstruction

Journal of High Energy Physics April 2019, 2019:119 | Cite as A modular toolkit for bulk reconstruction AuthorsAuthors and affiliations Thomas FaulknerMin LiHuajia Wang Open Access Regular Article - Theoretical Physics First Online: 18 April 2019 42 Downloads Abstract We introduce new tools for studying modular flow in AdS/CFT. These tools allow us to efficiently extract bulk information related to causality and locality. For example, we discuss the relation between analyticity in modular time and entanglement wedge nesting which can then be used to extract the location of the Ryu-Takayanagi (RT) surface directly from the boundary theory. Probing the RT surface close to the boundary our results reduce to the recent proof of the Quantum Null Energy Condition. We focus on heavy probe operators whose correlation functions are determined by spacelike geodesics. These geodesics interplay with the RT surface via a set of rules that we conjecture and give evidence for using the replica trick. Keywords AdS-CFT Correspondence Gauge-gravity correspondence  ArXiv ePrint: 1806.10560 Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar [2] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar [3] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar [4] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE]. [5] T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE]. [6] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [7] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [8] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar [9] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [10] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [11] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [12] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [13] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [14] Z.-q. Guo and B.-Q. Ma, Fermion Families from Two Layer Warped Extra Dimensions, JHEP 08 (2008) 065 [arXiv:0808.2136] [INSPIRE].ADSCrossRefGoogle Scholar [15] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [16] J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01 (2017) 013 [arXiv:1509.03612] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [17] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [18] N. Engelhardt and G.T. Horowitz, Towards a Reconstruction of General Bulk Metrics, Class. Quant. Grav. 34 (2017) 015004 [arXiv:1605.01070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [19] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [20] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [21] M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].ADSCrossRefGoogle Scholar [22] A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [23] X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [24] S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum Null Energy Condition, arXiv:1706.09432 [INSPIRE]. [25] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [26] Y. Chen, X. Dong, A. Lewkowycz and X.-L. Qi, Modular Flow as a Disentangler, JHEP 12 (2018) 083 [arXiv:1806.09622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [27] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].ADSMathSciNetGoogle Scholar [28] J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].ADSMathSciNetGoogle Scholar [29] P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].ADSMathSciNetGoogle Scholar [30] N. Engelhardt, T. Hertog and G.T. Horowitz, Holographic Signatures of Cosmological Singularities, Phys. Rev. Lett. 113 (2014) 121602 [arXiv:1404.2309] [INSPIRE].ADSCrossRefGoogle Scholar [31] N. Engelhardt, T. Hertog and G.T. Horowitz, Further Holographic Investigations of Big Bang Singularities, JHEP 07 (2015) 044 [arXiv:1503.08838] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [32] H. Maxfield, A view of the bulk from the worldline, arXiv:1712.00885 [INSPIRE]. [33] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [34] D.L. Jafferis and S.J. Suh, The Gravity Duals of Modular Hamiltonians, JHEP 09 (2016) 068 [arXiv:1412.8465] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [35] Q. Wen, Fine structure in holographic entanglement and entanglement contour, Phys. Rev. D 98 (2018) 106004 [arXiv:1803.05552] [INSPIRE].ADSGoogle Scholar [36] K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].ADSGoogle Scholar [37] E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].ADSCrossRefGoogle Scholar [38] H. Borchers, On the use of modular groups in quantum field theory, Ann. Inst. Henri Poincaré, Phys. Théor. 63 (1995) 331.Google Scholar [39] D. Buchholz, C. D’Antoni and R. Longo, Nuclear maps and modular structures. 1. General properties, J. Funct. Anal. 88 (1990) 233 [INSPIRE]. [40] H. Araki and L. Zsidó, Extension of the structure theorem of Borchers and its application to half-sided modular inclusions, Rev. Math. Phys. 17 (2005) 491 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar [41] R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].ADSMathSciNetGoogle Scholar [42] R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer and A.C. Wall, Proof of the Quantum Null Energy Condition, Phys. Rev. D 93 (2016) 024017 [arXiv:1509.02542] [INSPIRE].ADSMathSciNetGoogle Scholar [43] J. Koeller and S. Leichenauer, Holographic Proof of the Quantum Null Energy Condition, Phys. Rev. D 94 (2016) 024026 [arXiv:1512.06109] [INSPIRE].ADSMathSciNetGoogle Scholar [44] T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].ADSCrossRefGoogle Scholar [45] T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [46] D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [47] F. Ceyhan and T. Faulkner, Recovering the QNEC from the ANEC, arXiv:1812.04683 [INSPIRE]. [48] P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett. 109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].ADSCrossRefGoogle Scholar [49] T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE]. [50] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [51] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [52] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [53] S. Hollands, Relative entropy close to the edge, arXiv:1805.10006 [INSPIRE]. [54] K. Fredenhagen, On the modular structure of local algebras of observables, in Quantum Field Theory, Springer, (1985), pp. 79–89.Google Scholar Copyright information © The Author(s) 2019 Authors and Affiliations Thomas Faulkner1Email authorMin Li1Huajia Wang121.Department of PhysicsUniversity of IllinoisUrbanaU.S.A.2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP04%282019%29119.pdf

Thomas Faulkner, Min Li, Huajia Wang. A modular toolkit for bulk reconstruction, Journal of High Energy Physics, 2019, 119, DOI: 10.1007/JHEP04(2019)119