Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode

Photonic Sensors, Apr 2019

A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2Fs13320-019-0539-8.pdf

Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode

Photonic Sensors June 2019, Volume 9, Issue 2, pp 135–141 | Cite as Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode AuthorsAuthors and affiliations Xuejing LiuYang LiHongwei CaiMing DingJiancheng FangWei Jin Open Access Regular First Online: 10 April 2019 Abstract A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems. KeywordsSuperluminescent diode atomic magnetometer magnetoencephalography atomic spin precession detection Larmor precession  Download to read the full article text Notes Acknowledgment This work is supported by the National Key Research and Development Program of China under Grant Nos. 2017YFB0503100 and 2016YFB051600. References [1] W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Physical Review Letters, 1967, 18(15): 577–580.ADSCrossRefGoogle Scholar [2] H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Applied Physics Letters, 2010, 97(15): 151110-1–151110-4.ADSCrossRefGoogle Scholar [3] D. Cohen, “Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer,” Science, 1972, 175(4022): 664–666.ADSCrossRefGoogle Scholar [4] D. Budker, “Atomic physics-A new spin on magnetometry,” Nature, 2003, 422(6932): 574–575.ADSCrossRefGoogle Scholar [5] H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Applied Physics Letters, 2006, 75(21): 211104-1–211104-3.ADSGoogle Scholar [6] R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Physics in Medicine and Biology, 2012, 57(9): 2619–2632.ADSCrossRefGoogle Scholar [7] E. Boto, N. Holmes, J. Leggett, G. Roberts, V. K. Shah, S. S. Meyer, et al., “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, 2018, 555(7698): 657–661.ADSCrossRefGoogle Scholar [8] T. Sander, J. Preusser, R. R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomedical Optics Express, 2012, 3(5): 981–990.CrossRefGoogle Scholar [9] A. Borna, T. R. Carter, P. Derego, C. D. James, and P. D. D. Schwindt, “Magnetic source imaging using a pulsed optically pumped magnetometer array,” IEEE Transactions on Instrumentation and Measurement, 2018, 68(2): 493–501.CrossRefGoogle Scholar [10] A. Weis, “Optically pumped alkali magnetometers for biomedical applications,” Europhysics News, 2012, 43(3): 20–23.CrossRefGoogle Scholar [11] C. Johnson, N. L. Adolphi, K. L. Butler, D. M. Lovato, R. Larson, P. D. D. Schwindt, et al., “Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells,” Journal of Magnetism and Magnetic Materials, 2012, 324(17): 2613–2619.ADSCrossRefGoogle Scholar [12] A. Weis, S. Colombo, V. Dolgovskiy, Z. D. Grujic, V. N. Lebedev, and J. Zhang, “Characterizing and imaging magnetic nanoparticles by optical magnetometry,” Journal of Physics Conference Series, 2017, 793(1): 012032-1–012032-4.Google Scholar [13] G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, et al., “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Applied Physics Letters, 2009, 95(17): 173701-1–173701-3.ADSCrossRefGoogle Scholar [14] E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, et al., “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, 2018, 555(7698): 657–661.ADSCrossRefGoogle Scholar [15] C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Applied Physics Letters, 2010, 97(24): 413–375.CrossRefGoogle Scholar [16] R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Physics in Medicine and Biology, 2012, 57(9): 2619–2132.ADSCrossRefGoogle Scholar [17] A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y. Jau, C. Berry, et al., “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Physics in Medicine and Biology, 2017, 62(23): 8909–8923.ADSGoogle Scholar [18] N. Shibata, M. Ohashi, T. Wakabayashi, K. Tsuchiya, S. I. Furukawa, H. Mizuguchi, et al., “Polarization mode coupling and spatial power spectrum of fluctuations along a highly birefringent holey fiber,” Journal of Lightwave Technology, 2009, 27(10): 1269–1278.ADSCrossRefGoogle Scholar [19] D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Applied Physics Letters, 1995, 67(15): 2141–2143.ADSCrossRefGoogle Scholar [20] K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 661–666.ADSCrossRefGoogle Scholar [21] J. C. Camparo and R. MacKay, “Spectral mode changes in an alkali rf discharge,” Journal of Applied Physics, 2007, 101(5): 53303-1–53303-6.ADSCrossRefGoogle Scholar [22] A. Dandridge and A. B. Tveten, “Noise reduction in fiber-optic interferometer systems,” Applied Optics, 1981, 20(14): 2337–2339.ADSCrossRefGoogle Scholar [23] T. Komljenovic, M. A. Tran, M. Belt, S. Gundavarapu, D. J. Blumenthal, and J. E. Bowers, “Frequency modulated lasers for interferometric optical gyroscopes,” Optics Letters, 2016, 41(8): 1773–1776.ADSCrossRefGoogle Scholar [24] G. M. Müller, X. Gu, L. Yang, A. Frank, and K. Bohnert, “Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber,” Optics Express, 2016, 24(10): 11164–11173.ADSCrossRefGoogle Scholar [25] K. Bohnert, P. Gabus, J. Nehring, H. Brändle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” Journal of Lightwave Technology, 2007, 25(11): 3602–3609.ADSCrossRefGoogle Scholar [26] M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Physical Review A, 2008, 77(3): 033408-1–033408-8.ADSCrossRefGoogle Scholar [27] S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton University, Princeton, New Jersey, USA, 2008.Google Scholar [28] M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Physical Review Letters, 2010, 105(24): 243001-1–243001-4.ADSCrossRefGoogle Scholar [29] J. C. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, et al., “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Review of Scientific Instruments, 2014, 85(6): 63108-1–063108-7.CrossRefGoogle Scholar [30] G. Vasilakis, J. M. Brown, T. W. Kornack, and M. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K-3He comagnetometer,” Physical Review Letters, 2009, 103(26): 261801-1–261801-4.ADSCrossRefGoogle Scholar Copyright information © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Authors and Affiliations Xuejing Liu1Yang Li1Hongwei Cai1Ming Ding1Email authorJiancheng Fang1Wei Jin11.School of Instrumentation Science and Opto-electronics EngineeringBeihang UniversityBeijingChina


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2Fs13320-019-0539-8.pdf

Xuejing Liu, Yang Li, Hongwei Cai, Ming Ding, Jiancheng Fang, Wei Jin. Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode, Photonic Sensors, 2019, 135-141, DOI: 10.1007/s13320-019-0539-8