One-loop QCD contributions to differential cross-sections for Higgs production at N3LO

Journal of High Energy Physics, May 2019

Abstract We present one-loop contributions to the fully differential Higgs boson gluon-fusion cross-section for Higgs production via gluon fusion. Our results constitute a necessary ingredient of a complete N3LO determination of the cross-section. We perform our computation using a subtraction method for the treatment of soft and collinear singularities. We identify the infrared divergent parts in terms of universal splitting and eikonal functions, and demonstrate how phase-space integrations yield poles (up to 1/ε6) in the dimensional regulator ε = (4 − d)/2. We compute the coefficients of the ε expansion, including the finite part numerically. As a demonstration of our numerical implementation, we present the corrections at N3LO due to one-loop amplitudes in the rapidity and transverse momentum of the Higgs boson.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP05%282019%29080.pdf

One-loop QCD contributions to differential cross-sections for Higgs production at N3LO

Journal of High Energy Physics May 2019, 2019:80 | Cite as One-loop QCD contributions to differential cross-sections for Higgs production at N3LO AuthorsAuthors and affiliations Charalampos AnastasiouCaterina Specchia Open Access Regular Article - Theoretical Physics First Online: 15 May 2019 9 Downloads Abstract We present one-loop contributions to the fully differential Higgs boson gluon-fusion cross-section for Higgs production via gluon fusion. Our results constitute a necessary ingredient of a complete N3LO determination of the cross-section. We perform our computation using a subtraction method for the treatment of soft and collinear singularities. We identify the infrared divergent parts in terms of universal splitting and eikonal functions, and demonstrate how phase-space integrations yield poles (up to 1/ε6) in the dimensional regulator ε = (4 − d)/2. We compute the coefficients of the ε expansion, including the finite part numerically. As a demonstration of our numerical implementation, we present the corrections at N3LO due to one-loop amplitudes in the rapidity and transverse momentum of the Higgs boson. Keywords NLO Computations QCD Phenomenology  ArXiv ePrint: 1812.05857 Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].CrossRefGoogle Scholar [2] B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].CrossRefGoogle Scholar [3] A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N 3 LO+NNLL with small-R resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].Google Scholar [4] X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].CrossRefGoogle Scholar [5] R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].CrossRefGoogle Scholar [6] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].CrossRefGoogle Scholar [7] F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].Google Scholar [8] X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].CrossRefGoogle Scholar [9] F. Dulat, B. Mistlberger and A. Pelloni, Precision predictions at N 3 LO for the Higgs boson rapidity distribution at the LHC, Phys. Rev. D 99 (2019) 034004 [arXiv:1810.09462] [INSPIRE].Google Scholar [10] F. Dulat, S. Lionetti, B. Mistlberger, A. Pelloni and C. Specchia, Higgs-differential cross section at NNLO in dimensional regularisation, JHEP 07 (2017) 017 [arXiv:1704.08220] [INSPIRE].CrossRefGoogle Scholar [11] F. Dulat, B. Mistlberger and A. Pelloni, Differential Higgs production at N 3 LO beyond threshold, JHEP 01 (2018) 145 [arXiv:1710.03016] [INSPIRE].CrossRefGoogle Scholar [12] L. Cieri, X. Chen, T. Gehrmann, E.W.N. Glover and A. Huss, Higgs boson production at the LHC using the q T subtraction formalism at N 3 LO QCD, JHEP 02 (2019) 096 [arXiv:1807.11501] [INSPIRE].CrossRefGoogle Scholar [13] C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N 3 LO, JHEP 02 (2015) 077 [arXiv:1411.3587] [INSPIRE].CrossRefGoogle Scholar [14] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE]. [15] K.G. Chetyrkin, J.H. Kühn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE]. [16] Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE]. [17] D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE]. [18] S.D. Badger and E.W.N. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE]. [19] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE]. [20] S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE]. [21] C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].CrossRefzbMATHGoogle Scholar [22] T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].CrossRefzbMATHGoogle Scholar [23] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B 302 (1993) 299 [Erratum ibid. B 318 (1993) 649] [hep-ph/9212308] [INSPIRE]. [24] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The Infrared behavior of QCD cross-sections at next-to-next-to leading order, PoS(corfu98)031 [hep-ph/9903525] [INSPIRE]. [25] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE]. [26] Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [INSPIRE]. [27] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. [28] Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE]. [29] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].CrossRefGoogle Scholar [30] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].CrossRefGoogle Scholar [31] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order alpha-S 4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE]. [32] M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE]. Copyright information © The Author(s) 2019 Authors and Affiliations Charalampos Anastasiou1Email authorCaterina Specchia11.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP05%282019%29080.pdf

Charalampos Anastasiou, Caterina Specchia. One-loop QCD contributions to differential cross-sections for Higgs production at N3LO, Journal of High Energy Physics, 2019, 80, DOI: 10.1007/JHEP05(2019)080