Bacterial degradation of anthraquinone dyes

Journal of Zhejiang University-SCIENCE B, May 2019

Anthraquinone dyes, which contain anthraquinone chromophore groups, are the second largest class of dyes after azo dyes and are used extensively in textile industries. The majority of these dyes are resistant to degradation because of their complex and stable structures; consequently, a large number of anthraquinone dyes find their way into the environment causing serious pollution. At present, the microbiological approach to treating printing and dyeing wastewater is considered to be an economical and feasible method, and reports regarding the bacterial degradation of anthraquinone dyes are increasing. This paper reviews the classification and structures of anthraquinone dyes, summarizes the types of degradative bacteria, and explores the possible mechanisms and influencing factors of bacterial anthraquinone dye degradation. Present research progress and existing problems are further discussed. Finally, future research directions and key points are presented.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1631%2Fjzus.B1900165.pdf

Bacterial degradation of anthraquinone dyes

Journal of Zhejiang University-SCIENCE B June 2019, Volume 20, Issue 6, pp 528–540 | Cite as Bacterial degradation of anthraquinone dyes AuthorsAuthors and affiliations Hai-hong LiYang-tao WangYang WangHai-xia WangKai-kai SunZhen-mei Lu Review First Online: 17 May 2019 5 Downloads Abstract Anthraquinone dyes, which contain anthraquinone chromophore groups, are the second largest class of dyes after azo dyes and are used extensively in textile industries. The majority of these dyes are resistant to degradation because of their complex and stable structures; consequently, a large number of anthraquinone dyes find their way into the environment causing serious pollution. At present, the microbiological approach to treating printing and dyeing wastewater is considered to be an economical and feasible method, and reports regarding the bacterial degradation of anthraquinone dyes are increasing. This paper reviews the classification and structures of anthraquinone dyes, summarizes the types of degradative bacteria, and explores the possible mechanisms and influencing factors of bacterial anthraquinone dye degradation. Present research progress and existing problems are further discussed. Finally, future research directions and key points are presented. Key wordsAnthraquinone dyes Bacterial degradation Degradation mechanism Influencing factor  Project supported by the National Natural Science Foundation of China (Nos. 41721001 and 41630637), the Shaanxi Provincial Science and Technology Department (No. 2017GY-151), the Education Department of Shaanxi Province (No. 16JF010), and the Shaanxi Sanqin Scholars Fund Project, China 细菌降解蒽醌染料研究进展 概要 本文综述了近年来细菌降解蒽醌染料的研究进展及机理, 以期为蒽醌染料废水的实际处理提供理 论依据。目前主要利用物理、化学及生物法处理 工业印染废水中的各种染料。与前两者相比, 生 物法具有经济且环保的特点。本文以蒽醌染料的 分类及结构为基础, 总结近年来已报道的蒽醌染 料高效降解细菌的多样性; 初步探讨细菌吸附、 降解蒽醌染料的机理与主要影响因素; 根据目前 的研究进展及存在问题, 提出细菌降解蒽醌染料 的研究方向。 关键词蒽醌染料 细菌降解 降解机理 影响因素  CLC numberQ93  Download to read the full article text Notes Acknowledgments We thank Adebanjo O. OLUWAFUNMILAYO (College of Life Sciences, Zhejiang University, Hangzhou, China) for checking the English language. References Ali H, 2010. Biodegradation of synthetic dyes—a review. Water Air Soil Pollut, 213(1–4):251–273.  https://doi.org/10.1007/s11270-010-0382-4 Google Scholar Andleeb S, Atiq N, Robson GD, et al., 2012. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ Sci Pollut Res, 19(5):1728–1737.  https://doi.org/10.1007/s11356-011-0687-x Google Scholar Balapure KH, Jain K, Chattaraj S, et al., 2014. Co-metabolic degradation of diazo dye—reactive blue 160 by enriched mixed cultures BDN. J Hazard Mater, 279:85–95.  https://doi.org/10.10167/j.jhazmat.2014.06.057 Google Scholar Banat IM, Nigam P, Singh D, et al., 1996. Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol, 58(3):217–227.  https://doi.org/10.1016/s0960-8524(96)00113-7 Google Scholar Cai JL, Huang Y, Li X, 2008. Cytological mechanisms of pollutants adsorption by biosorbent. Chin J Ecol, 27(6): 1005–1011 (in Chinese).Google Scholar Cerboneschi M, Corsi M, Bianchini R, et al., 2015. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Appl Microbiol Biotechnol, 99(19): 8235–8245.  https://doi.org/10.1007/s00253-015-6648-4 Google Scholar Chaudhari AU, Paul D, Dhotre D, et al., 2017. Effective biotransformation and detoxification of anthraquinone dye Reactive Blue 4 by using aerobic bacterial granules. Water Res, 122:603–613.  https://doi.org/10.1016/j.watres.2017.06.005 Google Scholar Chen CC, Liao HJ, Cheng CY, et al., 2007. Biodegradation of crystal violet by Pseudomonas putida. Biotechnol Lett, 29(3):391–396.  https://doi.org/10.1007/s10529-006-9265-6 Google Scholar Crini G, 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol, 97(9):1061–1085.  https://doi.org/10.1016/j.biortech.2005.05.001 Google Scholar Cui DZ, Zhang H, He RB, et al., 2016. The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by anaerobic sludge. Int J Environ Res Public Health, 13(11):1053.  https://doi.org/10.3390/ijerph13111053 Google Scholar Cui MH, Cui D, Gao L, et al., 2016. Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source. Water Res, 105:520–526.  https://doi.org/10.1016/j.watres.2016.09.027 Google Scholar Das A, Mishra S, 2017. Removal of textile dye Reactive Green-19 using bacterial consortium: process optimization using response surface methodology and kinetics study. J Environ Chem Eng, 5(1):612–627.  https://doi.org/10.1016/j.jece.2016.10.005 Google Scholar Deng DY, Guo J, Zeng GQ, et al., 2008. Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeterior Biodegrad, 62(3):263–269.  https://doi.org/10.1016/j.ibiod.2008.01.017 Google Scholar Du LN, Wang B, Li G, et al., 2012. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: kinetics and sorption mechanisms. J Hazard Mater, 205–206:47–54.  https://doi.org/10.1016/j.jhazmat.2011.12.001 Google Scholar Duval J, Pecher V, Poujol M, et al., 2016. Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crop Prod, 94:812–833.  https://doi.org/10.1016/j.indcrop.2016.09.056 Google Scholar Fan L, Zhu SN, Liu DQ, et al., 2008. Decolorization mechanism of 1-amino-4-bromoanthraquinone-2-sulfonic acid using Sphingomonas herbicidovorans FL. Dyes Pigments, 78(1):34–38.  https://doi.org/10.1016/j.dyepig.2007.10.004 Google Scholar Forss J, Lindh MV, Pinhassi J, et al., 2017. Microbial biotreatment of actual textile wastewater in a continuous sequential rice husk biofilter and the microbial community involved. PLoS ONE, 12(1):e0170562.  https://doi.org/10.1371/journal.pone.0170562 Google Scholar He JX, 2009. Dye Chemistry. China Textile & Apparel Press, Beijing, China (in Chinese).Google Scholar Hitz HR, Huber W, Reed RH, 1978. The absorption of dyes on activated sludge. J Soc Dyers Colour, 94(2):71–76.Google Scholar Holkar CR, Pandit AB, Pinjari DV, 2014. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545. Bioresour Technol, 173:342–351.  https://doi.org/10.1016/j.biortech.2014.09.108 Google Scholar Itoh K, Yatome C, Ogawa T, 1993. Biodegradation of anthraquinone dyes by Bacillus subtilis. Bull Environ Contam Toxicol, 50(4):522–527.  https://doi.org/10.1007/BF00191240 Google Scholar Jadhav SU, Kalme SD, Govindwar SP, 2008. Biodegradation of Methyl Red by Galactomyces geotrichum MTCC 1360. Int Biodeterior Biodegrad, 62(2):135–142.  https://doi.org/10.1016/j.ibiod.2007.12.010 Google Scholar Khataee A, Gholami P, Vahid B, et al., 2016. Heterogeneous sono-fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye. Ultrason Sonochem, 32:357–370.  https://doi.org/10.1016/j.ultsonch.2016.04.002 Google Scholar Kobayashi T, Taya H, Wilaipun P, et al., 2017. Malachite-green-removing properties of a bacterial strain isolated from fish ponds in Thailand. Fish Sci, 83(5):827–835.  https://doi.org/10.1007/s12562-017-1102-4 Google Scholar Kodam KM, Soojhawon I, Lokhande PD, et al., 2005. Microbial decolorization of reactive azo dyes under aerobic conditions. World J Microbiol Biotechnol, 21(3):367–370.  https://doi.org/10.1007/s11274-004-5957-z Google Scholar Krishnan J, Kishore AA, Suresh A, et al., 2017. Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. Int Biodeterior Biodegrad, 119:16–27.  https://doi.org/10.1016/j.ibiod.2016.11.024 Google Scholar Kurade MB, Waghmode TR, Khandare RV, et al., 2016. Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate. J Biosci Bioeng, 121(4):442–449.  https://doi.org/10.1016/j.jbiosc.2015.08.014 Google Scholar Lee YH, Matthews RD, Pavlostathis SG, 2006. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Environ Res, 78(2):156–169.  https://doi.org/10.2175/106143005x89616 Google Scholar Linde D, Coscolín C, Liers C, et al., 2014. Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expr Purif, 103:28–37.  https://doi.org/10.1016/j.pep.2014.08.007 Google Scholar Liu N, Xie XH, Yang B, et al., 2017. Performance and microbial community structures of hydrolysis acidification process treating azo and anthraquinone dyes in different stages. Environ Sci Pollut Res, 24(1):252–263.  https://doi.org/10.1007/s11356-016-7705-y Google Scholar Lovato ME, Fiasconaro ML, Martin CA, 2017. Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies. Water Sci Technol, 75(4):813–822.  https://doi.org/10.2166/wst.2016.501 Google Scholar Lu H, Guan XF, Wang J, et al., 2015. Enhanced biodecolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by Sphingomonas xenophaga with nutrient amendment. J Environ Sci, 27:124–130.  https://doi.org/10.1016/j.jes.2014.05.041 Google Scholar Mishra S, Maiti A, 2018. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environ Sci Pollut Res, 25(9):8286–8314.  https://doi.org/10.1007/s11356-018-1273-2 Google Scholar Novotný C, Dias N, Kapanen A, et al., 2006. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere, 63(9):1436–1442.  https://doi.org/10.1016/j.chemosphere.2005.10.002 Google Scholar Ogola HJO, Kamiike T, Hashimoto N, et al., 2009. Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. Strain PCC 7120. Appl Environ Microbiol, 75(23):7509–7518.  https://doi.org/10.1128/aem.01121-09 Google Scholar Ogugbue CJ, Sawidis T, Oranusi NA, 2012. Bioremoval of chemically different synthetic dyes by Aeromonas hydrophila in simulated wastewater containing dyeing auxiliaries. Ann Microbiol, 62(3):1141–1153.  https://doi.org/10.1007/s13213-011-0354-y Google Scholar Olaganathan R, Patterson J, 2009. Decolorization of anthraquinone Vat Blue 4 by the free cells of an autochthonous bacterium, Bacillus subtilis. Water Sci Technol, 60(12): 3225–3232.  https://doi.org/10.2166/wst.2009.756 Google Scholar Otto B, Schlosser D, 2014. First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria. Planta, 240(6):1225–1236.  https://doi.org/10.1007/s00425-014-2144-9 Google Scholar Park H, Mameda N, Choo KH, 2018. Catalytic metal oxide nanopowder composite Ti mesh for electrochemical oxidation of 1,4-dioxane and dyes. Chem Eng J, 345:233–241.  https://doi.org/10.1016/j.cej.2018.03.158 Google Scholar Parmar ND, Shukla SR, 2018. Biodegradation of anthraquinone based dye using an isolated strain Staphylococcus hominis subsp. hominis DSM 20328. Environ Prog Sustain Energy, 37(1):203–214.  https://doi.org/10.1002/ep.12655 Google Scholar Pearce CI, Lloyd JR, Guthrie JT, 2003. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments, 58(3):179–196.  https://doi.org/10.1016/s0143-7208(03)00064-0 Google Scholar Ren SZ, Guo J, Zeng GQ, et al., 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl Microbiol Biotechnol, 72(6):1316–1321.  https://doi.org/10.1007/s00253-006-0418-2 Google Scholar Roberts JN, Singh R, Grigg JC, et al., 2011. Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23):5108–5119.  https://doi.org/10.1021/bi200427h Google Scholar Rybczyńska-Tkaczyk K, Święciło A, Szychowski KA, et al., 2018. Comparative study of eco- and cytotoxicity during biotransformation of anthraquinone dye Alizarin Blue Black B in optimized cultures of microscopic fungi. Ecotoxicol Environ Safe, 147:776–787.  https://doi.org/10.1016/j.ecoenv.2017.09.037 Google Scholar Sadykov MR, Thomas VC, Marshall DD, et al., 2013. Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus. J Bacteriol, 195(13):3035–3044.  https://doi.org/10.1128/jb.00042-13 Google Scholar Samanta M, Mukherjee M, Ghorai UK, et al., 2018. Ultrasound assisted catalytic degradation of textile dye under the presence of reduced graphene oxide enveloped copper phthalocyanine nanotube. Appl Surf Sci, 449:113–121.  https://doi.org/10.1016/j.apsusc.2018.01.118 Google Scholar Šlosarčiková P, Novotný C, Malachová K, et al., 2017. Effect of yeasts on biodegradation potential of immobilized cultures of white rot fungi. Sci Total Environ, 589:146–152.  https://doi.org/10.1016/j.scitotenv.2017.02.079 Google Scholar Solís M, Solís A, Inés Pérez H, et al., 2012. Microbial decolouration of azo dyes: a review. Process Biochem, 47(12): 1723–1748.  https://doi.org/10.1016/j.procbio.2012.08.014 Google Scholar Tian JH, Pourcher AM, Peu P, 2016. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Lett Appl Microbiol, 63(1):30–37.  https://doi.org/10.1111/lam.12581 Google Scholar Uchida T, Sasaki M, Tanaka Y, et al., 2015. A dye-decolorizing peroxidase from Vibrio cholerae. Biochemistry, 54(43):6610–6621.  https://doi.org/10.1021/acs.biochem.5b00952 Google Scholar Velayutham K, Madhava AK, Pushparaj M, et al., 2018. Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204). Environ Technol, 39(22):2900–2907.  https://doi.org/10.1080/09593330.2017.1369579 Google Scholar Walker GM, Weatherley LR, 2000. Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut, 108(2):219–223.  https://doi.org/10.1016/s0269-7491(99)00187-6 Google Scholar Wang H, Su JQ, Zheng XW, et al., 2009. Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad, 63(4):395–399.  https://doi.org/10.1016/j.ibiod.2008.11.006 Google Scholar Wang J, Zhou Y, Li PL, et al., 2015. Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB. Appl Biochem Biotechnol, 175(6):3162–3172.  https://doi.org/10.1007/s12010-015-1490-9 Google Scholar Wang YP, Zhu K, Zheng YM, et al., 2011. The effect of recycling flux on the performance and microbial community composition of a biofilm hydrolytic-aerobic recycling process treating anthraquinone reactive dyes. Molecules, 16(12):9838–9849.  https://doi.org/10.3390/molecules16129838 Google Scholar Wang YZ, Pan Y, Zhu T, et al., 2018. Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye. Sci Total Environ, 634:616–627.  https://doi.org/10.1016/j.scitotenv.2018.03.346 Google Scholar Xie XH, Liu N, Yang B, et al., 2016. Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by Illumina MiSeq sequencing. Int Biodeterior Biodegrad, 111:14–21.  https://doi.org/10.1016/j.ibiod.2016.04.004 Google Scholar Xu MY, Guo J, Zeng GQ, et al., 2006. Decolorization of anthraquinone dye by Shewanella decolorationis S12. Appl Microbiol Biotechnol, 71(2):246–251.  https://doi.org/10.1007/s00253-005-0144-1 Google Scholar Yagub MT, Sen TK, Afroze S, et al., 2014. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci, 209:172–184.  https://doi.org/10.1016/j.cis.2014.04.002 Google Scholar Yang F, Xie XH, Liu N, et al., 2017. On the effects and biotoxicity variations as a result of dye biodegradation by bacterial consortium FF. J Safet Environ, 17(2):654–659 (in Chinese).  https://doi.org/10.13637/j.issn.1009-6094.2017.02.049 Google Scholar Yu J, Wang XW, Yue PL, 2001. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Res, 35(15):3579–3586.  https://doi.org/10.1016/s0043-1354(01)00100-2 Google Scholar Zhang H, Zhang S, He F, et al., 2016. Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J Hazard Mater, 320:265–277.  https://doi.org/10.1016/j.jhazmat.2016.07.065 Google Scholar Zhang SC, Lu XJ, 2018. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent. Chemosphere, 206:777–783.  https://doi.org/10.1016/j.chemosphere.2018.05.073 Google Scholar Copyright information © Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019 Authors and Affiliations Hai-hong Li1Yang-tao Wang1Yang Wang1Hai-xia Wang2Kai-kai Sun2Zhen-mei Lu2Email authorView author's OrcID profile1.College of Environmental and Chemical EngineeringXi’an Polytechnic UniversityShaanxiChina2.MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouChina


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1631%2Fjzus.B1900165.pdf

Hai-hong Li, Yang-tao Wang, Yang Wang, Hai-xia Wang, Kai-kai Sun, Zhen-mei Lu. Bacterial degradation of anthraquinone dyes, Journal of Zhejiang University-SCIENCE B, 2019, 528-540, DOI: 10.1631/jzus.B1900165