Chemical monitoring in the Dutch Wadden Sea by means of benthic invertebrates and fish

Helgoland Marine Research, Sep 1989

In monitoring, it is of utmost importance to carefully define the purpose, the sampling strategy, as well as the analytical chemical and statistical requirements. Surveys are appropriate for describing the geographical variation in environmental contaminant levels. Repeated surveys and recurrentdata collection at permanent locations provide means of detecting temporal trends. Results are presented here of surveys on pollution by trace metals, polychlorinated biphenyls and organochlorine pesticides in the Ems Estuary and Dutch Wadden Sea usingMytilus edulis, Mya arenaria, Arenicoia marina, Nereis diversicolor andCrangon crangon as test organisms. Trends towards decreasing pollution by mercury are illustrated by monitoring data onMytilus edulis andZoarces viviparus. It is stressed that the results of chemical monitoring in organisms may be interpreted only in termser the biological effects on the basis of relevant toxicological knowledge and/or additional bio-assays.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://link.springer.com/content/pdf/10.1007%2FBF02365902.pdf

Chemical monitoring in the Dutch Wadden Sea by means of benthic invertebrates and fish

HELGOLANDER MEERESUNTERSUCHUNGEN Helgol~nder Meeresunters. 9 Biologische Anstalt Helgoland, Hamburg 0 Ministry of Transport and Pubfic Works, Rijkswaterstaat, Tidal Waters Division; P. O. Box 207, 9750 A E Haren , The Netherlands In monitoring, it is of utmost importance to carefuUy define the purpose, the sampling strategy, as well as the analytical chemical and statistical requirements. Surveys are appropriate for describing the geographical variation in environmental contaminant levels, Repeated surveys and recurrent data collection at permanent locations provide means of detecting temporal trends. Results are presented here of surveys on pollution by trace metals, polychlorinated biphenyls and organochlorine pesticides in the Eros Estuary and Dutch Wadden Sea using Mytilus edulis, Mya arenaria, Arenicola marina, Nereis diversicolor and Crangon crangon as test organisms. Trends towards decreasing pollution by mercury are illustrated by monitoring data on Mytilus edulis and Zoarces viviparus. It is stressed that the results of chemical monitoring in organisms may be interpreted only in terms of the biological effects on the basis of relevant toxicological knowledge and/or additional bio-assays. C h e m i c a l; m o n i t o r i n g; in t h e D u t c h W a d d e n; S e a b y m e a n s; of b e n t h i c i n v e r t e b r a t e s a n d fish* - K a r e l E s s i n k pollution will disperse, as well as in areas with valuable natural resources. Reference areas, i.e. areas with minimal pollution impact, should be included in a monitoring programme to increase the possibility of discriminating between naturally fluctuating and pollution-induced parameter values. These discriminations are essential to authorities responsible for the management of estuarine and coastal water bodies (cf. Beukema & Essink, 1986). The question of how monitoring is to be performed pertains to the sampling strategy (network of samphng stations, sampling frequency, sample size and number) (Cuff & Coleman, 1979; Pearce & Despres-Patanjo, 1988) and analytical methods, including a quahty-assurance programme (Cofino, 1989). The entire set-up of the monitoring programme should enable a sound statistical treatment of the d a t a (Anonymous, 1982; Phillips & Segar, 1986; Segar & Stamman, 1986). In this paper, data will be presented on surveys of contaminant concentrations (trace metals and organochlorines) in benthic invertebrates in the Eros Estuary, Dutch Wadden Sea and coastal waters of western Europe. Results of trend monitoring of mercury pollution in the Dutch Wadden Sea will be illustrated by data on the mussel Mytilus edulis and the viviparous blenny Zoarces viviparus. In 1984, a small-scale survey was carried out in the Ems Estuary (Essink et al., 1986). The purpose of this survey was to identify pollution sources of PCBs and some organochlorine pesticides. Three benthic invertebrates, the bivalve Mya arenaria and the polychaetes Arenicola marina and Nereis diversicolor were used. M. arenaria and A. marina were sampled at three locations; N. diversicolor was sampled at seven locations on the intertidal flats of the estuary. Figure I shows that elevated concentrations of hexachlorobenzene (HCB) were found at location 4, indicating a major source of HCB near Delfzijl. Similar results were obtained for the PCB congeners PCB-101, PCB-138, PCB-153, PCB-180 and, less clear, for PCB-28 and PCB-52 (Fig.2), and hexachlorobutadiene (HCBu) (Essink et al., 1986). Near Delfzijl,industrial waste discharge was responsible for the observed distribution of pollution by HCB and HCBuin the Ems Estuary. As to the PCBs, there is no knowledge of discharge of PCB-containing wastewater. However, in Delfzijlfresh water is sluiced out from a large drainage area, which is supposed to contain PCBs. For the first four PCBcongeners mentioned, the concentrations in N. diversicolor are higher at locations 1 to 3 (outer part of the estuary) than at locations 5 to 7 (Fig.2), indicating that for these contaminants the coastal waters of the North Sea are an additional source. Apparently, the congeners PCB-28 and PCB-52 have a much more diffuse origin. Quite a different distribution pattern of concentrations was found for the pesticide yHCH (hndane) (Fig.3). The higher concentrations found at location 1 are attributed to local discharges of surplus fresh water from Dutch agricultural areas as well as to the relatively high y-HCH concentrations in coastal waters due to discharges by the rivers Weser and Elbe (Gaul & Ziebarth, 1983). Surveys extending over a larger area, viz. the Dutch Wadden Sea and Ems Estuary, have been carried out for organochlorines and trace metals (Dulnker et al., 1983; Kramer et al., 1985). Figure 4 shows that for HCB and y-HCH the Ems Estuary (locations 4 and 5) - Fig. 1, Map of the Eros Estuary with sampling locations (1-7) for intertidal benthic invertebrates (a) and concentrations of hexachlorobenzene (HCB) in pooled samples of Arenicola marina, Nereis diversicolor and Mya arenaria in 1984 (b) a n d the westernmost part of the W a d d e n Sea (location 1) are more c o n t a m i n a t e d t h a n the central part (locations 2 a n d 3). A similar c o n t a m i n a t i o n p a t t e r n was found for c a d m i u m in 1982 (Pig. 5). So, in the area surveyed two c o n t a m i n a t e d s u b a r e a s are present, i n d i c a t i n g two important sources of pollution. This also holds for pollution by mercury as assessed by a survey of intertidal mussels Mytilus edulis in 1971-73 (De Kock & Kuiper, 1981). Large-scale surveys as carried out b y De Wolf (1975) along the West E u r o p e a n coasts b e t w e e n Arcachon (Prance) a n d Cape S k a g e n (Denmark), a n d b e t w e e n L a n d ' s E n d a n d E d i n b u r g h (Great Britain) e n a b l e us to consider local pollution in a w i d e r g e o g r a p h i c a l and e v e n international context. In 1971/72, m e r c u r y contents in intertidal mussels Mytilus edufis from the Ems Estuary w e r e a m o n g the highest found in the entire survey. In S e p t e m b e r 1988, another large-scale survey was carried out by the Tidal Waters Division including the Danish, G e r m a n and Dutch W a d d e n Sea as well as t h e r e m a i n i n g Dutch coastal zone as far as the Western Scheldt estuary. In this survey, s a m p l e s w e r e I Arenieola mar. Fig. 3. Concentrations of y-HCH in pooled samples of Arenicola marina, Nereis diversicolor and Mya arenaria in the Ems Estuary in 1984. See Figure la for locations TREND MONITORING Repeated surveys, carried out in the Dutch W a d d e n Sea in 1982, 1985 a n d 1986, offer the possibility of detecting trends in trace metal concentrations of certain i n v e r t e b r a t e species. In Figure 6, data are p r e s e n t e d on concentrations of copper a n d c a d m i u m in the species Arenicola marina a n d Crangon crangon. The concentrations are m e a n values of the concentrations found in three different l e n g t h groups of animals. A trend for copper is not p r e s e n t at a n y of the locations sampled. For cadmium, however, a t r e n d of d e c r e a s i n g concentrations is observed. The concentrations found in 1985 a n d 1986 are considerably lower t h a n in 1982 at most of the locations. The higher concentrations o b s e r v e d at location 8 in 1986 as compared with 1985 are not statistically significant. The decrease of c a d m i u m contamination in the w e s t e r n part of the Dutch W a d d e n Sea can be e x p l a i n e d by the strong reduction of the discharges via the river Rhine: from ca 100 tonnes.yr-1 in 1980/81 to ca 10 tonnes.yr-1 in !984/85 (Folkertsma, 1987). No data are available on c a d m i u m discharges in the Eros Estuary. KareI Essink I 3 locations Fig. 4. M a p of the Dutch Wadden Sea and Eros Estuary (a) and relative concentrations of HCB (e) and y - H C H (1) in Arenico]a maz~na at five locations in 1979 (b). Concentrations found at location 2 are set at 1. (After DuJnker eta]., 1983) Monitoring of contaminants in the biotic c o m p a r t m e n t of the ecosystem, e.g. the water column, as compared to the abiotic compartment, has some advantages. Contami n a n t concentrations in an organism are usually well above the detection limit of analytical methods. Furthermore, these concentrations represent a n i n t e g r a t i o n of temporal variations in the occurrence of the c o n t a m i n a n t s in the aquatic e n v i r o n m e n t . An essential prerequisite, however, for a p p l y i n g biota in monitoring p r o g r a m m e s is a stationary mode of life of the species concerned. This prerequisite restricts m e a n i n g f u l chemical monitoring in biota to sedentary organisms, such as fucoids a n d macrobenthic ,~f:~o s~'0 CU ug.g -1 100 Cd JJg.g -1 3 Fig. 7. Decrease of mercury concentrations in Mytilus edulis in the Ems Estuary. A: mean and range of local intertidal population. B: mean and range of transplanted mussels. (After Pries et al., 1984) Fig. 8. Decrease of mercury concentrations in 180 mm Zoarces viviparus from western Dutch Wadden Sea and Ems Estuary. Concentrations and 95 % confidence intervals estimated from regressions of mercury concentration on length. (After Essink, 1980, 1985, 1988). Baseline level founded on data from Scotland (see text) f r o m E m s E s t u a r y a n d w e s t e r n D u t c h W a d d e n S e a n o l o n g e r d i f f e r e d s i g n i f i c a n t l y i n 1981 (Fig. 8), a s i g n i f i c a n t d i f f e r e n c e in fry s u r v i v a l w a s f o u n d . T h e m e a n n u m b e r of d a y s a f t e r w h i c h 50 % of t h e fry of a f e m a l e w a s still a l i v e ( s u r v i v a l t i m e : STso) w a s g r e a t e r i n fry b o r n of f e m a l e s f r o m t h e w e s t e r n D u t c h W a d d e n S e a (Table 1). S u r v i v a l w a s b e t t e r i n t h e a r e a t h a t h a d e x p e r i e n c e d l e s s e r m e r c u r y p o l l u t i o n . In S w e d e n , fry of e e l p o u t h a v e b e e n s u c c e s f u l l y u s e d i n b i o - a s s a y s t u d i e s b y J a c o b s s o n e t al. (1986). A c k n o w l e d g e m e n t s . Thanks are due to Dr. J . M . Everaarts (Texel) for permission to use his unpublished data on trace metals in intertidal invertebrate species. R. Jungcurt prepared the figures. L I T E R A T U R E C I T E D Fig. 5. Cadmium concentrations in Arenicola man'na (pooled samples of specimens weighing 3-5 g) and Mytilus edulis (mean of pooled samples of 3--4, and 5-6 cm shell length) at 10 locations in the Dutch Wadden Sea and Ems Estuary in 1982. (After Kramer et al ., 1985 ) Fig. 6. Concentrations of copper and cadmium m Arenicola marina (Aren. mar.) and Crangon crangon (Cra . cra. ) at 5 locations in the Dutch Wadden Sea and Eros Estuary in 1982 , 1985 and 1986 . ( From J. M. Everaarts , unpubl.) Adema , D. M. M. , Swaaf-Mooy , S. I. de & Bais , P. , 1972 . Laboratory investigations concerning the influence of copper on mussels (Mytilus edulis) . - TNO -Nieuws 27 , 482 - 487 . Anonymous , 1982 . Guidelines to be followed for sample collection, preparation and analysis of fish and shellfish in the conduct of cooperative monitoring . - Coop. Res. Rep . 117 , Appendix. Becker , P. H. , 1989 . Seabirds as monitor organisms of contaminants along the German North Sea coast - Helgol~nder Meeresunters .' 43 , 395 - 403 . Beukema , J. J. & Essink , K. , 1986 . Common pattern in the fluctuations of macrozoobenthic species living at different places on tidal flats in the Wadden Sea . - Hydrobiologia 142 , 199 - 207 . Boon , J. P. , 1985 . Uptake, distribution, and elimination of selected PCB components of Clophen A40 in juvenile sole (Solea solea) and effects on .growth. In: Marine biology of polar regions and effects of stress on marine organisms . Ed . by J. S. Gray & M. E. Christiansen . Wiley, Chichester 493 - 512 . Boon , J. P. & Duinker , J. C. , 1986 . Monitoring of cyclic organochlorines in the marine environment . - Environ. Monit. Assess . 7 , 189 - 208 . Cofino , W. P. , 1989 . Methodology of chemical monitoring in the marine environment . - Helgol~nder Meeresunters . 43 , 295 - 308 . Cuff , W. & Coleman , N. , 1979 . Optimal survey design: lessons from a stratified random sample of macrobenthos . - J. Fish. Res. Bd Can . 36 , 351 - 361 . Duinker , J. C. , Hillebrand , M. T. J. & Boon , J. P. , 1983 . Organochlorines in benthic invertebrates and sediments from the Dutch Wadden Sea; identification of individual PCB components . - Neth. J. Sea Res . 17 , 19 - 38 . Essink , K. , 1980 . Mercury pollution in the Eros estuary . - Helgol~inder Meeresunters . 33 , 111 - 121 . Essink , K. , 1985 . Monitoring of mercury pollution in Dutch coastal waters by m e a n s of the teleostean fish Zoarces viviparus . - Neth. J. Sea Res . 19 , 177 - 182 . Essink , K. , 1988 . Decreasing mercury pollution in the Dutch W a d d e n Sea and Eros Estuary . - Mar. Pollut. Bull . 19 , 317 - 319 . Essink , K. & Bos , A. H. , 1985 . Growth of three bivalve molluscs transplanted along the axis of the Eros Estuary . - Neth. J. Sea Res. I9 , 45 - 51 . Essink , K. , Jagtman , E. & Ritsema , R. , 1986 . Usefulness of sediment and three benthic invertebrates as indicators of organochlorine pollution in an estuarine environment. - Rep . Rijkswaterstaat, Tidal Wat . Div. Groningen GWAO-85 .157, 1 - 17 . Everaarts , J. M. , 1986 . Is monitoring of respiratory properties of the haemoglobin of the lugworm Arenicola marina meaningful? - Environ . Monit. Assess. 7 , 273 - 283 . Folkertsma , F. , 1987 . Review of programmes and measures for cadmium in The Netherlands . - Note. Rijkswaterstaat, Institute for Inland Water M a n a g e m e n t and Waste Water Treatment, Lelystad 87.106X, 1 - 23 . Gaul , H. & Ziebarth , U. , 1983 . Method for the analysis of lipophilic compounds in w a t e r and results about the distribution of different organochlorine compounds in the North Sea . - Dr. hydrogr. Z . 36 , 191 - 212 . Jacobsson , A. , Neuman , E. & Thoreson , G. , 1986 . The viviparous blenny as an indicator of environmental effects of harmful substances . - Ambio 15 , 236 - 238 . Kock , W. C. de, 1983 . Accumulation of cadmium and polychlorinated biphenyls by Mytilus edulis L., transplanted from pristine water into pollution gradients . - Can. J. Fish. aquat. Sci. 40 (Suppl. 2) , 282 - 294 . Kock , W. C. de, 1986 . Monitoring bio-available marine contaminants with m u s s e l s (Mytilus edulis L.) in the Netherlands . - Environ. Monit. Assess . 7 , 209 - 220 . Kock , W. C. de & Kuiper , J. , 1981 . Possibilities for marine pollution research at the ecosystem level: - C h e m o s p h e r e I0 , 575 - 603 . Kramer , C. J. M. , Boon , J. P. , Duinker , J. C. , Everaarts , J. M. , Hillebrand , M. T. J. , Nolting , R. F. & Vlies , E.M. van der, 1985 . Contaminanten in de W a d d e n z e e en e e n vergelijking met de o m h g g e n d e gebieden. Nederlands Instituut voor Onderzoek der Zee, Texel , 120 pp. Meijers , E. M. J. , 1986 . Defining confusions - confusing definitions. - Environ. Monit. Assess . 7 , 157 - 159 . Pearce , J. B. & Despres-Patanjo , L. , 1988 . A review of monitoring strategies a n d assessments of estuarine pollution. - A q u a t . Toxic. 11 , 323 - 343 . Phillips , D. J. H. & Segar , D. A. , 1986 . Use of bio-indicators in monitoring conservative contaminants: programme design imperatives . - Mar. Pollut. Bull . 17 , 10 - 17 . Pries , C. , Kock , W. C. de & Marquenie , J. M. 1984 . Specimen banks and the monitoring of surface water pollution by aquatic organisms . In: Environmental s p e c i m e n b a n k i n g a n d monitoring as related to banking Ed . by R. A. Lewis , N. Stein & C. W. Lewis . Nijhoff, Boston, 88 - 94 . Reijnders , P. J. H. , 1986 . Reproductive failure in common seals feeding on fish from polluted coastal waters . - Nature, Lond., 324 , 456 - 457 . Segar , D. A. & Stamman , E. , 1986 . Fundamentals of marine pollution monitoring p r o g r a m m e des i g n . - Mar. Pollut. Bull. 17 , 194 - 200 . Wolf , P. de, 1975 . Mercury content of mussels from West European coasts . - Mar. Pollut. Bull . 6 , 61 - 63 . Wolf , P. de, Kock, W. C. de & Stam , A. , 1972 . Field experiments on the influence of copper and mercury in a natural mussel bed . - TNO-Nieuws 27 , 497 - 504 . Zauke , G.-P. , Meurs , H.-G. , Todeskino , D. , Kunze , S. , Bfiumer , H.-P. & Butte , W. , 1987 . Unters u c h u n g e n zur V e r w e n d u n g von Bioindikatoren f /. ir die Umweltfiberwachung irn .~stuarbereich der Elbe , Weser u n d Eros. Teil 3. Zum Monitoring von Cadmium, Blei, Nickel, Kupfer und Zink in Balaniden (Cirripedia: Crustacea), Gammariden (Amphipoda: Crustacea) u n d Enteromorpha (Ulvales: Chlorophyta). - ForschBer. FKZ Wasser 102 05 209 , 1 - 144 . Zauke , G.-P. , Meurs , H.-G. , Schrey , K. & B~iumer, H.-P. , 1988 . Influence of species, life-history status, and sampling techniques on Cd , Pb, Ni, Cu, and Zn in estuarine gammarids . - Crustaceana (Suppl.) 13 , 283 - 285 .


This is a preview of a remote PDF: http://link.springer.com/content/pdf/10.1007%2FBF02365902.pdf

Karel Essink. Chemical monitoring in the Dutch Wadden Sea by means of benthic invertebrates and fish, Helgoland Marine Research, 1989, 435-446, DOI: 10.1007/BF02365902