Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures

Microbial Cell Factories, Oct 2008

Background The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies. Conclusion Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://www.microbialcellfactories.com/content/pdf/1475-2859-7-28.pdf

Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures

Shweta Singh 2 Adrien Gras 2 Cdric Fiez-Vandal 1 3 Jonathan Ruprecht 2 Rohini Rana 2 Magdalena Martinez 2 Philip G Strange 0 Renaud Wagner [email protected] 1 Bernadette Byrne 2 0 School of Pharmacy , PO Box 228 , University of Reading , Whiteknights, Reading RG6 6AJ , UK 1 Unite Mixte de Recherche 7175 Ecole Superieure de Biotechnologie de Strasbourg - Centre National de la Recherche Scientifique, Departement Recepteurs et Proteines Membranaires , 67412 Illkirch , France 2 Membrane Protein Crystallography Group, Division of Molecular Biosciences, Imperial College London , South Kensington, London, SW7 2AZ , UK 3 Karolinska Institutet, Department of Medical Biochemistry and Biophysics (MBB), Division of Biophysics , Scheeles vag 2, 171 77 Stockholm , Sweden Background: The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results: Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a Cterminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies. Conclusion: Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures. - Background G-protein-coupled receptors (GPCRs) form a large superfamily of cell-surface receptors that mediate cellular responses to a wide range of biologically active molecules including hormones, neurotransmitters and drugs. Indeed, half of all currently available pharmaceuticals act through GPCRs [1,2]. The physiological and pharmacological importance of these proteins makes them key targets for drug discovery programmes. Our understanding of the precise mechanism of action of these important proteins is currently limited by a lack of high-resolution structural data. One limiting factor to structural studies of GPCRs has, until recently, been low expression levels [3]. With the exception of rhodopsin, all GPCRs are expressed at very low levels endogenously, thus requiring the development of recombinant overexpression systems. Careful expression vector design, GPCR codon-optimisation [4] and high throughput approaches used to identify GPCRs with the highest expression levels in different expression systems [5] are among the methods that have been used to produce sufficiently high levels of functional GPCRs suitable for structural studies. Success has been achieved when using the expression host Pichia pastoris for the production of membrane proteins for structural studies, most notably the rat membrane protein K+ channel [6]. Pichia has several advantages over other systems for the production of GPCRs. It is easy to manipulate, has high production levels and is relatively inexpensive. In addition, Pichia has the ability to glycosylate expressed receptors, albeit in a modified form compared to higher eukaryotes, which is essential for the proper functioning and membrane targeting of many receptors [7-10]. Much effort has been applied to the optimisation of Pichia expression systems specifically for GPCR production [11-16]. The basic system uses a pPIC9K vector (Invitrogen) where GPCR expression is under the control of the strong methanol inducible AOX1 promoter. Protease deficient expression strains, such as the SMD1163 strain, and the use of the -factor leader sequence have improved receptor expression levels [11,12]. Modifications to the growth media including addition of histidine, receptor specific ligands and di (...truncated)


This is a preview of a remote PDF: http://www.microbialcellfactories.com/content/pdf/1475-2859-7-28.pdf

Shweta Singh, Adrien Gras, Cédric Fiez-Vandal, Jonathan Ruprecht, Rohini Rana, Magdalena Martinez, Philip G Strange, Renaud Wagner, Bernadette Byrne. Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures, Microbial Cell Factories, 2008, pp. 28, 7, DOI: 10.1186/1475-2859-7-28