Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV

Journal of High Energy Physics, Apr 2016

Integrated fiducial cross sections for the production of four leptons via the H → 4ℓ decays (ℓ = e, μ) are measured in pp collisions at \( \sqrt{s}=7 \) and 8TeV. Measurements are performed with data corresponding to integrated luminosities of 5.1 fb−1 at 7TeV, and 19.7 fb−1 at 8 TeV, collected with the CMS experiment at the LHC. Differential cross sections are measured using the 8 TeV data, and are determined as functions of the transverse momentum and rapidity of the four-lepton system, accompanying jet multiplicity, transverse momentum of the leading jet, and difference in rapidity between the Higgs boson candidate and the leading jet. A measurement of the Z → 4ℓ cross section, and its ratio to the H → 4ℓ cross section is also performed. All cross sections are measured within a fiducial phase space defined by the requirements on lepton kinematics and event topology. The integrated H → 4ℓ fiducial cross section is measured to be 0. 56 − 0.44 + 0.67 (stat) − 0.06 + 0.21 (syst) fb at 7 TeV, and 1. 11 − 0.35 + 0.41 (stat) − 0.10 + 0.14 (syst) fb at 8 TeV. The measurements are found to be compatible with theoretical calculations based on the standard model.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP04%282016%29005.pdf

Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV

Accepted: March cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at and 8 TeV Integrated ducial cross sections for the production of four leptons via the surements are performed with data corresponding to integrated luminosities of 5.1 fb 1 at 7 TeV, and 19.7 fb 1 at 8 TeV, collected with the CMS experiment at the LHC. Di erential cross sections are measured using the 8 TeV data, and are determined as functions of the transverse momentum and rapidity of the four-lepton system, accompanying jet multiplicity, transverse momentum of the leading jet, and di erence in rapidity between the Higgs boson candidate and the leading jet. A measurement of the Z ! 4` cross section, and its ratio to the H ! 4` cross section is also performed. All cross sections are measured within a ducial phase space de ned by the requirements on lepton kinematics and event topology. The integrated H ! 4` ducial cross section is measured to be 0:56+00::6474(stat) +00::2016(syst) fb at 7 TeV, and 1:11+00::4315(stat) +00::1140(syst) fb at 8 TeV. The measurements are found to be compatible with theoretical calculations based on the standard model. Hadron-Hadron scattering; Higgs physics - 7 HJEP04(216)5 The CMS collaboration s = 7 and 8 TeV. Mea1 Introduction 2 The CMS detector and experimental methods 3 Data and simulation samples 4 Event selection and background modelling 5 Fiducial phase space de nition 6 Measurement methodology 7 Systematic uncertainties 8 Results 9 Summary The CMS collaboration The observation of a new boson consistent with the standard model (SM) Higgs boson [1{6] was reported by the ATLAS and CMS collaborations in 2012 [7, 8]. Subsequent measurements con rmed that the properties of the new boson, such as its couplings and decay width, are indeed consistent with expectations for the SM Higgs boson [9{13] (and references given therein). measurements in the H ! 2 CMS collaborations [15, 16]. In this paper we present measurements of the integrated and di erential cross sections for the production of four leptons via the H ! 4` decays (` = e, ) in pp collisions at centre-of-mass energies of 7 and 8 TeV. All cross sections are measured in a restricted part of the phase space ( ducial phase space) de ned to match the experimental acceptance in terms of the lepton kinematics and topological event selection. The H ! 4` denotes the Higgs boson decay to the four-lepton nal state via an intermediate pair of neutral electroweak bosons. A similar study of the Higgs boson production cross section using the H ! 4` decay channel has already been performed by the ATLAS Collaboration [14], while decay channel have been reported by both the ATLAS and The integrated ducial cross sections are measured using pp collision data recorded with the CMS detector at the CERN LHC corresponding to integrated luminosities of 5:1 fb 1 at 7 TeV and 19:7 fb 1 at 8 TeV. The measurement of the ratio of cross sections { 1 { at 7 and 8 TeV is also performed. The di erential ducial cross sections are measured using just the 8 TeV data, due to the limited statistics of the 7 TeV data set. The cross sections are corrected for e ects related to detector e ciency and resolution. The ducial phase space constitutes approximately 42% of the total available phase space, and there is no attempt to extrapolate the measurements to the full phase space. This approach is chosen to reduce the systematic uncertainty associated with the underlying model of the Higgs boson properties and production mechanism. The remaining dependence of each measurement on the model assumptions is determined and quoted as a separate systematic e ect. Due to the strong dependence of the cross section times branching fraction on the mass of the Higgs boson (mH) in the region around 125 GeV, the measurements are performed assuming a mass of mH = 125:0 GeV, as measured by the CMS experiment using the H ! 4` and H ! 2 channels [11]. This approach also allows an easier comparison of measurements with the theoretical estimations. The di erential ducial cross sections are measured as a function of several kinematic observables that are sensitive to the Higgs boson production mechanism: transverse momentum and rapidity of the four-lepton system, transverse momentum of the leading jet, separation in rapidity between the Higgs boson candidate and the leading jet, as well as the accompanying jet multiplicity. In addition, measurements of the Z ! 4` ducial cross section, and of its ratio to the corresponding H ! 4` ducial cross section are also performed using the 8 TeV data. These measurements provide tests of the SM expectations, and important validations of our understanding of the detector response and methodology used for the H ! 4` cross section measurement. The results of the H ! 4` cross section measurements are compared to theoretical calculations in the SM Higgs sector that o er up to next-to-next-to-leading-order (NNLO) accuracy in perturbative QCD, and up to next-to-leading-order (NLO) accuracy in perturbative electro-weak corrections. All measurements presented in this paper are based on the experimental techniques used in previous measurements of Higgs boson properties in this nal state [17, 18]. These techniques include: algorithms for the online event selection, algorithms for the reconstruction, identi cation and calibration of electrons, muons and jets, as well as the approaches to the event selection and background estimation. This paper is organized as follows. The CMS detector and experimental techniques are brie y described in section 2. The data sets and simulated samples used in the analysis are described in section 3. The event selection and background modelling are presented in section 4. The ducial phase space used for the measurements is de ned in section 5, while the procedure for extracting the integrated and di erential cross sections is presented in section 6. Section 7 discusses the systematic uncertainties in the measurements. Section 8 presents the results of all measurements and their comparison with the SM-based calculations. 2 The CMS detector and experimental methods The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T. Within the solenoid volume are a silicon { 2 { pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimetry extends the pseudorapidity coverage provided by the barrel and endcap detectors to j j < 5. Muons are measured in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [19]. The reconstruction of particles emerging from each collision event is obtained via a particle- ow event reconstruction technique. The technique uses an optimized combination of all information from the CMS sub-detectors to identify and reconstruct individual particles in the collision event [ 20, 21 ]. The particles are classi ed into mutually exclusive categories: charged hadrons, neutral hadrons, photons, muons, and electrons. Jets are reconstructed from the individual particles using the anti-kT clustering algorithm with a distance parameter of 0.5 [22], as implemented in the fastjet package [23, 24]. Energy deposits from the multiple pp interactions (pileup) and from the underlying event are subtracted when computing the energy of jets and isolation of reconstructed objects using the FastJet technique [24{26]. Details on the experimental techniques for the reconstruction, identi cation, and isolation of electrons, muons and jets, as well as on the e ciencies of these techniques can be found in refs. [21, 27{32]. Details on the procedure used to calibrate the leptons and jets in this analysis can be found in ref. [17]. 3 Data and simulation samples The data set analyzed was collected by the CMS experiment in 2011 and 2012, and corresponds to integrated luminosities of 5:1 fb 1 of 7 TeV collision data and 19:7 fb 1 of 8 TeV collision data, respectively. The set of triggers used to collect the data set is the same as the one used in previous measurements of Higgs boson properties in four-lepton nal states [17, 18]. Descriptions of the SM Higgs boson production in the gluon fusion (gg ! H) process are obtained using the HRes 2.3 [33, 34], Powheg V2 [35, 36], and Powheg MiNLO HJ [37] generators. The HRes generator is a partonic level Monte Carlo (MC) generator that provides a description of the gg ! H process at NNLO accuracy in perturbative QCD and next-to-next-to-leading-logarithmic (NNLL) accuracy in the resummation of soft-gluon e ects at small transverse momenta [33, 34]. Since the resummation is inclusive over the QCD radiation recoiling against the Higgs boson, HRes is considered for the estimation of ducial cross sections that are inclusive in the associated jet activity. The HRes estimations are obtained by choosing the central values for the renormalization and factorization scales to be mH = 125:0 GeV. The Powheg generator is a partonic level matrix-element generator that implements NLO perturbative QCD calculations and additionally provides an interface with parton shower programs. It provides a description of the gg ! H production in association with zero jets at NLO accuracy. For the purpose of this analysis, it has been tuned using the powheg damping factor hdump of 104:16 GeV, to closely match { 3 { the Higgs boson pT spectrum in the full phase space, as estimated by the HRes generator. This factor minimises emission of the additional jets in the limit of large pT, and enhances the contribution from the Sudakov form factor as pT approaches zero [35, 36]. The Powheg MiNLO HJ generator is an extension of the Powheg V2 generator based on the MiNLO prescription [37] for the improved next-to-leading-logarithmic accuracy applied to the gg ! H production in association with up to one additional jet. It provides a description of the gg ! H production in association with zero jets and one jet at NLO accuracy, and the gg ! H production in association with two jets only at the leading-order (LO) accuracy. All the generators used to describe the gg ! H process take into account the nite masses of the bottom and top quarks. The description of the SM Higgs boson production in the vector boson fusion (VBF) process is obtained at NLO accuracy using the powheg generator. The processes of SM Higgs boson production associated with gauge bosons (VH) or top quark-antiquark pair (ttH) are described at LO accuracy using Pythia 6.4 [38]. The MC samples simulated with these generators are normalized to the inclusive SM Higgs boson production cross sections and branching fractions that correspond to the SM calculations at NNLO and NNLL accuracy, in accordance with the LHC Higgs Cross section Working Group recommendations [39].The powheg samples of the gg ! H and VBF processes are used together with the pythia samples of the VH and ttH processes to model the SM signal acceptance in the ducial phase space and to extract the results of the ducial cross section measurements following the method described in section 6. These samples, together with the HRes and Powheg MiNLO HJ samples of the alternative description of the gg ! H process, are used to compare the measurement results to the SM-based theoretical calculations in section 8. In order to estimate the dependence of the measurement procedure on the underlying assumption for the Higgs boson production mechanism, we have used the set of MC samples for individual production mechanisms described in the previous paragraph. In addition, in order to estimate the dependence of the measurement on di erent assumptions of the Higgs boson properties, we have also simulated a range of samples that describe the production and decay of exotic Higgs-like resonances to the four-lepton nal state. These include spin-zero, spin-one, and spin-two resonances with anomalous interactions with a pair of neutral gauge bosons (ZZ, Z , ) described by higher-order operators, as discussed in detail in ref. [18]. All of these samples are generated using the powheg generator for the description of NLO QCD e ects in the production mechanism, and JHUGen [40{42] to describe the decay of these exotic resonances to four leptons including all spin correlations. The MC event samples that are used to estimate the contribution from the background process gg ! ZZ are simulated using MCFM 6.7 [43], while the background process qq ! 4` is simulated at NLO accuracy with the powheg generator including s-, t-, and u-channel diagrams. For the purpose of the Z ! 4` cross section measurements, we have also separately modelled contributions from the t- and u-channels of the qq (! ZZ ) ! 4` process at NLO accuracy with powheg. All the event generators described above take into account the initial- and nal-state QED radiation (FSR) e ects which can lead to the presence of additional hard photons in an event. Furthermore, the powheg and JHUGen event generators take into account { 4 { interference between all contributing diagrams in the H ! 4` process, including those related to the permutations of identical leptons in the 4e and 4 nal states. In the case of the LO, NLO, and NNLO generators, the sets of parton distribution functions (PDF) CTEQ6L [44], CT10 [ 45 ], and MSTW2008 [46] are used, respectively. All generated events are interfaced with Pythia 6.4.26 Tune Z2 to simulate the e ects of the parton shower, multi-parton interactions, and hadronization. The Pythia 6.4.26 Z2 tune is derived from the Z1 tune [ 47 ], which uses the CTEQ5L parton distribution set, whereas Z2 adopts CTEQ6L [48]. The HRes generator does not provide an interface with programs that can simulate the e ects of hadronization and multi-parton interactions. In order to account for these e ects in the HRes estimations, the HRes gencollisions. More details can be found in ref. [17]. 4 Event selection and background modelling The measurements presented in this paper are based on the event selection used in the previous measurements of Higgs boson properties in this nal state [17, 18]. Events are selected online requiring the presence of a pair of electrons or muons, or a triplet of electrons. Triggers requiring an electron and a muon are also used. The minimum pT of the leading and subleading lepton are 17 and 8 GeV, respectively, for the double-lepton triggers, while they are 15, 8 and 5 GeV for the triple-electron trigger. Events with at least four well identi ed and isolated electrons or muons are then selected o ine, if they are compatible with being produced at the primary vertex. The primary vertex is selected to be the one with the highest sum of p2T of associated tracks. Among all same- avour and opposite-sign (SFOS) lepton pairs in the event, the one with an invariant mass closest to the nominal Z boson mass is denoted Z1 and retained if its mass, m(Z1), satis es 40 m(Z1) 120 GeV. The remaining leptons are considered and the presence of a second `+` pair, denoted { 5 { must satisfy m(`i+`j ) the same procedure as described in ref. [17]. Z2, is required with condition 12 m(Z2) 120 GeV. If more than one Z2 candidate satis es all criteria, the pair of leptons with the largest sum of the transverse momenta magnitudes, jpTj, is chosen. Among the four selected leptons `i (i = 1 : : : 4) forming the Z1 and Z2 candidates, at least one lepton should have pT 20 GeV, another one pT 10 GeV, and any opposite-charge pair of leptons `i+ and `j , irrespective of avor, 4 GeV. The algorithm to recover the photons from the FSR uses In the analysis, the presence of jets is only used to determine the di erential cross section measurements as a function of jet-related observables. Jets are selected if they satisfy pT 30 GeV and j j candidates and from identi ed FSR photons by R p ( the azimuthal angle in radians) [17]. 4:7, and are required to be separated from the lepton ground for the H ! 4` process originates from the ZZ production via the qq annihilation, while the subdominant contribution arises from the ZZ production via gluon fusion. In those processes, at least one of the intermediate Z bosons is not on-shell. The reducible backgrounds mainly arise from the processes where parts of intrinsic jet activity are misidenti ed as an electron or a muon, such as: production of Z boson in association with jets, production of a ZW boson pair in association with jets, and the tt pair production. Hereafter, this background is denoted as Z + X. The other background processes have negligible contribution. In the case of the H ! 4` cross section measurements, the irreducible qq ! ZZ and gg ! ZZ backgrounds are evaluated from simulation based on generators discussed in section 3, following ref. [17]. In the case of the gg ! ZZ background, the LO cross section of gg ! ZZ is corrected via a m4` dependent k-factor, as recommended in the study of ref. [51]. The reducible background (Z + X) is evaluated using the method based on lepton misidenti cation probabilities and control regions in data, following the procedure described in ref. [17]. In the case of the integrated H ! 4` cross section measurement, the shape of the m4` distribution for the reducible background is obtained by tting the m4` with empirical analytical functional forms presented in ref. [17]. In the case of the di erential H ! 4` measurements, the shapes of the reducible background are obtained from the control regions in data in the form of template functions, separately for each bin of the considered observable. The template functions are prepared following a procedure described in the spin-parity studies presented in refs. [17, 18]. The number of estimated signal and background events for the H ! 4` measurement, as well as the number of observed candidates after the nal inclusive selection in data in the mass region 105 < m4` < 140 GeV are given in table 1, separately for 7 and 8 TeV. In part of the m4` spectrum below 100 GeV, the dominant contribution arises from the resonant Z ! 4` production (s-channel of the qq ! 4` process via the Z boson exchange). The sub-dominant contributions arise from the corresponding t- and u-channels of the qq ! 4` process, from the reducible background processes (Z + X), as well as from the gg ! ZZ background. In the case of the Z ! 4` measurements, contributions from s-, t-, { 6 { qq ! ZZ Z + X gg ! ZZ qq ! ZZ Z + X gg ! ZZ Total background expected H ! 4` (mH = 125:0 GeV) Observed Total background expected H ! 4` (mH = 125:0 GeV) Observed 1 9 3 15 nal inclusive selection in the range 105 < m4` < 140 GeV, used in the H ! 4` measurements. Signal and ZZ background are estimated from simulations, while the Z + X background is evaluated using control regions in data. and u-diagrams of the qq ! 4` process (and their interference), and contribution of the gg ! ZZ process are estimated from simulation. The Z + X background is evaluated using control regions in data following an identical procedure as the one described above. The expected number of events arising from the s-channel of the qq ! 4` process is 57:4 0:3, from all other SM processes is 3:6 0:5, and 72 candidate events are observed after the nal inclusive selection in 8 TeV data in the mass region 50 < m4` < 105 GeV. The reconstructed four-lepton invariant mass distributions in the region of interest for the H ! 4` and Z ! 4` measurements (50 < m4` < 140 GeV) are shown in gure 1 for the 7 and 8 TeV data sets, and compared to the SM expectations. 5 Fiducial phase space de nition The acceptance and selection e ciency for the H ! 4` decays can vary signi cantly between di erent Higgs boson production mechanisms and di erent exotic models of Higgs boson properties. In processes with large jet activity (such as the ttH production), or with low invariant mass of the second lepton pair (such as H ! Z ( ) ! 4` processes), or with the H ! 4` kinematics di erent from the SM estimation (such as exotic Higgs-like spin-one models), the inclusive acceptance of signal events can di er by up to 70% from the inclusive acceptance estimated for SM H ! 4` decays. In order to minimise the dependence of the measurement on the speci c model assumed for Higgs boson production and properties, the ducial phase space for the H ! 4` cross section measurements is de ned to match as closely as possible the experimental accep{ 7 { Data ZZ/Zγ* Z+X mH=125 GeV including resonant Z ! 4` decays. tance de ned by the reconstruction-level selection. This includes the de nition of selection observables and selection requirements, as well as the de nition of the algorithm for the topological event selection. The ducial phase space is de ned using the leptons produced in the hard scattering, before any FSR occurs. This choice is motivated by the fact that the recovery of the FSR photons is explicitly performed at the reconstruction level. In the case of di erential measurements as a function of jet-related observables, jets are reconstructed from the individual stable particles, excluding neutrinos and muons, using the anti-kt clustering algorithm with a distance parameter of 0.5. Jets are considered if they satisfy pT 30 GeV and j j 4:7. The ducial phase space requires at least four leptons (electrons, muons), with at least one lepton having pT > 20 GeV, another lepton having pT > 10 GeV, and the remaining electrons and muons having pT > 7 GeV and pT > 5 GeV respectively. All electrons and muons must have pseudorapidity j j < 2:5 and j j < 2:4, respectively. In addition, each lepton must satisfy an isolation requirement computed using the pT sum of all stable particles within R < 0:4 distance from that lepton. The pT sum excludes any neutrinos, as well as any photon or stable lepton that is a daughter of the lepton for which the isolation sum is being computed. The ratio of this sum and the pT of the considered lepton must be less than 0:4, in line with the requirement on the lepton isolation at the reconstruction level [17]. The inclusion of isolation is an important step in the ducial phase space de nition as it reduces signi cantly the di erences in signal selection e ciency between di erent signal models. It has been veri ed in simulation that the signal selection e ciency di ers by up to 45% between di erent models if the lepton isolation requirement is not included. This is especially pronounced in case of large associated jet activity as in the case of ttH production mode. Exclusion of neutrinos and FSR photons from the computation of the isolation sum brings the de nition of the ducial phase space closer to the reconstruction level, and improves the model independence of the signal selection e ciency by an additional few percent. { 8 { Requirements for the H ! 4` ducial phase space Lepton kinematics and isolation Leading lepton pT Sub-leading lepton pT Additional electrons (muons) pT Pseudorapidity of electrons (muons) Sum of scalar pT of all stable particles within R < 0:4 from lepton Event topology Existence of at least two SFOS lepton pairs, where leptons satisfy criteria above for the H ! 4` cross section measurements. For measurements of the Z ! 4` cross section and the ratio of the H ! 4` and Z ! 4` cross sections, the requirement on the invariant mass of the selected four leptons is modi ed accordingly. More details, including the exact de nition of the stable particles and lepton isolation, as well as Z1 and Z2 candidates, can be found in the text. Furthermore, an algorithm for a topological selection closely matching the one at the reconstruction level is applied as part of the ducial phase space de nition. At least two SFOS lepton pairs are required, and all SFOS lepton pairs are used to form Z boson candidates. The SFOS pair with invariant mass closest to the nominal Z boson mass (91:188 GeV) is taken as the rst Z boson candidate (denoted as Z1). The mass of the Z1 candidate must satisfy 40 < m(Z1) < 120 GeV. The remaining set of SFOS pairs are used to form the second Z boson candidate (denoted as Z2). In events with more than one Z2 candidate, the SFOS pair with the largest sum of the transverse momenta magnitudes, jpTj, is chosen. The mass of the Z2 candidate must satisfy 12 < m(Z2) < 120 GeV. Among the four selected leptons, any pair of leptons `i and `j must satisfy R(`i`j ) > 0:02. Similarly, of the four selected leptons, the invariant mass of any opposite-sign lepton pair must satisfy m(`i+`j ) > 4 GeV. Finally, the invariant mass of the Higgs boson candidate must satisfy 105 < m4` < 140 GeV. The requirement on the m4` is important as the o shell production cross section in the dominant gluon fusion production mode is sizeable and can amount up to a few percent of the total cross section [52]. All the requirements and selections used in the de nition of the ducial phase space are summarised in table 2. It has been veri ed in simulation that the reconstruction e ciency for events originating from the ducial phase space de ned in this way only weakly depends on the Higgs boson properties and production mechanism. The systematic e ect associated with the remaining model dependence is extracted and quoted separately, considering a wide range of alternative Higgs boson models, as described in section 7. The fraction of signal events { 9 { A d fnon d Individual Higgs boson production modes Signal process VBF (powheg) WH (pythia) ZH (pythia) ttH (pythia) gg ! H (Powheg+JHUGen) qq ! H(JCP = 1 ) (JHUGen) 0.238 qq ! H(JCP = 1+) (JHUGen) 0.283 gg ! H ! Z gg ! H ! (JHUGen) (JHUGen) tion e ciency ( ) for signal events from within the ducial phase space, and ratio of reconstructed events which are from outside the ducial phase space to reconstructed events which are from within the ducial phase space (fnon d). Values are given for characteristic signal models assuming s = 8 TeV, and the uncertainties include only the statistical uncertainties due to the nite number of events in MC simulation. In case of the rst seven signal models, decays of the Higgs-like boson to four leptons proceed according to SM via the H ! ZZ ! 4` process. De nition of signal excludes events where at least one reconstructed lepton originates from associated vector bosons or jets. The factor (1 + fnon d) is discussed in section 6. within the ducial phase space A d, and the reconstruction e ciency for signal events within the ducial phase space for individual SM production modes and exotic signal models are listed in table 3. It should be noted that the cross section is measured for the process of resonant production of four leptons via the H ! 4` decays. This de nition excludes events where at least one reconstructed lepton originates from associated vector bosons or jets, and not from the H ! 4` decays. Those events present a broad m4` distribution, whose exact shape depends on the production mode, and are treated as a combinatorial signal-induced background in the measurement procedure. This approach provides a simple measurement procedure with a substantially reduced signal model dependence. More details are discussed in section 6. In the case of the independent measurement of the Z ! 4` ducial cross section, the ducial phase space is de ned in the analogous way, with the di erence that the invariant mass of the 4` candidate for the Z boson must satisfy 50 < m4` < 105 GeV. In the case of the measurement of the ratio of the H ! 4` and Z ! 4` cross sections, the mass window of 50 < m4` < 140 GeV is used. 6 Measurement methodology The aim is to determine the integrated and di erential cross sections within the ducial phase space, corrected for the e ects of limited detection e ciencies, resolution, and known systematic biases. In order to achieve this goal, we estimate those e ects using simulation and include them in the parameterization of the expected m4` spectra at the reconstruction level. We then perform a maximum likelihood t of the signal and background parameterizations to the observed 4` mass distribution, Nobs(m4`), and directly extract the ducial cross sections of interest ( d) from the t. In this approach all systematic uncertainties are included in the form of nuisance parameters, which are e ectively integrated out in the t procedure. The results of measurements are obtained using an asymptotic approach [53] with the test statistics based on the pro le likelihood ratio [54]. The coverage of the quoted intervals obtained with this approach has been veri ed for a subset of results using the Feldman-Cousins method [55]. The maximum likelihood t is performed simultaneously in all nal states and in all bins of the observable considered in the measurement, assuming a Higgs boson mass of mH = 125:0 GeV. The integrated cross section measurement is treated as a special case with a single bin. This implementation of the procedure for the unfolding of the detector e ects from the observed distributions is di erent from the implementations commonly used in the experimental measurements, such as those discussed in ref. [56], where signal extraction and unfolding are performed in two separate steps. It is similar to the approach adopted in ref. [16]. The shape of the resonant signal contribution, Pres(m4`), is described by a doublesided Crystal Ball function as detailed in ref. [17], with a normalization proportional to the ducial cross section d. The shape of the combinatorial signal contribution, Pcomb(m4`), from events where at least one of the four leptons does not originate from the H ! 4` decay, is empirically modelled by a Landau distribution whose shape parameters are constrained in the t to be within a range determined from simulation. The remaining freedom in these parameters results in an additional systematic uncertainty on the measured cross sections. This contribution is treated as a background and hereafter we refer to this contribution as the \combinatorial signal" contribution. This component in the mass range 105 < m4` < 140 GeV amounts to about 4%, 18%, and 22% for WH, ZH, and ttH production modes, respectively. An additional resonant signal contribution from events that do not originate from the ducial phase space can arise due to detector e ects that cause di erences between the quantities used for the ducial phase space de nition, such as the lepton isolation, and the analogous quantities used for the event selection. This contribution is also treated as background, and hereafter we refer to this contribution as the \non ducial signal" contribution. It has been veri ed in simulation that the shape of these events is identical to the shape of the resonant ducial signal and, in order to minimise the model dependence of the measurement, its normalization is xed to be a fraction of the ducial signal component. The value of this fraction, which we denote by fnon d, has been determined from simulation for each of the studied signal models, and it varies from 5% for the gg ! H production to 14% for the ttH production mode. The variation of this fraction between di erent signal models is included in the model dependence estimation. The value of fnon d for di erent signal models is shown in table 3. In order to compare with the theoretical estimations, the measurement needs to be corrected for limited detector e ciency and resolution e ects. The e ciency for an event passing the ducial phase space selection to pass the reconstruction selection is measured using signal simulation samples and corrected for residual di erences between data and simulation, as brie y described in section 3 and detailed in ref. [17]. It is determined from simulations that this e ciency for the gg ! H process is about 65% inclusively, and that it can vary relative to the gg ! H process by up to 7% in other signal models, as shown in table 3. The largest deviations from the overall e ciency that correspond to the SM Higgs boson are found to be from ttH production, the H! Z ! 4` process, and exotic Higgs-like spin-one models. In the case of the di erential cross section measurements, the nite e ciencies and resolution e ects are encoded in a detector response matrix that describes how events migrate from a given observable bin at the ducial level to a given bin at the reconstruction level. This matrix is diagonally dominant for the jet inclusive observables, but has sizeable o -diagonal elements for the observables involving jets. In the case of the jet multiplicity measurement the next-to-diagonal elements range from 3% to 21%, while in the case of other observables these elements are typically of the order of 1{2%. Following the models for signal and background contributions described above, the number of expected events in each nal state f and in each bin i of a considered observable is expressed as a function of m4` given by: Nofb;is(m4`) =N f;di(m4`) + Nnf;oin d(m4`) + Ncfo;imb(m4`) + Nbf;kid(m4`) = X f i;j 1 + fnf;oin d f;j d L Pres(m4`) j + Ncfo;imb Pcomb(m4`) + Nbf;kid Pbkd(m4`): (6.1) The components N f;di(m4`), Nnf;oin d(m4`), Ncfo;imb(m4`), and Nbf;kid(m4`) represent the resonant ducial signal, resonant non ducial signal, combinatorial contribution from ducial signal, and background contributions in bin i as functions of m4`, respectively. Similarly, the Pres(m4`), Pcomb(m4`) and Pbkd(m4`) are the corresponding probability density functions for the resonant ( ducial and non ducial) signal, combinatorial signal, and background contributions. The fi;j represents the detector response matrix that maps the number of expected events in a given observable bin j at the ducial level to the number of expected events in the bin i at the reconstruction level. The fnion d fraction describes the ratio of the non ducial and ducial signal contribution in bin i at the reconstruction level. The parameter f;dj is the signal cross section for the nal state f in bin j of the ducial phase space. To extract the 4` ducial cross-sections, 4`d;j , in all bins j of a considered observable, an unbinned likelihood t is performed simultaneously for all bins i at reconstruction level on the mass distributions of the three nal states 4e, 4 , and 2e2 , using eq. (6.1). In each bin j of the ducial phase space the tted parameters are state cross-sections, and two remaining degrees of freedom for the relative contributions of 4`d;j , the sum of the three nal the three nal states. The inclusive values of the factor (1 + fnon d) from eq. (6.1) are shown in table 3 for di erent signal production modes and di erent exotic models. The relatively weak dependence of this factor on the exact signal model is a consequence of the particular de nition of the ducial phase space introduced in section 5, and enables a measurement with a very small dependence on the signal model. In the case of the simultaneous t for the H ! 4` signal in 7 and 8 TeV data sets, and the measurement of the ratio of the H ! 4` cross sections at 7 and 8 TeV, the procedure described above is generalised to include two separate signals. The parameters extracted simultaneously from the measurement are the 8 TeV ducial cross section, and ratio of 7 TeV and 8 TeV ducial cross sections. In the case of the Z ! 4` cross section measurements, the de nition of the ducial phase space and statistical procedure are analogous to the ones used for the H ! 4` cross section measurements with the Z boson mass xed to the PDG value of mZ = 91:188 GeV [57]. Similarly, in the case of the simultaneous t for the H ! 4` and Z ! 4` signals, and the measurement of the ratio of the H ! 4` and Z ! 4` cross sections, the procedure described above is generalised to include two separate signals. The parameters extracted simultaneously from this measurement are the H ! 4` ducial cross section, and ratio of the H ! 4` and Z ! 4` ducial cross sections. Furthermore, this measurement is performed in two scenarios. In the rst scenario, we x the Higgs boson mass to mH = 125:0 GeV and the Z boson mass to its PDG value. Results of measurements obtained in this scenario are reported in section 8. In the second scenario, we allow the masses of the two resonances to vary, and we t for the mass of the Higgs boson mH and the mass di erence between the two bosons m = mH mZ. This scenario allows for an additional reduction of the systematic uncertainties related to the lepton momentum scale determination, and provides an additional validation of the measurement methodology. 7 Systematic uncertainties Experimental systematic uncertainties in the parameterization of the signal and the irreducible background processes due to the trigger and combined lepton reconstruction, identi cation, and isolation e ciencies are evaluated from data and found to be in the range 4{10% [17]. Theoretical uncertainties in the irreducible background rates are estimated by varying the QCD renormalization and factorization scales, and the PDF set following the PDF4LHC recommendations [45, 58{60]. These are found to be 4.5% and 25% for the qq ! ZZ and gg ! ZZ backgrounds, respectively [17]. The systematic uncertainties in the reducible background estimate for the 4e, 4 , and 2e2 nal states are determined to be 20%, 40%, and 25%, respectively [17]. In the case of the di erential measurements, uncertainties in the irreducible background rates are computed for each bin, while uncertainties in the reducible background rates are assumed to be identical in all bins of the considered observable. The absolute integrated luminosity of the pp collisions at 7 and 8 TeV has been determined with a relative precision of 2.2% [61] and 2.6% [62], respectively. For all cross section measurements, an uncertainty in the resolution of the signal mass peak of 20% is included in the signal determination [17]. When measuring the di erential cross section as a function of the jet multiplicity, the systematic uncertainty in the jet energy scale is included as fully correlated between the HJEP04(216)5 signal and background estimations. This uncertainty ranges from 3% for low jet multiplicity bins to 12% for the highest jet multiplicity bin for the signal, and from 2% to 16% for background. The uncertainties related to the jet identi cation e ciency and the jet energy resolution are found to be negligible with respect to the jet energy scale systematic uncertainty. The underlying assumption on the signal model used to extract the ducial cross sections introduces an additional systematic e ect on the measurement result. This e ect is estimated by extracting the ducial cross sections from data assuming a range of alternative signal models. The alternative models include models with an arbitrary fraction of the SM Higgs boson production modes, models of Higgs-like resonances with anomalous HJEP04(216)5 interactions with a pair of neutral gauge bosons, or models of Higgs-like resonances with exotic decays to the four-lepton nal state. These exotic models are brie y introduced in section 3 and detailed in ref. [18]. The largest deviation between the ducial cross sections measured assuming these alternative signal models and the ducial cross section measured under the SM Higgs boson assumption is quoted as the systematic e ect associated with the model dependence. If we neglect the existing experimental constraints [11, 18] on the exotic signal models, the e ect is found to be up to 7% in all reported measurements, except in the case of the jet multiplicity di erential measurement where in some bins the e ect can be as large as 25%. If we impose experimental constraints [11, 18] on the allowed exotic signal models, the systematic e ect associated with the model dependence reduces to 3-5% for the jet multiplicity di erential measurement, and it is smaller than 1% for the other measurements. The more conservative case which does not take into account existing experimental constraints is used to report a separate systematic uncertainty due to the model dependence. The e ect on the cross section measurement due to mH being xed in the t procedure is estimated from simulation to be about 1%. The additional uncertainty due to this e ect is negligible with respect to the other systematic uncertainties, and is not included in the measurements. The overview of the main systematic e ects in the case of the H ! 4` measurements is presented in table 4. 8 Results collected at p The result of the maximum likelihood t to the signal and background m4` spectra in data s = 8 TeV, used to extract the integrated H ! 4` ducial cross section for the m4` range from 105 to 140 GeV, is shown in gure 2 (left). Similarly, the result of the maximum likelihood t for the H ! 4` and Z ! 4` contributions to the inclusive m4` spectra in the range from 50 to 140 GeV is shown in gure 2 (right). Individual measurements of integrated H ! 4` ducial cross sections at 7 and 8 TeV, performed in the m4` range from 105 to 140 GeV, are presented in table 5 and gure 3. The central values of the measurements are obtained assuming the SM Higgs boson signal with mH = 125:0 GeV, modelled by the Powheg+JHUGen for the gg ! H contribution, powheg for the VBF contribution, and pythia for the VH + ttH contribu2 /( 30 s With exp. constraints on production modes and exotic models No exp. constraints on production modes and exotic models the text. ) 22 eV 20 3G 18 .23 16 measurements. More details, including the de nition of the model dependence are presented in CMS Data Fiducial Signal Non-fiducial Signal and background models, presented in section 6, in case of an independent H ! 4` t (left) and a simultaneous H ! 4` and Z ! 4` t (right). The gg ! H ! 4` process is modelled using Powheg+JHUGen, while qq ! 4` process is modelled using powheg (both s- and t/u-channels). The sub-dominant component of the Higgs boson production is denoted as XH = VBF + VH + ttH. tions. In table 5 and hereafter, the sub-dominant component of the signal is denoted as XH = VBF + VH + ttH. The measured ducial cross sections are compared to the SM NNLL+NNLO theoretical estimations in which the acceptance of the dominant gg ! H contribution is modelled using Powheg+JHUGen, MiNLO HJ, or HRes, as discussed in section 3. The total un Measured gg ! H(HRes) + XH Measured gg ! H(HRes) + XH Measured gg ! H(Hres) + XH 0:56+00::6474 (stat) +00::2016 (syst) 0:02 (model) fb Fiducial cross section H ! 4` at 8 TeV 1:11+00::4315 (stat) +00::1140 (syst) +00::0082 (model) fb 0:93+00::1101 fb 1:15+00::1123 fb Ratio of H ! 4` ducial cross sections at 7 and 8 TeV ducial cross section measurements performed in the m4` range from 105 to 140 GeV for pp collisions at 7 and 8 TeV, and comparison to the theoretical estimates obtained at NNLL+NNLO accuracy. Statistical and systematic uncertainties, as well as the model-dependent e ects are quoted separately. The sub-dominant component of the Higgs boson production is denoted as XH = VBF + VH + ttH. certainty in the NNLL+NNLO theoretical estimates is computed according to ref. [39], and includes uncertainties due to the QCD renormalization and factorization scales ( 7.8%), PDFs and strong coupling constant S modelling ( 7.5%), as well as the acceptance (2%) and branching fraction (2%) uncertainties. In the computation of the total uncertainty the PDFs/ S uncertainties are assumed to be correlated between the VBF and VH production modes (dominantly quark-antiquark initiated), and anticorrelated between the gg ! H and ttH production modes (dominantly gluon-gluon initiated). Furthermore, the QCD scale uncertainties are considered to be uncorrelated, while uncertainties in the acceptance and branching fraction are considered to be correlated across all production modes. The di erences in how the Powheg+JHUGen, MiNLO HJ, and HRes generators model the acceptance of the gg ! H contribution are found to be an order of magnitude lower than the theoretical uncertainties, and in table 5 and gure 3 we show estimations obtained using HRes. The measured H ! 4` ducial cross section at 8 TeV is found to be in a good agreement with the theoretical estimations within the associated uncertainties. The uncertainty of the measurement is largely dominated by its statistical component of about 37%, while the systematic component is about 12%. The theoretical uncertainty of about 11% is comparable to the systematic uncertainty, and is larger than the model dependence of the extracted results, which is about 7%. In the case of the cross section at 7 TeV, as well as the ratio of cross sections at 7 and 8 TeV, the measured cross sections are lower but still in agreement with the SM theoretical estimations within the large statistical uncertainties. The result of the measurement of the integrated Z ! 4` ducial cross section at 8 TeV in the m4` range from 50 to 105 GeV is summarized in table 6. The measured Z ! 4` cross section is found to be in good agreement with the theoretical estimations obtained 2.5 1.5 0.5 3 2 1 0 5.1 fb-1 (7 TeV), 19.7 fb-1 (8 TeV) CMS Data (stat. ⊕ sys. unc.) at 7 and 8 TeV, with a comparison to SM estimates. The red error bar represents the systematic uncertainty, while the black error bar represents the combined statistical and systematic uncertainties, summed in quadrature. The additional systematic e ect associated with model dependence is represented by grey boxes. The theoretical estimates at NNLL+NNLO accuracy and the corresponding systematic uncertainties are shown in blue as a function of the centre-of-mass energy. The acceptance of the dominant gg ! H contribution is modelled at the parton level using HRes, and corrected for hadronization and underlying-event e ects estimated using Powheg+JHUGen and Pythia 6.4. Fiducial cross section Z ! 4` at 8 TeV (50 < m4` < 105 GeV) Measured powheg Measured Ratio of ducial cross sections of H ! 4` and Z ! 4` at 8 TeV (50 < m4` < 140 GeV) gg ! H(HRes) + XH and Z ! 4` (powheg) ducial cross sections of H ! 4` and Z ! 4` obtained from a simultaneous t of mass peaks of Z ! 4` and H ! 4` in the mass window 50 to 140 GeV. The sub-dominant component of the Higgs boson production is denoted as XH = VBF + VH + ttH. using powheg. As the total relative uncertainty in the Z ! 4` measurement is about 2.6 times lower than the relative uncertainty in the H ! 4` measurement, the good agreement between the measured and estimated Z ! 4` cross section provides a validation of the measurement procedure in data. 4:81+00::6693 (stat) +00::1189 (syst) fb 4:56 0:19 fb 0:21+00::0097 (stat) 0:01 (syst) 0:25 0:04 V se 2.5 R 2 toH1.5 the measured mass di erence mH = mZPDG + is precisely determined in other experiments, the Higgs boson mass can be extracted as m = 125:4 0:7 GeV. This result is in agreement with the best t value for mH obtained from the dedicated mass measurement in this nal state [17], and provides further validation of the measurement procedure. The measured di erential H ! 4` cross sections at 8 TeV, along with the theoretical estimations for a SM Higgs boson with mH = 125:0 GeV are presented in gures 4 and 5. Results of the measurements are shown for the transverse momentum and the rapidity of the four-lepton system, jet multiplicity, transverse momentum of the leading jet, as well R 00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 T p (H) [GeV] |y(H)| to the theoretical estimates for the transverse momentum (left) and the rapidity (right) of the four-lepton system. The red error bars represent the systematic uncertainties, while black error bars represent the combined statistical and systematic uncertainties, summed in quadrature. The additional systematic uncertainty associated with the model dependence is separately represented by the grey boxes. Theoretical estimates, in which the acceptance of the dominant gg ! H contribution is modelled by Powheg+JHUGen+pythia, Powheg MiNLO HJ+pythia, and HRes generators as discussed in section 3, are shown in blue, brown, and pink, respectively. The subdominant component of the signal XH is indicated separately in green. In all estimations the total cross section is normalized to the SM estimate computed at NNLL+NNLO accuracy. Systematic uncertainties correspond to the accuracy of the generators used to derive the di erential estimations. The bottom panel shows the ratio of data or theoretical estimates to the HRes theoretical In addition, a simultaneous t for the H ! 4` and Z ! 4` resonances is performed in the m4` range from 50 to 140 GeV, and the ratio of the corresponding ducial cross sections is extracted. The measurement of the ratio of these cross sections, when masses of the two resonances are xed in the t, is presented in table 6. A good agreement between the measured ratio and its SM theoretical estimation is observed. In the scenario in which the masses of the two resonances are allowed to vary, as discussed in section 6, the tted value for the mass di erence between the two resonances is found to be m = 0:7 GeV. As discussed in ref. [63], it is worth noting that by using m and the PDG value of the Z boson mass mZPDG which 0.5 V id 10-3 f to the theoretical estimates for the transverse momentum of the leading jet (top left), separation in rapidity between the Higgs boson candidate and the leading jet (top right), as well as for the jet multiplicity (bottom). The red error bars represent the systematic uncertainties, while black error bars represent the combined statistical and systematic uncertainties, summed in quadrature. The additional systematic uncertainty associated with the model dependence is separately represented by the grey boxes. Theoretical estimations, in which the acceptance of the dominant gg ! H contribution is modelled by Powheg+JHUGen+pythia, and Powheg MiNLO HJ+pythia generators, as discussed in section 3, are shown in blue and brown, respectively. The sub-dominant component of the signal XH is indicated separately in green. In all estimations the total cross section is normalized to the SM estimate computed at NNLL+NNLO accuracy. Systematic uncertainties correspond to the accuracy of the generators used to derive the di erential estimations. The bottom panel shows the ratio of data or theoretical estimates to the Powheg MiNLO HJ theoretical as separation in rapidity between the Higgs boson candidate and the leading jet. The uncertainty in the theoretical estimation for the dominant gg ! H process is computed in each bin of the considered observable by the generator used for the particular signal description (Powheg+JHUGen, Powheg MiNLO HJ, or HRes). The theoretical un[20] CMS collaboration, Particle- ow event reconstruction in CMS and performance for jets, taus and MET, CMS-PAS-PFT-09-001 (2009). jet events from pp collisions at 7 TeV, CMS-PAS-PFT-10-002 (2010). HJEP04(216)5 063 [arXiv:0802.1189] [INSPIRE]. (2006) 57 [hep-ph/0512210] [INSPIRE]. [27] CMS collaboration, Commissioning of the particle- ow event reconstruction with the rst LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001 (2010). [28] CMS collaboration, Commissioning of the particle- ow event reconstruction with leptons from J= and W decays at 7 TeV, CMS-PAS-PFT-10-003 (2010). [29] CMS collaboration, Measurement of the inclusive W and Z production cross sections in pp s = 7 TeV, JHEP 10 (2011) 132 [arXiv:1107.4789] [INSPIRE]. [30] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. at ps = 7 TeV at the LHC, 2013 JINST 8 P11002 [arXiv:1306.6905] [INSPIRE]. [31] CMS collaboration, The performance of the CMS muon detector in proton-proton collisions [32] CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. s = 8 TeV, 2015 JINST 10 P06005 (2012) 155 [arXiv:1206.3572] [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. [33] D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Higgs boson production at the LHC: transverse momentum resummation e ects in the H ! 2 , H ! W W ! l l and H ! ZZ ! 4l decay modes, JHEP 06 (2012) 132 [arXiv:1203.6321] [INSPIRE]. [34] M. Grazzini and H. Sargsyan, Heavy-quark mass e ects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE]. [35] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [36] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W +W , W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE]. [37] K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 [38] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 [39] LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE]. [arXiv:1001.3396] [INSPIRE]. [42] I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE]. [43] J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE]. [44] H.-L. Lai et al., Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions, Phys. Rev. D 82 (2010) 054021 [arXiv:1004.4624] [INSPIRE]. [arXiv:1007.2241] [INSPIRE]. Canada (2010), arXiv:1010.3558 [INSPIRE]. generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. [49] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. HJEP04(216)5 Meth. A 506 (2003) 250 [INSPIRE]. 270 [INSPIRE]. e ects for gg ! H ! W +W [arXiv:1304.3053] [INSPIRE]. signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE]. [53] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. [54] ATLAS and CMS collaborations and The LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, ATL-PHYS-PUB-2011-11 (2011). [55] G.J. Feldman and R.D. Cousins, A uni ed approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE]. [56] H.B. Prosper and L. Lyons, Proceedings of the PHYSTAT 2011 workshop on statistical issues related to discovery claims in search experiments and unfolding, CERN 2011, CERN, Geneva, Switzerland (2011), CERN-2011-006. [58] R.D. Ball et al., A rst unbiased global NLO determination of parton distributions and their HJEP04(216)5 update, CMS-PAS-SMP-12-008 (2012). CMS-PAS-LUM-13-001 (2013). arXiv:1512.01567 [INSPIRE]. [64] J.C. Collins and D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev. D 16 (1977) 2219 [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik der OeAW, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, V. Knunz, A. Konig, M. Krammer1, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady2, B. Rahbaran, H. Rohringer, J. Schieck1, R. Schofbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1 National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, J. Keaveney, S. Lowette, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium P. Barria, H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, G. Fasanella, L. Favart, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, T. Maerschalk, A. Marinov, L. Pernie, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang3 Ghent University, Ghent, Belgium K. Beernaert, L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot, G. Garcia, M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium S. Basegmez, C. Belu 4, O. Bondu, S. Brochet, G. Bruno, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, D. Favart, L. Forthomme, A. Giammanco5, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Mertens, M. Musich, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov6, L. Quertenmont, M. Selvaggi, M. Vidal Marono Universite de Mons, Mons, Belgium N. Beliy, G.H. Hammad Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, M. Hamer, C. Hensel, C. Mora Herrera, A. Moraes, M.E. Pol, P. Rebello Teles HJEP04(216)5 E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato7, A. Custodio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote7, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, Brazil tova S. Ahujaa, C.A. Bernardesb, A. De Souza Santosb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona;8, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abad, J.C. Ruiz Vargas Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina9, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China J.C. Sanabria C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic University of Cyprus, Nicosia, Cyprus H. Rykaczewski Charles University, Prague, Czech Republic M. Bodlak, M. Finger10, M. Finger Jr.10 A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt E. El-khateeb11;11, T. Elkafrawy11, A. Mohamed12, E. Salama13;11 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, T. Maenpaa, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland J. Talvitie, T. Tuuva Lappeenranta University of Technology, Lappeenranta, Finland DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, T. Dahms, O. Davignon, N. Filipovic, A. Florent, R. Granier de Cassagnac, S. Lisniak, L. Mastrolorenzo, P. Mine, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram14, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14, D. Gele, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, J.A. Merlin2, K. Skovpen, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Gadrat Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Georgian Technical University, Tbilisi, Georgia T. Toriashvili15 Z. Tsamalaidze10 Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, M. Edelho , L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, J.F. Schulte, T. Verlage, H. Weber, B. Wittmer, V. Zhukov6 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, Y. Erdogan, G. Flugge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Kunsken, J. Lingemann, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras16, A. Burgmeier, A. Campbell, S. Choudhury17, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo18, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel19, H. Jung, A. Kalogeropoulos, O. Karacheban19, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann19, R. Mankel, I. Mar n19, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, M. Schroder, C. Seitz, S. Spannagel, K.D. Trippkewitz, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, J. Er e, E. Garutti, K. Goebel, D. Gonzalez, M. Gorner, J. Haller, M. Ho mann, R.S. Hoing, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, D. Nowatschin, J. Ott, F. Pantaleo2, T. Pei er, A. Perieanu, N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, C. Scharf, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, J. Schwandt, V. Sola, H. Stadie, G. Steinbruck, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Boser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix, A. Dierlamm, S. Fink, F. Frensch, R. Friese, M. GifA. Kornmayer2, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, T. Muller, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, G. Sieber, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, C. Wohrmann, R. Wolf Paraskevi, Greece A. Psallidas, I. Topsis-Giotis Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi22, J. Molnar, Z. Szillasi2 University of Debrecen, Debrecen, Hungary M. Bartok23, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India P. Mal, K. Mandal, D.K. Sahoo, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, Sa. Jain, N. Majumdar, A. Modak, K. Mondal, S. Mukherjee, S. Mukhopadhyay, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan P. Shukla, A. Topkar Bhabha Atomic Research Centre, Mumbai, India A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty2, L.M. Pant, Tata Institute of Fundamental Research, Mumbai, India T. Aziz, S. Banerjee, S. Bhowmik24, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu25, G. Kole, S. Kumar, B. Mahakud, M. Maity24, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar24, N. Sur, B. Sutar, N. Wickramage26 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, K. Kothekar, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Bakhshiansohi, H. Behnamian, S.M. Etesami27, A. Fahim28, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;c, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, L. Silvestrisa;2, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana2, A.C. Benvenutia, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b, R. Travaglinia;b INFN Sezione di Catania a, Universita di Catania b, Catania, Italy G. Cappelloa, M. Chiorbolia;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, S. Gonzia;b, V. Goria;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa;b, L. Viliania;b;2 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera2 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M. Lo Veterea;b, M.R. Mongea;b, E. Robuttia, S. Tosia;b Italy Italy INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, L. Brianza, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, R. Gerosaa;b, A. Ghezzia;b, P. Govonia;b, S. Malvezzia, R.A. Manzonia;b;2, B. Marzocchia;b;2, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Ragazzia;b, N. Redaellia, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;2, M. Espositoa;b, F. Fabozzia;c, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;2, M. Merolaa, P. Paoluccia;2, C. Sciaccaa;b, F. Thyssen Trento c, Trento, Italy INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di P. Azzia;2, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, P. Checchiaa, M. Dall'Ossoa;b;2, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, F. Montecassianoa, M. Passaseoa, J. Pazzinia;b;2, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Tosia;b, S. Venturaa, M. Zanetti, P. Zottoa;b, A. Zucchettaa;b;2, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, D. Ciangottinia;b;2, L. Fanoa;b, P. Laricciaa;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;30, P. Azzurria;2, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;30, R. Dell'Orsoa, S. Donatoa;c;2, G. Fedi, L. Foaa;cy, A. Giassia, M.T. Grippoa;30, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;31, A.T. Serbana, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, G. D'imperioa;b;2, D. Del Rea;b;2, M. Diemoza, S. Gellia;b, C. Jordaa, E. Longoa;b, F. Margarolia;b, P. Meridiania, G. Organtinia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b, P. Traczyka;b;2 INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;2, S. Argiroa;b, M. Arneodoa;c, R. Bellana;b, C. Biinoa, N. Cartigliaa, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b;2, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, A. Solanoa;b, A. Staianoa INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, V. Candelisea;b;2, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, B. Gobboa, C. La Licataa;b, M. Maronea;b, A. Schizzia;b, A. Zanettia Kangwon National University, Chunchon, Korea A. Kropivnitskaya, S.K. Nam Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son Chonbuk National University, Jeonju, Korea J.A. Brochero Cifuentes, H. Kim, T.J. Kim Chonnam National University, Institute for Universe and Elementary Particles, S. Choi, Y. Go, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K. Lee, K.S. Lee, Kwangju, Korea S. Song Korea University, Seoul, Korea S. Lee, S.K. Park, Y. Roh Seoul National University, Seoul, Korea H.D. Yoo University of Seoul, Seoul, Korea Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali32, F. Mohamad Idris33, W.A.T. Wan Abdullah, M.N. Yusli Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz34, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H.A. Salazar Ibarguen Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda D. Krofcheck P.H. Butler University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland G. Brona, K. Bunkowski, A. Byszuk35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, K. Pozniak35, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, N. Leonardo, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev36;37, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia V. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin National Research Nuclear University 'Moscow Engineering Physics InstiA. Bylinkin P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin37, I. Dremin37, M. Kirakosyan, A. Leonidov37, G. Mesyats, S.V. Rusakov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin39, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic40, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Dom nguez Vazquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain C. Albajar, J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, P. De Castro Manzano, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodr guez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, G.M. Berruti, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, R. Castello, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco41, M. Dobson, M. Dordevic, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenco, M.T. Lucchini, N. Magini, L. Malgeri, M. Mannelli, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi, H. Neugebauer, S. Orfanelli42, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, D. Piparo, A. Racz, T. Reis, G. Rolandi43, M. Rovere, M. Ruan, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, M. Simon, P. Sphicas44, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Triossi, A. Tsirou, G.I. Veres21, N. Wardle, H.K. Wohri, A. Zagozdzinska35, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, L. Perrozzi, M. Quittnat, M. Rossini, A. Starodumov45, M. Takahashi, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler46, L. Caminada, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, D. Salerno, Y. Yang National Central University, Chung-Li, Taiwan M. Cardaci, K.H. Chen, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, R. Bartek, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Petrakou, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey A. Adiguzel, M.N. Bakirci47, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal48, G. Onengut49, K. Ozdemir50, S. Ozturk47, D. Sunar Cerci51, B. Tali51, H. Topakli47, M. Vergili, C. Zorbilmez HJEP04(216)5 Middle East Technical University, Physics Department, Ankara, Turkey I.V. Akin, B. Bilin, S. Bilmis, B. Isildak52, G. Karapinar53, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya54, O. Kaya55, E.A. Yetkin56, T. Yetkin57 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen58, F.I. Vardarl Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold59, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev60, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, S.D. Worm Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, N. Cripps, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, D. Futyan, G. Hall, G. Iles, M. Kenzie, R. Lane, R. Lucas59, L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko45, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida, M. Vazquez Acosta61, T. Virdee, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, C. Fantasia, D. Gastler, P. Lawson, D. Rankin, C. Richardson, J. Rohlf, J. St. John, L. Sulak, D. Zou Brown University, Providence, U.S.A. J. Alimena, E. Berry, S. Bhattacharya, D. Cutts, N. Dhingra, A. Ferapontov, A. Garabedian, J. Hakala, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, R. Syarif University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, U.S.A. R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova PANEVA, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D'Agnolo, M. Derdzinski, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech62, C. Welke, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara, Santa Barbara, U.S.A. J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Ge ert, C. George, F. Golf, L. Gouskos, J. Gran, J. Incandela, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, I. Suarez, C. West, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, A.W. Jung, B. Klima, B. Kreis, S. Kwany, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, J.M. Marra no, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, H.A. Weber, A. Whitbeck, F. Yang University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, S.V. Gleyzer, J. Hugon, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, P. Milenovic63, G. Mitselmakher, D. Rank, R. Rossin, L. Shchutska, M. Snowball, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, M. Weinberg Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi64, M. Hohlmann, H. Kalakhety, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas, Z. Wu, M. Zakaria The University of Iowa, Iowa City, U.S.A. B. Bilki65, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya66, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok56, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B.A. Barnett, B. Blumenfeld, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, A. Sady, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You The University of Kansas, Lawrence, U.S.A. P. Baringer, A. Bean, G. Benelli, C. Bruner, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, S. Sanders, R. Stringer, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. D. Lange, F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Ralph, C. Roland, G. Roland, J. SalfeldNebgen, G.S.F. Stephans, K. Sumorok, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova University of Minnesota, Minneapolis, U.S.A. B. Dahmes, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, J. Keller, D. Knowlton, I. Kravchenko, F. Meier, J. Monroy, F. Ratnikov, J.E. Siado, G.R. Snow State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang Northwestern University, Evanston, U.S.A. K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. A. Brinkerho , N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko36, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, N. Valls, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, W. Ji, K. Kotov, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, C. Palmer, P. Piroue, H. Saka, D. Stickland, C. Tully, A. Zuranski S. Malik University of Puerto Rico, Mayaguez, U.S.A. Purdue University, West Lafayette, U.S.A. V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, K. Jung, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, K. Nash, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. M. Foerster, G. Riley, K. Rose, S. Spanier, A. York Texas A&M University, College Station, U.S.A. O. Bouhali67, A. Castaneda Hernandez67, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon68, V. Krutelyov, R. Mueller, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perlo , A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer2 Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev Vanderbilt University, Nashville, U.S.A. E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, H. Ni, P. Sheldon, B. Snook, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, J. Wood, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, R. Hall-Wilton, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, N. Woods y: Deceased China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, Moscow, Russia 4: Also at Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 5: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 6: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 7: Also at Universidade Estadual de Campinas, Campinas, Brazil 8: Also at Centre National de la Recherche Scienti que (CNRS) - IN2P3, Paris, France 9: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 10: Also at Joint Institute for Nuclear Research, Dubna, Russia 11: Also at Ain Shams University, Cairo, Egypt 12: Also at Zewail City of Science and Technology, Zewail, Egypt 13: Also at British University in Egypt, Cairo, Egypt 14: Also at Universite de Haute Alsace, Mulhouse, France 15: Also at Tbilisi State University, Tbilisi, Georgia 16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 17: Also at Indian Institute of Science Education and Research, Bhopal, India 18: Also at University of Hamburg, Hamburg, Germany 19: Also at Brandenburg University of Technology, Cottbus, Germany 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 21: Also at Eotvos Lorand University, Budapest, Hungary 23: Also at Wigner Research Centre for Physics, Budapest, Hungary 24: Also at University of Visva-Bharati, Santiniketan, India 25: Now at King Abdulaziz University, Jeddah, Saudi Arabia 26: Also at University of Ruhuna, Matara, Sri Lanka 27: Also at Isfahan University of Technology, Isfahan, Iran 28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 30: Also at Universita degli Studi di Siena, Siena, Italy 31: Also at Purdue University, West Lafayette, U.S.A. 32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 34: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 36: Also at Institute for Nuclear Research, Moscow, Russia 37: Now at National Research Nuclear University 'Moscow 38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 39: Also at California Institute of Technology, Pasadena, U.S.A. 40: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 41: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 42: Also at National Technical University of Athens, Athens, Greece 43: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 44: Also at National and Kapodistrian University of Athens, Athens, Greece 45: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 46: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 47: Also at Gaziosmanpasa University, Tokat, Turkey 48: Also at Mersin University, Mersin, Turkey 49: Also at Cag University, Mersin, Turkey 50: Also at Piri Reis University, Istanbul, Turkey 51: Also at Adiyaman University, Adiyaman, Turkey 52: Also at Ozyegin University, Istanbul, Turkey 53: Also at Izmir Institute of Technology, Izmir, Turkey 54: Also at Marmara University, Istanbul, Turkey 55: Also at Kafkas University, Kars, Turkey Kingdom Belgrade, Serbia 56: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 57: Also at Yildiz Technical University, Istanbul, Turkey 58: Also at Hacettepe University, Ankara, Turkey 59: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 60: Also at School of Physics and Astronomy, University of Southampton, Southampton, United 61: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 62: Also at Utah Valley University, Orem, U.S.A. 63: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 64: Also at Facolta Ingegneria, Universita di Roma, Roma, Italy 65: Also at Argonne National Laboratory, Argonne, U.S.A. 67: Also at Texas A&M University at Qatar, Doha, Qatar 68: Also at Kyungpook National University, Daegu, Korea [21] CMS collaboration, Commissioning of the particle- ow reconstruction in minimum-bias and [22] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [23] M. Cacciari and G.P. Salam , Dispelling the N 3 myth for the kt jet- nder , Phys. Lett. B 641 [24] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [25] M. Cacciari and G.P. Salam , Pileup subtraction using jet areas , Phys. Lett. B 659 ( 2008 ) 119 [26] M. Cacciari , G.P. Salam and G. Soyez, The catchment area of jets , JHEP 04 ( 2008 ) 005 [40] Y. Gao , A.V. Gritsan , Z. Guo , K. Melnikov , M. Schulze and N.V. Tran , Spin determination of single-produced resonances at hadron colliders , Phys. Rev. D 81 ( 2010 ) 075022 [41] S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC , Phys. [45] H.-L. Lai et al., New parton distributions for collider physics , Phys. Rev. D 82 ( 2010 ) 074024 [46] A.D. Martin , W.J. Stirling , R.S. Thorne and G. Watt , Parton distributions for the LHC , Eur. Phys. J. C 63 ( 2009 ) 189 [arXiv: 0901 .0002] [INSPIRE]. [47] R. Field , Early LHC underlying event data | Findings and surprises , in the proceedings of the 21st Conference on Hadron Collider Physics (HCP2010) , August 23 { 27 , Toronto, [48] J. Pumplin , D.R. Stump , J. Huston , H.L. Lai , P.M. Nadolsky and W.K. Tung , New [50] J. Allison et al., GEANT4 developments and applications , IEEE Trans. Nucl. Sci . 53 ( 2006 ) [51] M. Bonvini , F. Caola , S. Forte , K. Melnikov and G. Ridol , Signal-background interference beyond leading order , Phys. Rev. D 88 ( 2013 ) 034032 [52] N. Kauer and G. Passarino , Inadequacy of zero-width approximation for a light Higgs boson [57] Particle Data Group , K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 uncertainties, Nucl. Phys. B 838 ( 2010 ) 136 [arXiv: 1002 .4407] [INSPIRE]. [59] S. Alekhin et al., The PDF4LHC working group interim report, arXiv:1101 .0536 [INSPIRE]. [60] M. Botje et al., The PDF4LHC working group interim recommendations , arXiv:1101 .0538 [61] CMS collaboration, Absolute calibration of the luminosity measurement at CMS: winter 2012 [62] CMS collaboration, CMS luminosity based on pixel cluster counting | Summer 2013 update , [63] V. Roinishvili , The mass of the Higgs-like boson in the four-lepton decay channel at the LHC,


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP04%282016%29005.pdf

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam. Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Journal of High Energy Physics, 2016, 5, DOI: 10.1007/JHEP04(2016)005