Measurement of the inclusive jet cross section in pp collisions at \(\sqrt{s} = 2.76\,\text {TeV}\)

The European Physical Journal C, May 2016

The double-differential inclusive jet cross section is measured as a function of jet transverse momentum \(p_{\mathrm {T}}\)and absolute rapidity \(|y |\), using proton-proton collision data collected with the CMS experiment at the LHC, at a center-of-mass energy of \(\sqrt{s} = 2.76\,{\mathrm{TeV}}\) and corresponding to an integrated luminosity of 5.43\(\,\text {pb}^{-1}\). Jets are reconstructed within the \(p_{\mathrm {T}}\)range of 74 to 592\(\,\text {GeV}\)and the rapidity range \(|y |<3.0\). The reconstructed jet spectrum is corrected for detector resolution. The measurements are compared to the theoretical prediction at next-to-leading-order QCD using different sets of parton distribution functions. This inclusive cross section measurement explores a new kinematic region and is consistent with QCD predictions.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

Measurement of the inclusive jet cross section in pp collisions at \(\sqrt{s} = 2.76\,\text {TeV}\)

Eur. Phys. J. C Measurement of the inclusive jet cross section in pp collisions √ at s = 2.76 TeV CMS Collaboration 0 1 2 3 4 5 6 7 9 10 11 14 15 16 19 0 CERN , 1211 Geneva 23 , Switzerland 1 University of Sofia , Sofia, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov 2 Institute for Nuclear Research and Nuclear Energy , Sofia, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova 3 Helsinki Institute of Physics , Helsinki, Finland J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland 4 Department of Physics, University of Helsinki , Helsinki , Finland P. Eerola, J. Pekkanen, M. Voutilainen 5 Faculty of Science, University of Split , Split , Croatia Z. Antunovic, M. Kovac 6 Lappeenranta University of Technology , Lappeenranta , Finland J. Talvitie, T. Tuuva 7 University of Ioánnina , Ioánnina , Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas 8 , T. Peiffer, A. Perieanu , N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, C. Scharf, P. Schleper, E. Schlieckau, A. SchmidtS. Schumann, J. Schwandt, V. Sola, H. Stadie, G. Steinbrück, F. M. Stober, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald 9 University of Hamburg , Hamburg, Germany V. Blobel, M. Centis Vignali, A. R. Draeger, J. Erfle, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann, R. S. Höing, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, D. Nowatschin, J. Ott, F. Pantaleo 10 INFN Sezione di Firenze 11 INFN Sezione di Catania 12 , Florence , Italy G. Barbagli 13 , L. Viliani 14 Joint Institute for Nuclear Research , Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev 15 Institute of Experimental Physics, Faculty of Physics, University of Warsaw , Warsaw , Poland G. Brona, K. Bunkowski, A. Byszuk 16 University of Canterbury , Christchurch , New Zealand P. H. Butler 17 , K. Doroba , A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak 18 , V. O'Dell, K. Pedro , O. Prokofyev, G. Rakness, E. Sexton-Kennedy, A. Soha 19 Fermi National Accelerator Laboratory , Batavia, USA S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L. A. T. Bauerdick, A. Beretvas, J. Berryhill, P. C. Bhat, G. Bolla, K. Burkett, J. N. Butler, H. W. K. Cheung, F. Chlebana, S. Cihangir, V. D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R. M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J. M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmes The double-differential inclusive jet cross section is measured as a function of jet transverse momentum pT and absolute rapidity |y|, using proton-proton collision data collected with the CMS experiment at the LHC, at a center-of-mass energy of √s = 2.76 TeV and corresponding to an integrated luminosity of 5.43 pb−1. Jets are reconstructed within the pT range of 74 to 592 GeVand the rapidity range |y| < 3.0. The reconstructed jet spectrum is corrected for detector resolution. The measurements are compared to the theoretical prediction at next-to-leading-order QCD using different sets of parton distribution functions. This inclusive cross section measurement explores a new kinematic region and is consistent with QCD predictions. - 1 Introduction Jets are copiously produced in proton-proton (pp) collisions at the LHC. In the standard model, the hard-scattering interaction between partons inside the protons is described by perturbative quantum chromodynamics (QCD). Particle-level predictions, however, require a nonperturbative (NP) modeling of hadronization and multiple parton interactions in addition to the QCD calculation. The predicted rate and kinematics of jet production are sensitive to the composition of the proton described by the parton distribution functions (PDF) and to the strong coupling constant (αS). The evolution of PDFs and αS with the increase in the magnitude of the fourmomentum transfer is determined by the renormalization group equations of perturbative QCD [ 1–3 ]. Precision measurements of inclusive jet production cross sections at different center-of-mass energies can be used to determine PDFs and αS as well as to search for deviations in their behavior from QCD predictions [ 4 ]. Inclusive jet cross section measurements have been performed at the LHC [ 5–8 ] and at other high energy colliders [ 9–16 ]. The measurements (up to 592 GeV) presented here extend the jet transverse momentum reach of the previous studies. In this study, the inclusive jet production cross section, σ (pp → jet + X), is measured as a function of the jet transverse momentum pT and absolute rapidity |y|. The analysis is performed with data from pp collisions at √s = 2.76 TeV with the CMS experiment corresponding to an integrated luminosity of 5.43 pb−1. Originally designed as a reference for heavy ion studies, this data set also provides an opportunity to close the wide gap in jet measurements between the Tevatron at 1.96 TeV and the LHC at 7 and 8 TeV. When combined with the cross section measurements at other center of mass energies the present measurement can be used to improve PDF constraints. The data presented in this paper are collected at low instantaneous luminosity conditions with, on average, 1.2 primary interactions per triggered event. The measured cross section is compared to the prediction from a next-to-leading-order (NLO) QCD calculation, performed using the NLOJet++ (v.4.1.3) generator [ 17,18 ] implemented in the FastNLO (v.2.1.0) framework [19]. NP contributions to the cross section are taken into account in the theoretical prediction; electroweak contributions are negligible [ 20 ]. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid which provides a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are measured in gasionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [ 21 ]. 3 Jet reconstruction and event selection The particle-flow (PF) algorithm [ 22,23 ] is used to reconstruct and identify individual particles in an event with optimally combined information from the various subsystems of the CMS detector. The particles are identified as: charged hadrons, neutral hadrons, muons, electrons, and photons. The PF candidates are combined into jets using the antikT algorithm [ 24 ] as implemented in the FastJet software package [ 25 ]. A wide reconstruction cone with a radius of 0.7 is used to reduce the sensitivity to final-state radiation. Particles identified as charged hadrons are assigned the pion mass, while neutral hadrons are considered massless and the four-vector sum of all reconstructed particles in the jet is calculated. The measurements of jet energy and momentum in the CMS detector are affected by a number of experimental factors, such as the limited coverage of the tracking system and the nonlinear calorimeter response. The tracking system provides superior jet reconstruction (i.e., systematic uncertainties due to energy calibration and resolution) in the central region of the detector (|η| < 2.4). To correct for the detector response, the measurements are calibrated using reference processes with well-understood kinematics [ 26 ]. Jet energy corrections are derived using simulated events, generated with Pythia6 (v.6.4, tune Z2*) [ 27 ] and processed with Geant4 [ 28 ]. The most recent Pythia6 Z2* tune is derived from the Z1 tune [ 29 ], which uses the CTEQ5L parton distribution set, whereas Z2* adopts CTEQ6L [ 30 ]. The corrections are verified in data using γ +jet and Z+jet processes, and additional corrections are applied to compensate for any mismatch between simulation and data. The correction factors depend on jet pT and η, and typically range between 1.02 and 1.10, while the jet energy resolution amounts to 15 % at a jet pT of 10 GeV, 8 % at 100 GeV, and 4 % at 1 TeV. The events are selected by a set of single-jet triggers with jet pT thresholds of 40, 60, and 80 GeVwith the first two triggers being prescaled. In Table 1, the effective integrated luminosity collected with each trigger and the corresponding jet pT range is presented. The triggers are selected to ensure 99 % efficiency for the events in the corresponding pT range of the analysis. Events with E miss/ ET < 0.3 are selected, consistent T with the properties of QCD multijet events, thereby removing any spurious jet-like features originating from isolated noise patterns in certain HCAL and ECAL regions. The quantities ETmissand ET are calculated as the negative vector sum of transverse energy and the scalar sum of transverse energy, respectively, of all PF candidates in the event. The selected events are required to have at least one well-reconstructed primary vertex. Each jet should contain more than one PF candidate. The fraction of jet energy carried by charged leptons (e, μ) should be less than 90 %. In addition, jets reconstructed within the acceptance range of the tracking system (|η| < 2.4) must contain at least one charged particle. The electromagnetic energy fraction of such jets is required to be less than 99 %, while the neutral-hadron and the photon energy fractions are required to be less than 90 %. The jet selection efficiency is estimated to be 99 % or higher for all pT and rapidity ranges used in this study. 4 Cross section measurement The double-differential jet cross section is calculated as d2σ d pT dy = 1 Lint,eff N pT (2 |y|) where Lint,eff is the effective integrated luminosity corrected for trigger prescales, is the overall reconstruction efficiency including the trigger and jet selection efficiencies, pT and |y| are the sizes of a particular jet pT and rapidity bin, and N is the number of jets in that bin. Six uniform bins in |y| are used between 0.0 and 3.0. The jet pT values range from 74 to 592 GeV, with bin sizes increasing in proportion to the pT resolution. In order to facilitate the comparison of measurements with theoretical predictions, the jet pT spectrum is corrected for detector effects. Since the pT spectrum is steeply falling, the number of jets migrating out of a bin into the higher adjacent bin significantly exceeds the number of jets migrating to the lower adjacent bin. The unfolding procedure compensates for this effect and recovers the particle-level spectrum from the observed spectrum. The detector response function is determined using multijet events simulated with the Pythia6 (v.6.4, tune Z2) [ 27,31 ] event generator. A detailed detector simulation is carried out using the Geant4 software to model the particle interactions in the detector material. The detector is characterized by a response function that represents the probability density to reconstruct a jet with transverse momentum pT det when the particle-level jet transverse momentum is pT part. The response function is initially derived by calculating jet resolution in Monte Carlo (MC) simulation for every pT and |y| bin. Jet resolution in data is found to be worse than in simulations [ 26 ]. The response |y| 0.0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 cdata/MC function is corrected for this defect by degrading the resolution by factors cdata/MC that vary with |y| as listed in Table 2. The response matrix is constructed by convolving the response function with the pT part spectrum predicted by NLO QCD calculations and the CT10 PDF set [ 32 ]. (Results with other PDF sets are discussed in Sect. 6.) The response function is represented by a kernel density estimation (KDE) technique that accurately models the tails of the distribution. The theoretical pT part spectrum is fitted with an exponential of a continuously differentiable function (Akima spline) [ 33 ]. This spline function is sampled many times and convolved with the KDE response function to obtain the response matrix. The D’Agostini iterative unfolding method [ 34 ] is used, as implemented in the RooUnfold software package [ 35 ]. The unfolding procedure is regularized by early termination of iterations; four iterations are performed in each rapidity bin. 5 Theoretical predictions The theoretical predictions are derived at NLO using QCD calculations with NLOJet++ [ 17, 18 ], and corrected for the NP contributions from hadronization and multiple parton interactions. Electroweak corrections are negligible at 2.76 TeV according to the studies performed in Ref. [20]. The factorization and renormalization scales are set to the jet pT (μF = μR = pT ). The theoretical predictions of the inclusive jet cross section are derived using five recent PDF sets at NLO, as listed in Table 3, with the central values of αS(MZ) for each PDF set. Most are determined in a variableflavor number scheme, except for the ABM11 PDF set, which employs a fixed-flavor number scheme with the number of active flavors (Nf ) set to 5 or 6. The details related to determination of the PDFs are described in the corresponding references. The NP effects include hadronization of parton cascades leading to the formation of color neutral jets and multiple interactions of spectator partons within the colliding protons that can result in the appearance of additional jets. The corrections are derived using two event generators with different models for parton cascades and hadronization: Pythia6 (v.6.4, tune Z2) [ 27, 31 ] and Herwig++ (v.2.5.0, tune UE_EE_3C) [ 40, 41 ]. In Pythia6, the hadronization is simulated with the Lund string fragmentation model [ 42 ] while Herwig++ employs the cluster fragmentation model [ 43 ]. The pT - and |y|-dependent correction factors for the NP effects, CNP, are derived from simulation as a ratio of differential jet cross sections with hadronization and multiple parton interactions turned on and off. The final correction factors are obtained by averaging and Herwig++ predictions. The theoretical cross section is then calculated as σtheory = σNLO CNP. The CNP factors vary between 1.02 and 1.10 in the pT and rapidity range of this analysis. 6 Systematic uncertainties The major experimental uncertainties in this analysis come from imperfect measurement of jet energy, limited precision in simulating jet energy resolution, and imprecise knowledge of integrated luminosity. The first source affects the jet spectrum observed in data, while the second modifies the detector response matrix used in the unfolding procedure. The third source, measured integrated luminosity, contributes an overall cross section uncertainty of 3.7 % [44]. The uncertainty associated with the jet energy determination consists of several independent contributions identified in the process of deriving the jet energy corrections. These contributions are described in detail in Ref. [ 26 ]. The corresponding cross section uncertainty is 5–22 % for the low-rapidity bins (|y| < 2.5), increasing to 78 % in the highest rapidity bin (2.5 ≤ |y| < 3.0). The jet energy resolution uncertainty is estimated using the uncertainties in the cdata/MC scaling factors presented in Table 2. For the rapidity region |y| < 2.5, the corresponding cross section uncertainty is 2–3 %, increasing to 22 % for the most forward rapidity bin. The higher uncertainty at forward rapidities is caused by the significant increase in the jet energy and resolution uncertainties, and the more steeply falling pT spectrum in comparison with the central rapidity region. The energy offset due to additional interactions in the same bunch crossing (pileup) is small. For the lowest pT jets considered (74 GeV) the pileup contributes an average of only 0.3 % of the energy. This fraction decreases with increasing pT . Consequently, pileup corrections are not required and the associated uncertainties are negligible. An uncertainty arising from the potential mismodeling of trigger and jet selection requirements is found to be 1 %. The unfolding uncertainty due to the initial theoretical model is calculated by testing various models and finding the effect is negligible. The sum in quadrature of all experimental systematic uncertainties in the cross section is, on average, 6 % at low rapidiBase set ties (|y| < 2.0) and varies from 10 to 80 % at higher rapidities (2.0 ≤ |y| < 3.0), across the corresponding pT ranges. The uncertainty in the theoretical cross section prediction is estimated from the PDF uncertainties, the choice for the factorization and renormalization scales (μF and μR), and the variation in the modeling of NP corrections. The PDF uncertainty, for all PDF sets except NNPDF3.0, is calculated as the change in the cross section caused by varying decorrelated PDF parameters. The relevant PDF eigenvectors are provided in the PDF sets along with the central values. The uncertainty due to each parameter is determined at 68 % confidence level (CL), and the resulting asymmetric uncertainties are combined in quadrature. In the case of NNPDF3.0, the PDF set contains an ensemble of replicas corresponding to one standard deviation in the PDF. The PDF uncertainty is calculated by evaluating the standard deviation in the cross section derived by using different replicas. The uncertainty due to the variation of the value of αS(MZ) in the PDF sets is found to be much smaller than other uncertainties (<1 %) and is not included. The scale uncertainty is determined by varying the factorization and renormalization scales with respect to the nominal value (μ = jet pT ) using the following combinations of (μF/μ, μR/μ) ratios: (0.5, 0.5), (1, 0.5), (0.5, 1), (1, 2), (2, 1), and (2, 2). The largest deviation from the nominal cross section, found separately in each pT and |y| bin, is taken to represent the scale uncertainty. The scale uncertainty is asymmetric and its distribution is skewed towards lower cross sections. The largest deviation from the average value of the CNP correction factors, which are obtained with the Pythia6 and Herwig++ generators as discussed in Sect. 5, is used as the measure of the NP modeling uncertainty. It contributes a 2–5.6 % uncertainty in the cross section prediction. The uncertainties in the theoretical predictions differ for each PDF set considered, and typically vary in the 10–20 % range over most of the kinematic region. 7 Results The measured inclusive jet cross section and the theoretical predictions are compared in Figs. 1, 2 and 3. In Fig. 1, the double-differential cross section is plotted as a function of [ 32 ] [ 36 ] [ 37 ] [ 38 ] [ 39 ] 1013 CMS 1011 5.43 pb-1 (2.76 TeV) 3 CMS Fig. 2 The ratio of the measured inclusive jet production cross section (closed symbols) at √s = 2.76 TeV to the theoretical prediction using the CT10 PDF set is shown as a function of jet pT in each measured |y| range with the statistical (vertical error bars) and systematic (solid lines) experimental uncertainties. The total theoretical uncertainties are shown by the dash-dotted lines with the contribution from PDF uncertainties (hatched band) jet pT and |y|. The theoretical prediction obtained with the CT10 PDF set is shown as well. A more detailed comparison for all |y| bins is presented in Fig. 2, where the ratios of data to theory using the CT10 PDF set are shown. Within the uncertainties, the data are well described by NLO QCD in the full kinematic range explored. In Fig. 3, the data, with NP corrections, are compared in a similar manner to the predictions from other PDF sets, normalized to the CT10 predic2.5 O L N2 0 1 T C1.5 o t o it a 1 R 0.5 0 2.5 O L N2 0 1 T C1.5 o t o it a 1 R 0.5 0 2.5 O L N2 0 1 T C1.5 o t o it a 1 R 0.5 0 Data/NP Exp. uncertainty ABM11 HERAPDF1.5 NNPDF3.0 MMHT14 Data/NP Exp. uncertainty ABM11 HERAPDF1.5 NNPDF3.0 MMHT14 CT10 NLO |y| < 0.5 3 CMS 3 CMS tion. In general, all predictions describe the data well. Within experimental and theoretical (not shown) uncertainties, only the comparison to the prediction from the ABM11 PDF set exhibits slight differences between the data and theory, an effect that has been observed also in other measurements, e.g. Ref. [ 4 ]. 8 Summary A measurement of the double-differential inclusive jet cross section was presented. The data were collected by the CMS detector in pp collisions at √s = 2.76 TeV, with an integrated luminosity of 5.43 pb−1. The measurement covers the jet kinematic ranges of 74 ≤ pT < 592 GeV and |y| < 3.0. A detailed study of the experimental and theoretical uncertainties has been performed. Contributions to the experimental systematic uncertainty were evaluated from the jet energy corrections, jet energy resolution, and integrated luminosity. Jet energy corrections dominate the experimental uncertainty, followed by smaller contributions from jet energy resolution and luminosity. The theoretical uncertainty is dominated by the missing higher-order corrections that were estimated by varying the renormalization and factorization scales, and the PDF uncertainty; the contribution of nonperturbative correction uncertainty is small. The data are corrected for detector resolution and efficiencies. The measured cross sections are compared to NLO QCD predictions obtained using different PDF sets. These cross section measurements test and confirm the predictions of QCD at √s = 2.76 TeV and extend the kinematic range compared to previous studies. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT236 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3. CMS Collaboration Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A. M. Sirunyan, A. Tumasyan National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic Charles University, Prague, Czech Republic M. Bodlak, M. Finger10, M. Finger Jr.10 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Gadrat Georgian Technical University, Tbilisi, Georgia T. Toriashvili15 Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze10 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece G. Anagnostou, G. Daskalakis, T. Geralis, V. A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Psallidas, I. Topsis-Giotis National and Kapodistrian, University of Athens, Athens, Greece A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi21, J. Molnar, Z. Szillasi2 University of Debrecen, Debrecen, Hungary M. Bartók22, A. Makovec, P. Raics, Z. L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Choudhury23, P. Mal, K. Mandal, D. K. Sahoo, N. Sahoo, S. K. Swain Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, A. Kapoor, K. Kothekar, S. Sharma University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera2 INFN Sezione di Genovaa , Università di Genovab, Genoa, Italy V. Calvellia,b, F. Ferroa , M. Lo Veterea,b, M. R. Mongea,b, E. Robuttia , S. Tosia,b INFN Sezione di Napolia , Università di Napoli ‘Federico II’b, Napoli, Italy, Università della Basilicatac, Potenza, Italy, Università G. Marconid , Roma, Italy S. Buontempoa , N. Cavalloa,c, S. Di Guidaa,d,2, M. Espositoa,b, F. Fabozzia,c, A. O. M. Iorioa,b, G. Lanzaa , L. Listaa , S. Meolaa,d,2, M. Merolaa , P. Paoluccia,2, C. Sciaccaa,b, F. Thyssen INFN Sezione di Padovaa , Università di Padovab, Padova, Italy, Università di Trentoc, Trento, Italy P. Azzia,2, N. Bacchettaa , L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Brancaa,b, R. Carlina,b, P. Checchiaa , M. Dall’Ossoa,b,2, T. Dorigoa , F. Fanzagoa , F. Gasparinia,b, U. Gasparinia,b, F. Gonellaa , A. Gozzelinoa , K. Kanishcheva,c, S. Lacapraraa , M. Margonia,b, A. T. Meneguzzoa,b, J. Pazzinia,b,2, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassa a , M. Tosia,b, S. Venturaa , M. Zanetti, P. Zottoa,b, A. Zucchettaa,b,2 INFN Sezione di Paviaa , Università di Paviab, Pavia, Italy A. Braghieria,b, A. Magnania , P. Montagnaa,b, S. P. Rattia,b, V. Rea , C. Riccardia,b, P. Salvinia , I. Vaia,b, P. Vituloa,b INFN Sezione di Pisaa , Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, Italy K. Androsova,30, P. Azzurria,2, G. Bagliesia , J. Bernardinia , T. Boccalia , R. Castaldia , M. A. Cioccia,30, R. Dell’Orsoa , S. Donatoa,c,2, G. Fedi, L. Foàa,c,†, A. Giassia , M. T. Grippoa,30, F. Ligabuea,c, T. Lomtadzea , L. Martinia,b, A. Messineoa,b, F. Pallaa,, A. Rizzia,b, A. Savoy-Navarroa,31, A. T. Serbana , P. Spagnoloa , R. Tenchinia , G. Tonellia,b, A. Venturia , P. G. Verdinia INFN Sezione di Torinoa , Università di Torinob, Torino, Italy, Università del Piemonte Orientalec, Novara, Italy N. Amapanea,b, R. Arcidiaconoa,c,2, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa , N. Cartigliaa , M. Costaa,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa , L. Fincoa,b,2, B. Kiania,b, C. Mariottia , S. Masellia , E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. M. Obertinoa,b, L. Pachera,b, N. Pastronea , M. Pelliccionia , G. L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa Kangwon National University, Chunchon, Korea A. Kropivnitskaya, S. K. Nam Kyungpook National University, Daegu, Korea D. H. Kim, G. N. Kim, M. S. Kim, D. J. Kong, S. Lee, Y. D. Oh, A. Sakharov, D. C. Son Chonbuk National University, Jeonju, Korea J. A. Brochero Cifuentes, H. Kim, T. J. Kim Institute for Universe and Elementary Particles, Chonnam National University, Kwangju, Korea S. Song Seoul National University, Seoul, Korea H. D. Yoo University of Seoul, Seoul, Korea M. Choi, H. Kim, J. H. Kim, J. S. H. Lee, I. C. Park, G. Ryu, M. S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia I. Ahmed, Z. A. Ibrahim, J. R. Komaragiri, M. A. B. Md Ali32, F. Mohamad Idris33, W. A. T. Wan Abdullah, M. N. Yusli Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H. A. Salazar Ibarguen Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand D. Krofcheck National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H. R. Hoorani, W. A. Khan, T. Khurshid, M. Shoaib Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia A. Bylinkin P. N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin37, I. Dremin37, M. Kirakosyan, A. Leonidov37, G. Mesyats, S. V. Rusakov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Baskakov, A. Belyaev, E. Boos, M. Dubinin39, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov Faculty of Physics and Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia P. Adzic40, P. Cirkovic, J. Milosevic, V. Rekovic Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J. P. Fernández Ramos, J. Flix, M. C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J. M. Hernandez, M. I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M. S. Soares Universidad Autónoma de Madrid, Madrid, Spain C. Albajar, J. F. de Trocóniz, M. Missiroli, D. Moran Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I. J. Cabrillo, A. Calderon, J. R. Castiñeiras De Saa, P. De Castro Manzano, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomte, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov45, M. Takahashi, V. R. Tavolaro, K. Theofilatos, R. Wallny National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. H. Chang, Y. W. Chang, Y. Chao, K. F. Chen, P. H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y. F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J. f. Tsai, Y. M. Tzeng Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee Physics Department, Middle East Technical University, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak52, G. Karapinar53, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gülmez, M. Kaya54, O. Kaya55, E. A. Yetkin56, T. Yetkin57 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen58, F. I. Vardarlı Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk, P. Sorokin Baylor University, Waco, USA A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, USA O. Charaf, S. I. Cooper, C. Henderson, P. Rumerio W. J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N. V. Tran, L. Uplegger, E. W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H. A. Weber, A. Whitbeck Florida International University, Miami, USA S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J. L. Rodriguez Florida Institute of Technology, Melbourne, USA M. M. Baarmand, V. Bhopatkar, S. Colafranceschi64, M. Hohlmann, H. Kalakhety, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, USA M. R. Adams, L. Apanasevich, D. Berry, R. R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C. E. Gerber, D. J. Hofman, P. Kurt, C. O’Brien, I. D. Sandoval Gonzalez, P. Turner, N. Varelas, Z. Wu, M. Zakaria Lawrence Livermore National Laboratory, Livermore, USA D. Lange, F. Rebassoo, D. Wright University of Mississippi, Oxford, USA J. G. Acosta, S. Oliveros Northeastern University, Boston, USA G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D. M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang University of Notre Dame, Notre Dame, USA A. Brinkerhoff, N. Dev, M. Hildreth, C. Jessop, D. J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko36, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, N. Valls, M. Wayne, M. Wolf, A. Woodard Princeton University, Princeton, USA O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, C. Palmer, P. Piroué, H. Saka, D. Stickland, C. Tully, A. Zuranski University of Puerto Rico, Mayaguez, USA S. Malik Purdue University Calumet, Hammond, USA N. Parashar, J. Stupak University of Tennessee, Knoxville, USA M. Foerster, G. Riley, K. Rose, S. Spanier Texas Tech University, Lubbock, USA N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P. R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S. W. Lee, T. Libeiro, S. Undleeb, I. Volobouev University of Virginia, Charlottesville, USA M. W. Arenton, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, T Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, J. Wood, F. Xia Wayne State University, Detroit, USA C. Clarke, R. Harr, P. E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy University of Wisconsin-Madison, Madison, WI, USA D. A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G. A. Pierro, G. Polese, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W. H. Smith, D. Taylor, P. Verwilligen, N. Woods † Deceased 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 4: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 5: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 6: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 7: Also at Universidade Estadual de Campinas, Campinas, Brazil 8: Also at Centre National de la Recherche Scientifique (CNRS)-IN2P3, Paris, France 9: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 10: Also at Joint Institute for Nuclear Research, Dubna, Russia 11: Also at Ain Shams University, Cairo, Egypt 12: Also at Zewail city of Science and Technology, Zewail, Egypt 13: Also at British University in Egypt, Cairo, Egypt 14: Also at Université de Haute Alsace, Mulhouse, France 15: Also at Tbilisi State University, Tbilisi, Georgia 16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 17: Also at University of Hamburg, Hamburg, Germany 18: Also at Brandenburg University of Technology, Cottbus, Germany 19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 20: Also at Eötvös Loránd University, Budapest, Hungary 21: Also at University of Debrecen, Debrecen, Hungary 22: Also at Wigner Research Centre for Physics, Budapest, Hungary 23: Also at Indian Institute of Science Education and Research, Bhopal, India 24: Also at University of Visva-Bharati, Santiniketan, India 25: Now at King Abdulaziz University, Jeddah, Saudi Arabia 26: Also at University of Ruhuna, Matara, Sri Lanka 27: Also at Isfahan University of Technology, Isfahan, Iran 28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 30: Also at Università degli Studi di Siena, Siena, Italy 31: Also at Purdue University, West Lafayette, USA 32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 1. G. Altarelli , G. Parisi, Asymptotic freedom in parton language . Nucl. Phys. B 126 , 298 ( 1977 ). doi: 10 .1016/ 0550 - 3213 ( 77 ) 90384 - 4 2. V. Gribov , L. Lipatov, Deep inelastic ep scattering in perturbation theory . Sov. J. Nucl. Phys . 15 , 438 ( 1972 ) 3. Y.L. Dokshitzer , Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics . Sov. Phys. JETP 46 , 641 ( 1977 ) 4. CMS Collaboration , Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s = 7 TeV . Eur. Phys. J. C 75 , 288 ( 2015 ). doi: 10 .1140/epjc/s10052-015-3499-1 5. CMS Collaboration , Measurements of differential jet cross sections in proton-proton collisions at √s = 7 TeV with the CMS detector . Phys. Rev. D 87 , 112002 ( 2013 ). doi: 10 .1103/PhysRevD.87. 112002 6. ATLAS Collaboration , Measurement of inclusive jet and dijet production in pp collisions at √s = 7 TeV using the ATLAS detector , Phys. Rev. D 86 , 014022 ( 2012 ). doi: 10 .1103/PhysRevD.86. 014022. arXiv: 1112 . 6297 7. ATLAS Collaboration , Measurement of the inclusive jet cross section in pp collisions at √s = 2.76 TeV using the ATLAS detector , Eur. Phys. J. C 73 , 2509 ( 2013 ). doi: 10 .1140/epjc/ s10052-013-2509-4. arXiv: 1304 . 4739 8. ALICE Collaboration , Measurement of the inclusive differential jet cross section in pp collisions at √s = 2.76 TeV, Phys . Lett. B 722 , 262 ( 2013 ), doi:10.1016/j.physletb. 2013 . 04 .026. arXiv: 1301 . 3475 9. UA1 Collaboration , Hadronic jet production at the CERN protonantiproton collider . Phy. Lett. B 132 , 214 ( 1983 ). doi: 10 .1016/ 0370 - 2693 ( 83 ) 90254 -X 10. UA1 Collaboration, Measurement of the inclusive jet cross-section at the CERN pp¯ collider . Phys. Lett. B 172 , 461 ( 1986 ). doi: 10 . 1016/ 0370 - 2693 ( 86 ) 90290 -X 11. UA2 Collaboration, Observation of very large transverse momentum jets at the CERN pp¯ collider . Phys. Lett. B 118 , 203 ( 1982 ). doi: 10 .1016/ 0370 - 2693 ( 82 ) 90629 - 3 12. UA2 Collaboration, Measurement of the √s dependence of jet production at the CERN p¯p collider . Phys. Lett. B 160 , 349 ( 1985 ). doi: 10 .1016/ 0370 - 2693 ( 85 ) 91341 - 3 13. CDF Collaboration, Measurement of the inclusive jet cross section using the kt algorithm in p p¯ collisions at √s = 1.96 TeV with the CDF II detector . Phys. Rev. D 75 , 092006 ( 2007 ). doi: 10 .1103/ PhysRevD.75.092006. arXiv:hep-ex/0701051. [Erratum: doi:10. 1103/PhysRevD.75.119901] 14. CDF Collaboration, Comparison of jet production in p p¯ collisions at √s = 546 GeV and 1800 GeV. Phys. Rev. Lett . 70 , 1376 ( 1993 ). doi: 10 .1103/PhysRevLett.70.1376 15. D0 Collaboration, Measurement of the inclusive jet cross section in p p¯ collisions at √s = 1.96 TeV . Phys. Rev. D 85 , 052006 ( 2012 ). doi: 10 .1103/PhysRevD.85.052006. arXiv: 1110 . 3771 16. D0 Collaboration, High- pT jets in p p¯ collisions at √s = 630 GeV and 1800 GeV. Phys. Rev. D 64 , 032003 ( 2001 ). doi: 10 .1103/ PhysRevD.64.032003. arXiv:hep-ex/ 0012046 17. Z. Nagy , Three-jet cross sections in hadron-hadron collisions at next-to-leading order . Phys. Rev. Lett . 88 , 122003 ( 2002 ). doi:10. 1103/PhysRevLett.88.122003. arXiv:hep-ph/0110315 18. Z. Nagy , Next-to-leading order calculation of three-jet observables in hadron-hadron collisions . Phys. Rev. D 68 , 094002 ( 2003 ). doi:10.1103/PhysRevD.68.094002. arXiv:hep-ph/0307268 19. D. Britzger , K. Rabbertz , F. Stober , M. Wobisch , New features in version 2 of the fastNLO project , in XX Int'l Workshop on Deep-Inelastic Scattering and Related Subjects , p. 217 . ( 2012 ). arXiv: 1208 .3641. doi: 10 .3204/ DESY-PROC- 2012 -02/165 20. S. Dittmaier , A. Huss , C. Speckner , Weak radiative corrections to dijet production at hadron colliders . JHEP 11 , 095 ( 2012 ). doi: 10 . 1007/JHEP11( 2012 ) 095 . arXiv: 1210 . 0438 21. CMS Collaboration, The CMS experiment at the CERN LHC . JINST 3, S08004 ( 2008 ). doi: 10 .1088/ 1748 -0221/3/08/S08004 22. CMS Collaboration, Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E miss . CMS Physics Analysis T Summary CMS-PAS-PFT-09-001 , 2009 23. CMS Collaboration, Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector . CMS Physics Analysis Summary CMS-PAS-PFT-10-001 , 2010 24. C. Matteo , S. Gavin , G. Soyez, The anti-kt jet clustering algorithm . JHEP 04 , 063 ( 2008 ). doi: 10 .1088/ 1126 - 6708 / 2008 /04/063. arXiv: 0802 . 1189 25. M. Cacciari , G. Salam, G. Soyez, FastJet user manual . Eur. Phys. J. C 72 , 1896 ( 2012 ). doi: 10 .1140/epjc/s10052-012 -1896-2 . arXiv: 1111 . 6097 26. CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS . J. Instrum. 6 , P11002 ( 2011 ). doi: 10 .1088/ 1748 -0221/6/11/P11002 27. T. Sjöstrand , S. Mrenna , P. Skands, PYTHIA 6 . 4 physics and manual , JHEP 05 , 26 ( 2006 ). doi: 10 .1088/ 1126 - 6708 / 2006 /05/026. arXiv: hep-ph/0603175 28. GEANT4 Collaboration, GEANT4-a simulation toolkit . Nucl. Instrum. Meth. A 506 , 250 ( 2003 ). doi: 10 .1016/ S0168- 9002 ( 03 ) 01368 - 8 29. R. Field , Early LHC Underlying Event Data-Findings and Surprises. ( 2010 ). arXiv: 1010 . 3558 30. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis . JHEP 07 , 012 ( 2002 ). doi: 10 . 1088/ 1126 - 6708 / 2002 /07/012. arXiv: hep-ph/0201195 31. R. Field , Min-Bias and the Underlying Event at the LHC . ( 2011 ). arXiv: 1110 . 5530 32. H. Lai et al., New parton distributions for collider physics . Phys. Rev. D 82 , 074024 ( 2010 ). doi: 10 .1103/PhysRevD.82.074024. arXiv: 1007 . 2241 33. H. Akima , A new method of interpolation and smooth curve fitting based on local procedures . J. ACM 17 , 589 ( 1970 ). doi: 10 .1145/ 321607.321609 34. G. D'Agostini , A multidimensional unfolding method based on Bayes' theorem . Nucl. Instrum. Methods A 362 , 487 ( 1995 ). doi: 10 .1016/ 0168 - 9002 ( 95 ) 00274 -X 35. T. Adye, Unfolding algorithms and tests using RooUnfold. ( 2011 ). arXiv: 1105 . 1160 36. L.A. Harland-Lang , A.D. Martin , P. Motylinski , R.S. Thorne , Parton distributions in the LHC era: MMHT 2014 PDFs . Eur. Phys. J. C 75 , 204 ( 2015 ). doi: 10 .1140/epjc/s10052-015-3397-6. arXiv: 1412 . 3989 37. R.D. Ball et al., Parton distributions for the LHC run II . JHEP 04 , 40 ( 2015 ). doi: 10 .1007/JHEP04( 2015 ) 040 . arXiv: 1410 . 8849 38. H1 and ZEUS Collaborations, Combined measurement and QCD analysis of the inclusive e±p scattering cross sections at HERA . JHEP 01 , 10 ( 2010 ) 39. S. Alekhin , J. Blümlein , S. Moch , Parton distribution functions and benchmark cross sections at next-to-next-to-leading order . Phys. Rev. D 86 , 054009 ( 2012 ). doi: 10 .1103/PhysRevD.86.054009. arXiv: 1202 . 2281 40. M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58 , 639 ( 2008 ). doi: 10 .1140/epjc/s10052-008-0798-9. arXiv: 0803 . 0883 41. S. Gieseke , C. Röhr , A. Siódmok , Colour reconnections in Herwig++. Eur. Phys. J. C 72 , 2225 ( 2012 ). doi: 10 .1140/epjc/ s10052-012-2225-5. arXiv: 1206 . 0041 42. B. Andersson , The Lund model . Nucl. Phys. A 461 , 513 ( 1987 ). doi: 10 .1016/ 0375 - 9474 ( 87 ) 90510 - 0 43. B.R. Webber , A QCD model for jet fragmentation including soft gluon interference . Nucl. Phys. B 238 , 492 ( 1984 ). doi: 10 .1016/ 0550 - 3213 ( 84 ) 90333 -X

This is a preview of a remote PDF:

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam. Measurement of the inclusive jet cross section in pp collisions at \(\sqrt{s} = 2.76\,\text {TeV}\), The European Physical Journal C, 2016, 265, DOI: 10.1140/epjc/s10052-016-4083-z