Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to WW ∗→eνμν with the ATLAS detector at \( \sqrt{s}=8 \) TeV

Journal of High Energy Physics, Aug 2016

Abstract This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the H → W W ∗→ eνμν channel, using 20.3 fb−1 of proton-proton collision data. The data were produced at a centre-of-mass energy of \( \sqrt{s}=8 \) TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed H→ W W ∗→ eνμν signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP08%282016%29104.pdf

Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to WW ∗→eνμν with the ATLAS detector at \( \sqrt{s}=8 \) TeV

Revised: June Measurement of ducial di erential cross sections of gluon-fusion production of Higgs bosons decaying to This paper describes a measurement of ducial and di erential cross sections of gluon-fusion Higgs boson production in the H! W W of proton-proton collision data. The data were produced at a centre-of-mass energy of s = 8 TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed H! W W Hadron-Hadron scattering (experiments) - ! e ! e channel, using 20:3 fb 1 ! e signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a ducial region de ned by the kinematic properties of the charged leptons and neutrinos. Di erential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto e ciency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and xed-order calculations, and are in agreement with the Standard Model predictions. 1 Introduction The ATLAS detector Signal and background models Event selection Object reconstruction and identi cation Signal region selection Background estimation Reconstructed yields and distributions Fiducial region and correction for detector e ects De nition of the ducial region Correction for detector e ects Statistical and systematic uncertainties Statistical uncertainties Experimental systematic uncertainties Systematic uncertainties in the signal model Systematic uncertainty in the correction procedure Systematic uncertainties in the background model 9 Theory predictions 10 Results 10.1 Di erential ducial cross sections 10.2 Normalised di erential ducial cross sections 10.3 Jet-veto e ciency 11 Conclusion The ATLAS collaboration 1 Introduction 2 3 4 5 6 7 8 4.1 4.2 7.1 7.2 8.1 8.2 8.3 8.4 8.5 Since the observation of a new particle by the ATLAS [1] and CMS [2] collaborations in the search for the Standard Model (SM) Higgs boson [3{8], the mass, spin, and charge { 1 { conjugation times parity of the new particle have been measured by both collaborations [9{ 11]. Its mass has been measured to be mH = 125:09 0:24 GeV [9] by combining ATLAS and CMS measurements. The strengths of its couplings to gauge bosons and fermions have also been explored [12, 13]. In all cases the results are consistent with SM predictions. Di erential cross-section measurements have recently been made by the ATLAS and CMS collaborations in the ZZ ! 4` [14, 15] and ATLAS collaboration have been combined in ref. [18]. [16, 17] nal states. The results of the In this paper, measurements of ducial and di erential cross sections for Higgs boson production in the H! W W ! e 20:3 fb 1 of proton-proton collision data at a centre-of-mass energy of p nal state are presented. These measurements use s = 8 TeV recorded di erent physical e ects: (\leading") jet, pjT1 . Higher-order perturbative QCD contributions to the ggF production are probed by measuring the number of jets, Njet, and transverse momentum, pT, of the highest-pT Multiple soft-gluon emission, as modelled by resummation calculations, and nonperturbative e ects are probed by measuring the transverse momentum of the reconstructed Higgs boson, pTH . Parton distribution functions (PDFs) are probed by measuring the absolute value of the rapidity of the reconstructed dilepton system, jy``j. The dilepton rapidity, y``, is highly correlated to the rapidity of the reconstructed Higgs boson, yH , which is known to be sensitive to PDFs. Since it is not possible to reconstruct yH experimentally in the H! W W ! e nal state, the di erential cross section is measured as a function of jy``j. An additional important test of QCD predictions is the production cross section of the Higgs boson without additional jets (H + 0-jet), which is also a signi cant source of uncertainty in measurements of the total H ! W W production rate. Large uncertainties arise from unresummed logarithms in xed-order predictions or from uncertainties assigned to resummed predictions for the H + 0-jet cross section. The H + 0-jet cross section, 0(ptThresh), can be calculated from the product of the total cross { 2 { as the fraction of events with the leading jet below a given threshold, pthresh: section, tot, and the jet-veto e ciency for H + 0-jet events, "0(ptThresh), which is de ned T 0(ptThresh) = "0(ptThresh) tot: (1.1) In addition to the measurement of the Njet distribution, a measurement of the jet-veto e ciency for H +0-jet events, "0, is presented for three di erent values of ptThresh. All results are compared to a set of predictions from xed-order calculations and Monte Carlo (MC) Di erential cross-section measurements are performed for the rst time in the ) are not considered due to the large Drell-Yan (pp ! Z= ! ``) background. Using an iterative Bayesian method, the distributions are corrected for detector e ciencies and resolutions. Statistical and systematic uncertainties are propagated through these corrections, taking correlations among bins into account. 2 The ATLAS detector The ATLAS detector [20] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroid magnets. The inner-detector system (ID) is immersed in a 2 T axial magnetic eld and provides charged-particle tracking in the range j j < 2:5.1 radiation. Closest to the interaction point, the silicon-pixel detector forms the three innermost layers of the inner detector. The silicon-microstrip tracker surrounding it typically provides four additional two-dimensional measurement points per track. The silicon detectors are complemented by the transition-radiation tracker, which enables radially extended track reconstruction up to j j = 2:0 and provides electron identi cation information based on the fraction of hits above a higher energy-deposit threshold indicating the presence of transition 1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r; ) are used in the transverse plane, being the azimuthal angle around the z-axis. The pseudorapidity is de ned in terms of the polar angle as = ln tan( =2). Angular separation is measured in units of R p( )2 + ( )2. { 3 { The calorimeter system covers the range j j < 4:9. Within the region j j < 3:2, electromagnetic calorimetry is provided by a high-granularity lead/liquid-argon (LAr) sampling calorimeter. The hadronic calorimeter consists of steel and scintillator tiles in the central region and two copper/LAr hadronic endcap calorimeters. The solid-angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimised for electromagnetic and hadronic measurements respectively. The muon spectrometer (MS) covers the region j j < 2:7 with precise position measurements from three layers of monitored drift tubes (MDTs). Cathode-strip chambers provide additional high-granularity coverage in the forward (2 < j j < 2:7) region. The muon trigger system covers the range j j < 2:4 with resistive-plate chambers in the barrel and thin-gap chambers in the endcap regions, both of which also provide position measurements in the direction normal to the bending plane, complementary to the precision hits from the MDTs. A three-level trigger system reduces the event rate to about 400 Hz [21]. The Level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. The two subsequent trigger levels, collectively referred to as the High-Level Trigger (HLT), are implemented in software. 3 Signal and background models ! Signal and background processes are modelled by Monte Carlo simulation, using the same samples and con gurations as in ref. [19], which are summarized here. Events representing the ggF and VBF H W W signal processes are produced from calculations at next-to-leading order (NLO) in the strong coupling S as implemented in the Powheg MC generator [22{25], interfaced with Pythia8 [26] (version 8.165) for the parton shower, hadronisation, and underlying event. The CT10 [27] PDF set is used and the parameters of the Pythia8 generator controlling the modelling of the parton shower and the underlying event are those corresponding to the AU2 set [28]. The Higgs boson mass set in the generation is 125.0 GeV, which is close to the measured value. The Powheg ggF model takes into account nite quark masses and a running-width Breit-Wigner distribution that includes electroweak corrections at NLO [29]. To improve the modelling of the Higgs boson pT distribution, a reweighting scheme is applied to reproduce the prediction of the next-to-next-toleading-order (NNLO) and next-to-next-to-leading-logarithm (NNLL) dynamic-scale calculation given by the HRes 2.1 program [30]. Events with 2 jets are further reweighted to reproduce the pTH spectrum predicted by the NLO Powheg simulation of Higgs boson production in association with two jets (H + 2 jets) [31]. Interference with continuum W W production [32, 33] has a negligible impact on this analysis due to the transverse-mass selection criteria described in section 4 and is not included in the signal model. The inclusive cross sections at p s = 8 TeV for a Higgs boson mass of 125:0 GeV, calculated at NNLO+NNLL in QCD and NLO in the electroweak couplings, are 19.3 pb and 1.58 pb for ggF and VBF respectively [34]. The uncertainty on the ggF cross section has approximately equal contributions from QCD scale variations (7.5%) and PDFs (7.2%). For the VBF production, the uncertainty on the cross section is 2.7%, mainly from PDF { 4 { 4.0% on the ZH cross section. For all of the background processes, with the exception of W + jets and multijet events, MC simulation is used to model event kinematics and as an input to the background normalisation. The W + jets and multijet background models are derived from data as described in section 5. For the dominant W W and top-quark backgrounds, the MC generator is Powheg +Pythia6 [35] (version 6.426), also with CT10 for the input PDFs. The Perugia 2011 parameter set is used for Pythia6 [36]. For the W W background with Njet 2, to better model the additional partons, the Sherpa [37] program (version 1.4.3) with the CT10 PDF set is used. The Drell-Yan background, including Z= with the Alpgen [38] program (version 2.14). It is interfaced with Herwig [39] (version 6.520) with parameters set to those of the ATLAS Underlying Event Tune 2 [40] and uses the CTEQ6L1 [41] PDF set. The same con guration is applied for W events. Events in the Z= sample are reweighted to the MRSTmcal PDF set [42]. For the W and Z= backgrounds, the Sherpa program is used, with the same version number and PDF set as the W W background with 2 jets. Additional diboson backgrounds, from W Z and ZZ, ! , is simulated are modelled using Powheg +Pythia8. For all MC samples, the ATLAS detector response is simulated [43] using either Geant4 [44] or Geant4 combined with a parameterised Geant4-based calorimeter simulation [45]. Multiple proton-proton (pile-up) interactions are modelled by overlaying minimum-bias interactions generated using Pythia8. 4 Event selection This section describes the reconstruction-level de nition of the signal region. The de nition of physics objects reconstructed in the detector follows that of ref. [19] exactly and is summarised here. All objects are de ned with respect to a primary interaction vertex, which is required to have at least three associated tracks with pT 400 MeV. If more than one such vertex is present, the one with the largest value of P(p2T), where the sum is over all tracks associated with that vertex, is selected as the primary vertex. 4.1 Object reconstruction and identi cation Electron candidates are built from clusters of energy depositions in the EM calorimeter with an associated well-reconstructed track. They are required to have ET > 10 GeV, where the transverse energy ET is de ned as E sin( ). Electrons reconstructed with j j < 2:47 are used, excluding 1:37 < j j < 1:52, which corresponds to the transition region between the barrel and the endcap calorimeters. Additional identi cation criteria are applied to reject background, using the calorimeter shower shape, the quality of the match between the track and the cluster, and the amount of transition radiation emitted in the ID [46{ 48]. For electrons with 10 GeV < ET < 25 GeV, a likelihood-based electron selection at the \very tight" operating point is used for its improved background rejection. For { 5 { ET > 25 GeV, a more e cient \medium" selection is used because background is less of a concern. The e ciency of these requirements varies strongly as a function of ET, starting from 65{70% for ET < 25 GeV, jumping to about 80% with the change in identi cation criteria at ET = 25 GeV, and then steadily increasing as a function of ET [47]. Muon candidates are selected from tracks reconstructed in the ID matched to tracks reconstructed in the muon spectrometer. Tracks in both detectors are required to have a minimum number of hits to ensure robust reconstruction. Muons are required to have j j < 2:5 and pT > 10 GeV. The reconstruction e ciency is between 96% and 98%, and stable as a function of pT [49]. Additional criteria are applied to electrons and muons to reduce backgrounds from non-prompt leptons and electromagnetic signatures produced by hadronic activity. Lepton isolation is de ned using track-based and calorimeter-based quantities. All isolation variables used are normalised relative to the transverse momentum of the lepton, and are optimised for the H! W W ! e analysis, resulting in stricter criteria for better background rejection at lower pT and looser criteria for better e ciency at higher pT. Similarly, requirements on the transverse impact-parameter signi cance d0= d0 and the longitudinal impact parameter z0 are made. The e ciency of the isolation and impact-parameter requirements for electrons satisfying all of the identi cation criteria requirements ranges from 68% for 10 GeV < ET < 15 GeV to greater than 90% for electrons with ET > 25 GeV. For muons, the equivalent e ciencies are 60{96%. Jets are reconstructed from topological clusters of calorimeter cells [50{52] using the anti-kt algorithm with a radius parameter of R = 0:4 [53]. Jet energies are corrected for the e ects of calorimeter non-compensation, signal losses due to noise threshold e ects, energy lost in non-instrumented regions, contributions from in-time and out-of-time pile-up, and the position of the primary interaction vertex [50, 54]. Subsequently, the jets are calibrated to the hadronic energy scale [50, 55]. To reduce the chance of using a jet produced by a pile-up interaction, jets with with pT < 50 GeV and j j < 2:4 are required to have more than 50% of the scalar sum of the pT of their associated tracks come from tracks associated with the primary vertex. Jets used for de nition of the signal region are required to have pT > 25 GeV if j j < 2:4 and pT > 30 GeV if 2:4 < j j < 4:5. Jets containing b-hadrons are identi ed using a multivariate b-tagging algorithm [56, 57] which combines impact-parameter information of tracks and the reconstruction of charmand bottom-hadron decays. The working point, chosen to maximise top-quark background rejection, has an e ciency of 85% for b-jets and a mis-tag rate for light- avour jets (excluding jets from charm quarks) of 10.3% in simulated tt events. Missing transverse momentum (pTmiss) is produced in signal events by the two neutrinos from the W boson decays. It is reconstructed as the negative vector sum of the transverse momenta of muons, electrons, photons, jets, and tracks with pT > 0:5 GeV associated with the primary vertex but unassociated with any of the previous objects. 4.2 Signal region selection Events are selected from those with exactly one electron and one muon with opposite charge, a dilepton invariant mass m`` greater than 10 GeV, and pmiss > 20 GeV. At least T { 6 { one of the two leptons is required to have pT > 22 GeV and the lepton with higher pT is referred to as the leading lepton. The other (\subleading") lepton is required to have pT > 15 GeV. All events are required to pass at least one single-lepton or dilepton trigger. The Level-1 pT thresholds for the single-lepton triggers are 18 GeV and 15 GeV for electrons and muons, respectively. The HLT uses object reconstruction and calibrations close to those used o ine, and the electron and muon triggers both have thresholds at 24 GeV and an isolation requirement. To recover e ciency, a supporting trigger with no isolation requirement but higher pT thresholds, 60 GeV for electrons and 36 GeV for muons, is used. The dilepton trigger requires an electron and a muon above a threshold of 10 GeV and 6 GeV, respectively, at Level-1, and 12 GeV and 8 GeV in the HLT. This increases the signal e ciency by including events with a leading lepton below the threshold imposed by the single-lepton triggers but still on the plateau of the dilepton trigger e ciency. The reconstructed leptons are required to match those ring the trigger. The total per-event trigger e ciencies for events with Njet = 0 are 96% for events with a leading electron and 84% for events with a leading muon. The e ciency increases with increasing jet multiplicity, up to 97% for events with a leading electron and 89% for events with a leading muon. Three non-overlapping signal regions are de ned, distinguished by the number of reconstructed jets: Njet = 0, Njet = 1, or Njet 2. These separate the data into signal regions with di erent background compositions, which improves the sensitivity of the analysis. The dominant background processes are W W production for Njet = 0, top-quark production for Njet 2, and a mixture of the two for Njet = 1. For jet multiplicities above two, the number of events decreases with increasing number of jets but the background composition remains dominated by top-quark production, so these events are all collected in the Njet 2 signal region. The signal regions are based on the selection used for the ggF analysis of ref. [19], with modi cations to improve the signal-to-background ratio, and to account for the treatment of VBF and V H as backgrounds. The former includes the increase in the subleading lepton pT threshold and the exclusion of same- avour events, to reduce background from W + jets The selection criteria are summarised in table 1. The b-jet veto uses jets with pT > and Drell-Yan events, respectively. 20 GeV and j jet categories. Background from Z= { 7 { category with a requirement on the transverse momentum of the dilepton system, p`T` > 30 GeV. In the Njet = 1 category, this is accomplished in part by requirements on the singlej < 2:4, and rejects top-quark background in the Njet = 1 and Njet 2 ! and multijet events is reduced in the Njet = 0 lepton transverse mass m`T, de ned for each lepton as m`T = 2(pTmissp` T least one of the two leptons is required to have m`T > 50 GeV. For Z= events in the Njet = 1 and Njet 2 categories, the pT of the ! p `T pTmiss). At background system is larger, so the collinear approximation is used to calculate the invariant mass m [58]. A requirement that m rejects Z= at mZ ! VBF veto in the Njet 25 GeV suppresses most background from Z= ! . Selection that events also rejects H ! events, which are kinematically similar. The 2 signal region removes events in which the two leading jets have an invariant mass mjj > 600 GeV and a rapidity separation yjj > 3:6, which rejects about 40% of VBF events but only 5% of ggF events. q Two isolated leptons (` = e; ) with opposite charge plTead > 22 GeV, psTublead > 15 GeV Njet, and a dash (`-') indicates that no selection is applied. De nitions including the pT thresholds for jet counting are given in the text. Upper bounds on m`` and the azimuthal angle between the leptons `` take advantage of the unique kinematics of the H W W decay to discriminate between these signal events and the continuum W W background. The spin-zero nature of the Higgs boson, together with the structure of the weak interaction in the W boson decays, ! preferentially produces leptons pointing into the same hemisphere of the detector. The small dilepton invariant mass is a consequence of that and the fact that mH < 2mW , which forces one of the two W bosons o -shell, resulting in lower lepton momenta in the centre-of-mass frame of the Higgs boson decay. Signal events are peaked in the distribution of the transverse mass mT, de ned as where q mT = (ET`` + pmiss)2 T jp`T` + pmissj2; T ET`` = q jp`T`j2 + m`2`: Figure 1 shows the mT distribution after application of all other selection criteria in each of the signal regions. Selecting events with 85 GeV < mT < 125 GeV increases the signal region purity and minimises the total uncertainty of this measurement of the ggF cross section. Removing events with mT & mH also reduces the e ect of interference with the continuum W W process to negligible levels compared to the observed event yield [32]. The distributions to be measured are built using the same leptons, jets, and pmiss that enter the event selection. The pT of the Higgs boson (pTH ) is reconstructed as the vector sum of the missing transverse momentum and the pT of the two leptons: T p TH = jplTead + psTublead + pmiss : T j { 8 { (4.1) (4.2) (4.3) The rapidity of the dilepton system jy``j is reconstructed from the charged lepton four momenta. The reconstructed and unfolded distributions are binned using the bin edges de ned in table 2. The bin edges are determined by balancing the expected statistical and systematic uncertainties in each bin. The resolution of the variables is smaller than the bin size and does not a ect the binning choice. For each distribution, the upper edge of the highest bin is chosen so that less than 1% of the expected event yield in the ducial region is excluded. 5 Background estimation Important background processes for this analysis are W W , tt, single top-quark, Z= W + jets, and diboson processes other than W W , collectively referred to as \Other V V " and including W , W , W Z, and ZZ events. The background estimation techniques are described in detail in ref. [19] and brie y here. The normalisation strategy is summarised in table 3. As much as possible, backgrounds are estimated using a control region (CR) enriched in the target background and orthogonal to the signal region (SR), because the statistical and extrapolation uncertainties are smaller than the typical uncertainties associated with explicit prediction of the yields in exclusive Njet categories. The background estimates done in the CRs are extrapolated to the SR using extrapolation factors taken from simulation. The control region de nitions are summarised in table 4, and include the lower subleading lepton pT threshold of 10 GeV for all control regions except the one for W W . This is done because the gain in statistical precision of the resulting background estimates is larger than the increase of the systematic uncertainties on the extrapolation ! factors, particularly for the Z= and V V processes. ! For all kinematic distributions, except Njet, the shapes are derived from data for the W + jets and multijet backgrounds, and from the MC-simulated background samples for all other processes. Because the signal regions are de ned in terms of Njet, the Njet distribution is determined directly in each bin by the sum of the background predictions. Theoretical and experimental uncertainties are evaluated for all MC-simulation-derived shapes and included in the analysis, as described in section 8. The contribution to the signal region from the VBF and V H Higgs boson production modes, and all contributions from H ! decays, are treated as a background assuming the Standard Model cross section, branching ratio, and acceptance for mH = 125 GeV. The contribution of H ! events is negligible due to the selection criteria rejecting events. The largest contribution from all non-ggF Higgs boson processes is in the Njet 2 category, in which events from VBF and V H contribute about half the number of events { 9 { 5G 350 e / e H TOothper VV WW W+jet Z/γ* H Top W+jet WW Z/γ* Other VV 50 100 150 200 250 0 50 100 150 200 250 (a) Njet = 0. (b) Njet = 1. eV 140 ATLAS G selection criteria have been applied for the Njet = 0 (top left), Njet = 1 (top right) and Njet 2 (bottom) signal regions. The background contributions are normalised as described in section 5. The SM Higgs boson signal prediction shown is summed over all production processes. The hatched band shows the sum in quadrature of statistical and systematic uncertainties of the sum of the backgrounds. The vertical dashed lines indicate the lower and upper selection boundaries on mT at 85 and 125 GeV. Channel CR CR MC CR CR CR W +jets/multijet Other V V Data Data Data ground is categorised according to whether it is normalised using a control region (CR), a fully data-derived estimate (Data), or the theoretical cross section and acceptance from simulation (MC). HJEP08(216)4 CR W W Z= ! lepton pT threshold is lowered to 10 GeV unless otherwise stated. Jet-multiplicity requirements also match the corresponding signal region, except where noted for some top-quark control regions. The \top quark aux." lines describe auxiliary data control regions used to correct the normalisation found in the main control region. Dashes indicate that a particular control region is not de ned. The de nitions of m , m`T, and the jet counting pT thresholds are as for the signal regions. that ggF does, and constitute about 3% of the total background. The Njet distribution and other shapes are taken from simulation. For the Njet = 0 and Njet = 1 categories, the W W background is normalised using control regions distinguished from the SR primarily by m``, and the shape is taken from simulated events generated using Powheg +Pythia6 as described in section 3. For the Njet 2 category, W W is normalised using the NLO cross section calculated with MCFM [59]. The e ciency for the Njet 2 requirement and other SR selections is taken from MC simulaa t H Top Z/γ* WW Other VV W+jet H WW Z/γ* Top Other VV W+jet a t CR, with signal and background expectations. Relevant background normalisation factors have been applied. The SM Higgs boson signal prediction shown is summed over all production processes. The hatched band in the upper panel and the shaded band in the lower panel show the sum in quadrature of statistical and systematic uncertainties of the prediction. tion, for which the Sherpa generator is used. It is LO in QCD but has matrix elements implemented for W W + N jets, for 0 N 3. For all Njet categories, W W ! ` ` background events produced by double parton scattering are normalised using the predicted cross section times branching ratio of 0:44 0:26 pb [19]. The acceptance is modelled at the pTH distribution in the Njet = 1 W W CR are shown in gure 2. LO using events generated by Pythia8. The jy``j distribution in the Njet = 0 W W CR and The top-quark background normalisation is estimated using control regions for all Njet, and the shapes of the distributions other than Njet are taken from MC simulation. The tt and single-top (i.e. W t) backgrounds are treated together and the normalisation T factor determined from the CR yield is applied to their sum. In the Njet = 0 category, the normalisation is derived from an inclusive sample of events meeting all of the lepton and pmiss preselection criteria but with no requirements on the number of jets, in which the majority of events contain top quarks. The e ciency of the Njet = 0 signal region selection is modelled using MC simulation. To reduce the uncertainty on the e ciency of the jet veto, the fraction of b-tagged events which have no additional jets is measured in a data sample with at least one b-tagged jet and compared to the fraction predicted by simulation. The e ciency of the jet veto is corrected by the square of the ratio of the measured fraction over the predicted one to account for the presence of two jets in tt production. In the Njet = 1 category, the normalisation of the top-quark background is determined from a control region distinguished from the signal region by requiring that the jet is b-tagged. To reduce the e ect of b-tagging systematic uncertainties, the extrapolation factor from the CR to the SR is corrected using an e ective b-jet tagging scale factor derived from a control 1s4000 t e 1vE2000 8000 6000 4000 2000 M 1.4 a t H Single top Z/γ* W+jet tt WW H WW W+jet Z/γ* tt Single top a t top-quark CR, with signal and background expectations. Relevant background normalisation factors have been applied. The SM Higgs boson signal prediction shown is summed over all production processes. The hatched band in the upper panel and the shaded band in the lower panel show the sum in quadrature of statistical and systematic uncertainties of the prediction. region with two jets, at least one of which is b-tagged. In the Njet 2 category, the number of top-quark events is su ciently large that a CR with a b-jet veto can be de ned using m`` > 80 GeV. The pjT1 distribution in the Njet = 1 top-quark CR and the pTH distribution 2 top-quark CR are shown in gure 3. The W + jets background contribution is estimated using a control sample of events in which one of the two lepton candidates satis es the identi cation and isolation criteria used to de ne the signal sample (these lepton candidates are denoted \fully identi ed"), and the other (\anti-identi ed") lepton fails to meet the nominal selection criteria but satis es a less restrictive one. Events in this sample are otherwise required to satisfy all of the signal-region selection criteria. The W + jets contamination in the SR is determined by scaling the number of events in the control sample by an extrapolation factor measured in a Z + jets data sample. The extrapolation factor is the ratio of the number of fully identi ed leptons to the number of anti-identi ed leptons, measured in bins of anti-identi ed lepton pT and . To account for di erences between the composition of jets associated with W and Z-boson production, the extrapolation factors are measured in simulated W + jets and Z + jets events. The ratio of the two extrapolation factors is applied as a multiplicative correction to the extrapolation factor measured in the Z + jets data. The background due to multijet events is determined similarly to the W + jets background, using a control sample that has two anti-identi ed lepton candidates, but otherwise satis es the SR selection criteria. The extrapolation factor is constructed from data events dominated by QCD-produced jet activity, and is applied to both anti-identi ed leptons. s ten1000 ATLAS v E H Wγ* WZ ZZ WW Wγ W+jet Z/γ* a t ven 450 ATLAS E 400 H Top W+jet Other VV Z/γ* WW a t CR, with signal and background expectations. Relevant background normalisation factors have been applied. The SM Higgs boson signal prediction shown is summed over all production processes. The hatched band in the upper panel and the shaded band in the lower panel show the sum in quadrature of statistical and systematic uncertainties of the prediction. Z= ! ee and Z= ! pTH in the Z= ! The background from diboson processes other than W W , primarily from W , W , and W Z events, is normalised in the Njet = 0 and Njet = 1 categories using a control region identical to the signal region except that the leptons are required to have the same sign. The number and properties of same-sign and opposite-sign dilepton events produced by W ( ) and W Z are almost identical. In the Njet 2 analysis, this same-sign sample is too small to be used as a control region, and the background is estimated from the predicted inclusive cross sections and MC acceptance alone. For all Njet, the MC simulation is used to predict the shapes of the distributions to be unfolded. Figure 4(a) shows the distribution of jy``j in the Njet = 0 same-sign control region. The Z= ! background normalisation is derived from control regions, and the shape is derived from MC, for all three signal regions. The small contributions from , including Z , are estimated from MC simulation and the predicted cross sections, as described in section 3. Figure 4(b) shows the distribution of control region with Njet Each control region is designed for the calculation of a normalisation factor (NF) for a particular target process, The NF is de ned as (N B0)=B, where N is the number of data events observed in the control region, B is the expected background yield in the CR for the target process based on the predicted cross section and acceptance from MC simulation, and B0 is the predicted yield from other processes in the control region. The CRs have a small contribution from the signal process, which is normalised to the SM expectation. The e ect of this choice is negligible. The normalisation of each background associated with a CR is scaled by the corresponding NF. All NFs used are given in table 5, along background contributions and Njet categories. The uncertainty quoted is the statistical uncertainty; systematic uncertainties on the predicted yield, not shown, restore compatibility of the NF with unity but do not directly enter the analysis because they are replaced by extrapolation uncertainties. A dash (`-') indicates that there is no control region corresponding to that background. with their statistical uncertainties. These are included in the statistical uncertainties of the nal results. The value of the Njet = 0 W W NF has been studied in detail [19]; its deviation from unity is due to the modelling of the jet veto and higher-order corrections on the prediction of the W W cross section. A newer calculation of the inclusive W W cross section, with NNLO precision in S [60], moves the NF closer to unity, compared to the one shown here, as described in ref. [61]. 6 Reconstructed yields and distributions pjT1 are shown in The numbers of expected and observed events satisfying all of the signal region selection criteria are shown in table 6. The numbers of expected signal and background events are also shown, with all data-driven corrections and normalisation factors applied. In each category, the background-subtracted number of events, corresponding to the observed yield of signal events, is signi cantly di erent from zero. Taking into account the total statistical and systematic uncertainties, these yields are in agreement with those reported in ref. [19] and with expectations from SM Higgs boson production through gluon fusion. The four distributions under study: Njet, pTH (reconstructed as pT(``pTmiss)), jy``j, and gure 5. For presentation purposes, the reconstructed distributions are combined over the three signal regions, with the uncertainties combined accounting for correlations. In the pjT1 distribution, Njet = 0 events are all in the rst bin, pjT1 < 30 GeV, by construction because of the de nition of the jet counting. The composition of the background is shown, to illustrate how it varies as a function of the quantities being measured. The W W background decreases as a function of the number of jets, and the top-quark background increases, as can also be seen in table 6. For the pTH and pjT1 distributions, the W W background decreases with pT while the top-quark background increases. The background composition does not vary substantially as a function of jy``j. 7 Fiducial region and correction for detector e ects Each of the reconstructed distributions is corrected for detector e ects and resolution to extract the di erential cross sections for the ggF Higgs boson signal. All di erential cross sections are shown in a ducial region de ned based on objects at particle level, to reduce D -50 ts1200 n e vE1000 800 600 400 200 kg 150 -B 100 a t 50 0 D -50 (a) Njet. (c) jy``j. vE1400 1200 1000 800 600 400 200 ggF H 1400 H→WW*→eνμν WW Other VV Z/γ* Observed distributions of (a) Njet, (b) pH , (c) jy``j, and (d) pj1 with signal and T T background expectations, combined over the Njet = 0, = 1, and 2 signal-region categories. The background processes are normalised as described in section 5. The SM Higgs boson signal prediction shown is summed over all production processes. In the pjT1 distribution, Njet = 0 events are all in the rst bin by construction because of the de nition of the jet thresholds used to de ne the signal regions. The hatched band shows the sum in quadrature of statistical and systematic uncertainties of the sum of the backgrounds. Data ggF H Top W+jet Non-ggF H WW Other VV Z/γ* 2:2 686 88 60:2 8:7 90 1:3 936 171 125:9 0:2 19 3 2 1:5 2:3 0:5 21 39 0:4 1107 0:2 43 12 3:8 2:3 21 0:5 41 41 5:7 111:2 7:1 153 44 6:2 33:5 0:7 355 59 43:4 0:3 7 3 2:7 1:3 2:0 0:2 9 22 0:2 414 0:5 13 11 8:2 2:2 7:6 0:3 12 12 1:7 8:2 44 21:6 164 7:3 16:9 0:9 263 38 17:6 0:3 1:6 1 2 1:5 1:2 0:1 6 301 18 0:2 0:4 11 3:3 16 2:2 3:9 0:4 9 9 1:4 and from H ! other backgrounds. given with their statistical ( rst) and systematic (second) uncertainties evaluated as described in section 8. The \Non-ggF H" row includes the contributions from VBF and V H with H! W W . The total background in the third-from-last row is the sum of these and of all the model dependence of the results. The particle objects and the de nition of the ducial region are described in section 7.1. In section 7.2, the correction procedure is discussed. 7.1 De nition of the ducial region The ducial selection is designed to replicate the analysis selection described in section 4 as closely as possible at particle level, before the simulation of detector e ects. In this analysis, measurements are performed in three signal-region categories di ering in the number of jets in the event. In order to present results with events from all categories, the ducial selection only applies a selection common to all categories and using the leptons and missing transverse momentum in the nal state. The criteria are summarised in table 7. The ducial selection is applied to each particle-level lepton, de ned as a nal-state electron or muon. Here, electrons or muons from hadron decays and decays are rejected. The lepton momenta are corrected by adding the momenta of photons, not originating from hadron decays, within a cone of size R = 0:1 around each lepton; these photons arise predominantly from nal-state-radiation. Selected leptons are required to satisfy the same kinematic requirements as reconstructed leptons. A selected event has exactly two di erent- avour leptons with opposite charge. T The missing transverse momentum pmiss is de ned as the vector sum of all nal-state neutrinos excluding those produced in the decays of hadrons and 's. Particle-level jets are reconstructed using the anti-kt algorithm, implemented in the FastJet package [62], with a radius parameter of R = 0:4. For the clustering, all stable particles with a mean lifetime greater than 30 ps are used, except for electrons, photons, HJEP08(216)4 Electrons Muons Jets The momenta of the electrons and muons are corrected for radiative energy losses by adding the momenta of nearby photons, as described in the text. muons, and neutrinos not originating from hadron decays. Selected jets are required to have pT > 25 GeV if j j < 2:4 or pT > 30 GeV if 2:4 j j < 4:5. Selected events pass all preselection requirements introduced in section 4 and the H! W W plied in the ! e topology selection on `` and m``. The mT thresholds are not apducial region since the shape of the mT distribution at reconstruction level di ers signi cantly from the shape of the distribution at particle level. All selection requirements applied are summarised in table 7. For a SM Higgs boson the acceptance of the ducial region with respect to the full phase space of H! W W ! e is 11.3%. 7.2 Correction for detector e ects all values of Njet for the pH , jy``j and pjT1 variables. T To extract the di erential cross sections, the measured distributions, shown in gure 5, are corrected for detector e ects and extrapolated to the ducial region. For the corrections, the reconstructed distributions of the di erent jet-binned signal-region categories are not combined, but instead are simultaneously corrected for detector e ects as a function of the variable under study and the number of jets. Thus, the correlation of the variable under study with Njet is correctly taken into account. Final results are presented integrated over In the following, each bin of the reconstructed distribution is referred to by the index j, while each bin of the particle-level distribution is referred to by the index i. The correction itself is done as follows: i N part = 1 " i X j M 1 ij f reco-only (Njreco j N bkg); j i where N part is the number of particle-level events in a given bin i of the particle-level distribution in the ducial region. The quantity N reco is the number of reconstructed j events in a given bin j of the reconstructed distribution in the signal region, and N bkg (7.1) j is the number of background events in bin j estimated as explained in section 5. The correction factor fjreco-only, the selection e ciency "i, and the migration matrix Mij are discussed below. To evaluate the cross section in particle-level bin i, it is also necessary to take the integrated luminosity and the bin width into account. The migration matrix accounts for the detector resolution and is de ned as the probability to observe an event in bin j when its particle-level value is located in bin i. The migration matrix is built by relating the variables at reconstruction and particle level in simulated ggF signal events that meet both the signal-region and ducial-region selection criteria. To properly account for the migration of events between the di erent signal-region categories, the migration matrix accounts for the migrations within one distribution, as well as migrations between di erent values of Njet. The inverse of the migration matrix is determined using an iterative Bayesian unfolding procedure [63] with two iterations. The selection e ciency "i is de ned as an overall e ciency, combining reconstruction, identi cation, isolation, trigger and selection, including also the di erences between the ducial and the signal region selection. It is derived from MC simulation and its values are in the range 0.14 to 0.43 for all variables. Events in the ducial region that are not selected in the signal region are taken into account by "i. Events outside the ducial region may be selected in a signal region owing to migrations. Such migrations are accounted for via the correction factor fjreco-only, which is derived from MC simulation. Reconstructed H! W W events where the W boson decays into and the lepton decays leptonically are not included in the ducial region, but are accounted for also with the same procedure. The correction factor fjreco-only is in the range 0.84 to 0.92 for all variables. 8 Statistical and systematic uncertainties Sources of uncertainty in the di erential cross sections can be grouped into ve categories: statistical uncertainties, experimental systematic uncertainties, theoretical systematic uncertainties in the signal model, uncertainties arising from the correction procedure, and theoretical systematic uncertainties in the background model. These uncertainties a ect the analysis through the background normalisation, the background shape, the migration matrix, the selection e ciency, and the correction factor. The e ect of each systematic uncertainty is analysed by repeating the full analysis for the variation in the signal, background, or experimental parameter. For experimental uncertainties, the migration matrix, selection e ciency, correction factor, and background estimation are varied simultaneously. For uncertainties that only apply to the background processes, the nominal migration matrix, selection e ciency, and correction factor are used. The total uncertainty in the result from any individual source of uncertainty is taken as the di erence between the shifted and the nominal result after the correction of detector e ects. The input uncertainties are summarised in this section. Their e ect on the measured results, individually and collectively, are given with the results in the tables in section 10. The total uncertainty in each measurement bin is de ned as the sum in quadrature of all uncertainty components. HJEP08(216)4 [9] ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp s = 7 and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE]. 132 [INSPIRE]. 508 [INSPIRE]. (1966) 1156 [INSPIRE]. 1554 [INSPIRE]. [10] ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [arXiv:1506.05669] [INSPIRE]. [11] CMS collaboration, Constraints on the spin-parity and anomalous HV V couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE]. [12] ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at p Eur. Phys. J. C 76 (2016) 6 [arXiv:1507.04548] [INSPIRE]. s = 7 and 8 TeV in the ATLAS experiment, [13] CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the Standard Model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE]. [14] ATLAS collaboration, Fiducial and di erential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at p detector, Phys. Lett. B 738 (2014) 234 [arXiv:1408.3226] [INSPIRE]. s = 8 TeV with the ATLAS [15] CMS collaboration, Measurement of di erential and integrated ducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at p s = 7 and 8 TeV, JHEP 04 (2016) 005 [arXiv:1512.08377] [INSPIRE]. [16] ATLAS collaboration, Measurements of ducial and di erential cross sections for Higgs [17] CMS collaboration, Measurement of di erential cross sections for Higgs boson production in s = 8 TeV with ATLAS, JHEP 09 s = 8 TeV, Eur. Phys. J. C 76 (2016) 13 boson production in the diphoton decay channel at p (2014) 112 [arXiv:1407.4222] [INSPIRE]. the diphoton decay channel in pp collisions at p [arXiv:1508.07819] [INSPIRE]. [18] ATLAS collaboration, Measurements of the total and di erential Higgs boson production cross sections combining the H ! and H ! ZZ with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 091801 [arXiv:1504.05833] [INSPIRE]. ! 4` decay channels at p s = 8 TeV [19] ATLAS collaboration, Observation and measurement of Higgs boson decays to W W with the ATLAS detector, Phys. Rev. D 92 (2015) 012006 [arXiv:1412.2641] [INSPIRE]. JINST 3 S08003 [INSPIRE]. 72 (2012) 1849 [arXiv:1110.1530] [INSPIRE]. JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. [20] ATLAS collaboration, The ATLAS experiment at the CERN Large Hadron Collider, 2008 [22] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE]. [24] P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 0 2 (2010 ) 037 [arXiv:0911.5299] [INSPIRE]. [25] E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE]. CERN, Geneva Switzerland (2012). [28] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003, s = 8 TeV, Phys. Lett. B 718 (2012) 117 [arXiv:1206.4133] [INSPIRE]. [29] D. de Florian and M. Grazzini, Higgs production at the LHC: updated cross sections at [30] M. Grazzini and H. Sargsyan, Heavy-quark mass e ects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE]. [31] K. Hamilton, P. Nason and G. Zanderighi, MINLO: Multi-scale Improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE]. [32] J.M. Campbell, R.K. Ellis and C. Williams, Gluon-gluon contributions to W +W production and Higgs interference e ects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE]. [33] J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC: complementary results from H ! W W , Phys. Rev. D 89 (2014) 053011 [arXiv:1312.1628] [INSPIRE]. [34] LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE]. [35] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6:4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. 074018 [arXiv:1005.3457] [INSPIRE]. [arXiv:0811.4622] [INSPIRE]. for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [39] G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [40] ATLAS collaboration, New ATLAS event generator tunes to 2010 data, ATL-PHYS-PUB-2011-008, CERN, Geneva Switzerland (2011). [41] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE]. [arXiv:1005.4568] [INSPIRE]. Meth. A 506 (2003) 250 [INSPIRE]. HJEP08(216)4 [45] ATLAS collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, ATL-PHYS-PUB-2010-013, CERN, Geneva Switzerland (2010). [46] ATLAS collaboration, Electron reconstruction and identi cation e ciency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014) 2941 [arXiv:1404.2240] [INSPIRE]. [47] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using the 2012 LHC proton-proton collision data, ATLAS-CONF-2014-032, CERN, Geneva Switzerland (2014). [48] ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using LHC run 1 data, Eur. Phys. J. C 74 (2014) 3071 [arXiv:1407.5063] [INSPIRE]. [49] ATLAS collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014) [50] ATLAS collaboration, Jet energy measurement and its systematic uncertainty in s = 7 TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) [51] W. Lampl et al., Calorimeter clustering algorithms: description and performance, ATL-LARG-PUB-2008-002, CERN, Geneva Switzerland (2008). [52] ATLAS collaboration, Tagging and suppression of pileup jets with the ATLAS detector, ATLAS-CONF-2014-018, CERN, Geneva Switzerland (2014). [53] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE]. [54] ATLAS collaboration, Pile-up corrections for jets from proton-proton collisions at s = 7 TeV in ATLAS in 2011, ATLAS-CONF-2012-064, CERN, Geneva Switzerland 3130 [arXiv:1407.3935] [INSPIRE]. proton-proton collisions at p 17 [arXiv:1406.0076] [INSPIRE]. p (2012). collisions at p [55] ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton-proton s = 7 TeV, Eur. Phys. J. C 73 (2013) 2304 [arXiv:1112.6426] [INSPIRE]. H ! [56] ATLAS collaboration, Calibration of b-tagging using dileptonic top pair events in a combinatorial likelihood approach with the ATLAS experiment, ATLAS-CONF-2014-004, CERN, Geneva Switzerland (2014). [57] ATLAS collaboration, Calibration of the performance of b-tagging for c and light- avour jets in the 2012 ATLAS data, ATLAS-CONF-2014-046, CERN, Geneva Switzerland (2014). via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE]. [60] T. Gehrmann et al., W +W production at hadron colliders in next to next to leading order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE]. [61] ATLAS collaboration, Measurement of total and di erential W +W production cross sections in proton-proton collisions at p s = 8 TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings, arXiv:1603.01702 [INSPIRE]. [arXiv:1111.6097] [INSPIRE]. Instrum. Meth. A 362 (1995) 487 [INSPIRE]. arXiv:1201.3084 [INSPIRE]. group report, arXiv:1405.1067 [INSPIRE]. [63] G. D'Agostini, A multidimensional unfolding method based on Bayes' theorem, Nucl. [64] S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Di erential distributions, [65] J.R. Andersen et al., Les Houches 2013: physics at TeV colliders | Standard Model working [66] R. Boughezal, X. Liu, F. Petriello, F.J. Tackmann and J.R. Walsh, Combining resummed Higgs predictions across jet bins, Phys. Rev. D 89 (2014) 074044 [arXiv:1312.4535] JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE]. [67] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [68] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. [69] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [70] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, [71] LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE]. [72] A. Ban , P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE]. [73] A. Ban , G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto e ciencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE]. [74] A. Ban , P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE]. [75] I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet HJEP08(216)4 production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE]. [79] K. Hamilton, P. Nason and G. Zanderighi, Finite quark-mass e ects in the NNLOPS POWHEG+MiNLO Higgs generator, JHEP 05 (2015) 140 [arXiv:1501.04637] [INSPIRE]. JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE]. the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE]. + parton showers in e+e ! hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE]. [83] S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h+jets, Phys. Rev. D 90 (2014) 014012 [arXiv:1401.7971] [INSPIRE]. [84] P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE]. [arXiv:1209.6215] [INSPIRE]. [hep-ph/0703012] [INSPIRE]. [85] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [86] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 (2014) 033009 [arXiv:1302.6246] [INSPIRE]. [87] M. Grazzini, NNLO predictions for the Higgs boson signal in the H ! W W ! ` ` and H ! ZZ ! 4` decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE]. [88] J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 [89] ATLAS collaboration, Improved luminosity determination in pp collisions at p s = 7 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2518 [arXiv:1302.4393] G. Aad86, B. Abbott113, J. Abdallah151, O. Abdinov11, B. Abeloos117, R. Aben107, M. Abolins91, O.S. AbouZeid137, H. Abramowicz153, H. Abreu152, R. Abreu116, Y. Abulaiti146a;146b, B.S. Acharya163a;163b;a, L. Adamczyk39a, D.L. Adams26, J. Adelman108, S. Adomeit100, T. Adye131, A.A. A older75, T. Agatonovic-Jovin13, J. Agricola55, J.A. Aguilar-Saavedra126a;126f, S.P. Ahlen23, F. Ahmadov66;b, G. Aielli133a;133b, H. Akerstedt146a;146b, T.P.A. Akesson82, A.V. Akimov96, G.L. Alberghi21a;21b, J. Albert168, S. Albrand56, M.J. Alconada Verzini72, M. Aleksa31, I.N. Aleksandrov66, C. Alexa27b, G. Alexander153, T. Alexopoulos10, M. Alhroob113, G. Alimonti92a, J. Alison32, S.P. Alkire36, B.M.M. Allbrooke149, B.W. Allen116, P.P. Allport18, A. Aloisio104a;104b, A. Alonso37, F. Alonso72, C. Alpigiani138, B. Alvarez Gonzalez31, D. Alvarez Piqueras166, M.G. Alviggi104a;104b, B.T. Amadio15, K. Amako67, Y. Amaral Coutinho25a, C. Amelung24, D. Amidei90, S.P. Amor Dos Santos126a;126c, A. Amorim126a;126b, S. Amoroso31, N. Amram153, G. Amundsen24, C. Anastopoulos139, L.S. Ancu50, N. Andari108, T. Andeen32, C.F. Anders59b, G. Anders31, J.K. Anders75, K.J. Anderson32, A. Andreazza92a;92b, V. Andrei59a, S. Angelidakis9, I. Angelozzi107, P. Anger45, A. Angerami36, F. Anghinol 31, A.V. Anisenkov109;c, N. Anjos12, A. Annovi124a;124b, M. Antonelli48, A. Antonov98, J. Antos144b, F. Anulli132a, M. Aoki67, L. Aperio Bella18, G. Arabidze91, Y. Arai67, J.P. Araque126a, A.T.H. Arce46, F.A. Arduh72, J-F. Arguin95, S. Argyropoulos64, M. Arik19a, A.J. Armbruster31, L.J. Armitage77, O. Arnaez31, H. Arnold49, M. Arratia29, O. Arslan22, A. Artamonov97, G. Artoni120, S. Artz84, S. Asai155, N. Asbah43, A. Ashkenazi153, B. Asman146a;146b, L. Asquith149, K. Assamagan26, R. Astalos144a, M. Atkinson165, N.B. Atlay141, K. Augsten128, G. Avolio31, B. Axen15, M.K. Ayoub117, G. Azuelos95;d, M.A. Baak31, A.E. Baas59a, M.J. Baca18, H. Bachacou136, K. Bachas74a;74b, M. Backes31, M. Backhaus31, P. Bagiacchi132a;132b, P. Bagnaia132a;132b, Y. Bai34a, J.T. Baines131, O.K. Baker175, E.M. Baldin109;c, P. Balek129, T. Balestri148, F. Balli136, W.K. Balunas122, E. Banas40, Sw. Banerjee172;e, A.A.E. Bannoura174, L. Barak31, E.L. Barberio89, D. Barberis51a;51b, M. Barbero86, T. Barillari101, M. Barisonzi163a;163b, T. Barklow143, N. Barlow29, S.L. Barnes85, B.M. Barnett131, R.M. Barnett15, Z. Barnovska5, A. Baroncelli134a, G. Barone24, A.J. Barr120, L. Barranco Navarro166, F. Barreiro83, J. Barreiro Guimar~aes da Costa34a, R. Bartoldus143, A.E. Barton73, P. Bartos144a, A. Basalaev123, A. Bassalat117, A. Basye165, R.L. Bates54, S.J. Batista158, J.R. Batley29, M. Battaglia137, M. Bauce132a;132b, F. Bauer136, H.S. Bawa143;f, J.B. Beacham111, M.D. Beattie73, T. Beau81, P.H. Beauchemin161, P. Bechtle22, H.P. Beck17;g, K. Becker120, M. Becker84, M. Beckingham169, C. Becot110, A.J. Beddall19e, A. Beddall19b, V.A. Bednyakov66, M. Bedognetti107, C.P. Bee148, L.J. Beemster107, T.A. Beermann31, M. Begel26, J.K. Behr120, C. Belanger-Champagne88, A.S. Bell79, W.H. Bell50, G. Bella153, L. Bellagamba21a, A. Bellerive30, M. Bellomo87, K. Belotskiy98, O. Beltramello31, N.L. Belyaev98, O. Benary153, D. Benchekroun135a, M. Bender100, K. Bendtz146a;146b, N. Benekos10, Y. Benhammou153, E. Benhar Noccioli175, J. Benitez64, J.A. Benitez Garcia159b, D.P. Benjamin46, J.R. Bensinger24, S. Bentvelsen107, L. Beresford120, M. Beretta48, D. Berge107, E. Bergeaas Kuutmann164, N. Berger5, F. Berghaus168, J. Beringer15, S. Berlendis56, N.R. Bernard87, C. Bernius110, F.U. Bernlochner22, T. Berry78, P. Berta129, C. Bertella84, G. Bertoli146a;146b, F. Bertolucci124a;124b, I.A. Bertram73, C. Bertsche113, D. Bertsche113, G.J. Besjes37, O. Bessidskaia Bylund146a;146b, M. Bessner43, N. Besson136, C. Betancourt49, S. Bethke101, A.J. Bevan77, W. Bhimji15, R.M. Bianchi125, L. Bianchini24, M. Bianco31, O. Biebel100, D. Biedermann16, R. Bielski85, N.V. Biesuz124a;124b, M. Biglietti134a, J. Bilbao De Mendizabal50, H. Bilokon48, M. Bindi55, S. Binet117, A. Bingul19b, C. Bini132a;132b, S. Biondi21a;21b, D.M. Bjergaard46, C.W. Black150, J.E. Black143, K.M. Black23, HJEP08(216)4 C. Blocker24, W. Blum84; , U. Blumenschein55, S. Blunier33a, G.J. Bobbink107, V.S. Bobrovnikov109;c, S.S. Bocchetta82, A. Bocci46, C. Bock100, M. Boehler49, D. Boerner174, J.A. Bogaerts31, D. Bogavac13, A.G. Bogdanchikov109, C. Bohm146a, V. Boisvert78, T. Bold39a, V. Boldea27b, A.S. Boldyrev163a;163c, M. Bomben81, M. Bona77, M. Boonekamp136, A. Borisov130, G. Borissov73, J. Bortfeldt100, D. Bortoletto120, V. Bortolotto61a;61b;61c, K. Bos107, D. Boscherini21a, M. Bosman12, J.D. Bossio Sola28, J. Boudreau125, J. Bou ard2, E.V. Bouhova-Thacker73, D. Boumediene35, C. Bourdarios117, N. Bousson114, S.K. Boutle54, A. Boveia31, J. Boyd31, I.R. Boyko66, J. Bracinik18, A. Brandt8, G. Brandt55, O. Brandt59a, U. Bratzler156, B. Brau87, J.E. Brau116, H.M. Braun174; , W.D. Breaden Madden54, K. Brendlinger122, A.J. Brennan89, L. Brenner107, R. Brenner164, S. Bressler171, T.M. Bristow47, D. Britton54, D. Britzger43, F.M. Brochu29, I. Brock22, R. Brock91, G. Brooijmans36, T. Brooks78, W.K. Brooks33b, J. Brosamer15, E. Brost116, J.H Broughton18, P.A. Bruckman de Renstrom40, D. Bruncko144b, R. Bruneliere49, A. Bruni21a, G. Bruni21a, BH Brunt29, M. Bruschi21a, N. Bruscino22, P. Bryant32, L. Bryngemark82, T. Buanes14, Q. Buat142, P. Buchholz141, A.G. Buckley54, I.A. Budagov66, F. Buehrer49, M.K. Bugge119, O. Bulekov98, D. Bullock8, H. Burckhart31, S. Burdin75, C.D. Burgard49, B. Burghgrave108, K. Burka40, S. Burke131, I. Burmeister44, E. Busato35, D. Buscher49, V. Buscher84, P. Bussey54, J.M. Butler23, A.I. Butt3, C.M. Buttar54, J.M. Butterworth79, P. Butti107, W. Buttinger26, A. Buzatu54, A.R. Buzykaev109;c, S. Cabrera Urban166, D. Caforio128, V.M. Cairo38a;38b, O. Cakir4a, N. Calace50, P. Cala ura15, A. Calandri86, G. Calderini81, P. Calfayan100, L.P. Caloba25a, D. Calvet35, S. Calvet35, T.P. Calvet86, R. Camacho Toro32, S. Camarda31, P. Camarri133a;133b, D. Cameron119, R. Caminal Armadans165, C. Camincher56, S. Campana31, M. Campanelli79, A. Campoverde148, V. Canale104a;104b, A. Canepa159a, M. Cano Bret34e, J. Cantero83, R. Cantrill126a, T. Cao41, M.D.M. Capeans Garrido31, I. Caprini27b, M. Caprini27b, M. Capua38a;38b, R. Caputo84, R.M. Carbone36, R. Cardarelli133a, F. Cardillo49, T. Carli31, G. Carlino104a, L. Carminati92a;92b, S. Caron106, E. Carquin33a, G.D. Carrillo-Montoya31, J.R. Carter29, J. Carvalho126a;126c, D. Casadei79, M.P. Casado12;h, M. Casolino12, D.W. Casper162, E. Castaneda-Miranda145a, A. Castelli107, V. Castillo Gimenez166, N.F. Castro126a;i, A. Catinaccio31, J.R. Catmore119, A. Cattai31, J. Caudron84, V. Cavaliere165, D. Cavalli92a, M. Cavalli-Sforza12, V. Cavasinni124a;124b, F. Ceradini134a;134b, L. Cerda Alberich166, B.C. Cerio46, A.S. Cerqueira25b, A. Cerri149, L. Cerrito77, F. Cerutti15, M. Cerv31, A. Cervelli17, S.A. Cetin19d, A. Chafaq135a, D. Chakraborty108, I. Chalupkova129, S.K. Chan58, Y.L. Chan61a, P. Chang165, J.D. Chapman29, D.G. Charlton18, A. Chatterjee50, C.C. Chau158, C.A. Chavez Barajas149, S. Che111, S. Cheatham73, A. Chegwidden91, S. Chekanov6, S.V. Chekulaev159a, G.A. Chelkov66;j, M.A. Chelstowska90, C. Chen65, H. Chen26, K. Chen148, S. Chen34c, S. Chen155, X. Chen34f, Y. Chen68, H.C. Cheng90, H.J Cheng34a, Y. Cheng32, A. Cheplakov66, E. Cheremushkina130, R. Cherkaoui El Moursli135e, V. Chernyatin26; , E. Cheu7, L. Chevalier136, V. Chiarella48, G. Chiarelli124a;124b, G. Chiodini74a, A.S. Chisholm18, A. Chitan27b, M.V. Chizhov66, K. Choi62, A.R. Chomont35, S. Chouridou9, B.K.B. Chow100, V. Christodoulou79, D. Chromek-Burckhart31, J. Chudoba127, A.J. Chuinard88, J.J. Chwastowski40, L. Chytka115, G. Ciapetti132a;132b, A.K. Ciftci4a, D. Cinca54, V. Cindro76, I.A. Cioara22, A. Ciocio15, F. Cirotto104a;104b, Z.H. Citron171, M. Ciubancan27b, A. Clark50, B.L. Clark58, P.J. Clark47, R.N. Clarke15, C. Clement146a;146b, Y. Coadou86, M. Cobal163a;163c, A. Coccaro50, J. Cochran65, L. Co ey24, L. Colasurdo106, B. Cole36, S. Cole108, A.P. Colijn107, J. Collot56, T. Colombo31, G. Compostella101, P. Conde Muin~o126a;126b, E. Coniavitis49, S.H. Connell145b, I.A. Connelly78, V. Consorti49, S. Constantinescu27b, C. Conta121a;121b, G. Conti31, F. Conventi104a;k, M. Cooke15, B.D. Cooper79, A.M. Cooper-Sarkar120, HJEP08(216)4 G. Cortiana101, G. Costa92a, M.J. Costa166, D. Costanzo139, G. Cottin29, G. Cowan78, B.E. Cox85, K. Cranmer110, S.J. Crawley54, G. Cree30, S. Crepe-Renaudin56, F. Crescioli81, W.A. Cribbs146a;146b, M. Crispin Ortuzar120, M. Cristinziani22, V. Croft106, G. Crosetti38a;38b, T. Cuhadar Donszelmann139, J. Cummings175, M. Curatolo48, J. Cuth84, C. Cuthbert150, H. Czirr141, P. Czodrowski3, S. D'Auria54, M. D'Onofrio75, M.J. Da Cunha Sargedas De Sousa126a;126b, C. Da Via85, W. Dabrowski39a, T. Dai90, O. Dale14, F. Dallaire95, C. Dallapiccola87, M. Dam37, J.R. Dandoy32, N.P. Dang49, A.C. Daniells18, N.S. Dann85, M. Danninger167, M. Dano Ho mann136, V. Dao49, G. Darbo51a, S. Darmora8, J. Dassoulas3, A. Dattagupta62, W. Davey22, C. David168, T. Davidek129, M. Davies153, P. Davison79, Y. Davygora59a, E. Dawe89, I. Dawson139, R.K. Daya-Ishmukhametova87, K. De8, R. de Asmundis104a, A. De Benedetti113, S. De Castro21a;21b, S. De Cecco81, N. De Groot106, P. de Jong107, H. De la Torre83, F. De Lorenzi65, D. De Pedis132a, A. De Salvo132a, U. De Sanctis149, A. De Santo149, J.B. De Vivie De Regie117, W.J. Dearnaley73, R. Debbe26, C. Debenedetti137, D.V. Dedovich66, I. Deigaard107, J. Del Peso83, T. Del Prete124a;124b, D. Delgove117, F. Deliot136, C.M. Delitzsch50, M. Deliyergiyev76, A. Dell'Acqua31, L. Dell'Asta23, M. Dell'Orso124a;124b, M. Della Pietra104a;k, D. della Volpe50, M. Delmastro5, P.A. Delsart56, C. Deluca107, D.A. DeMarco158, S. Demers175, M. Demichev66, A. Demilly81, S.P. Denisov130, D. Denysiuk136, D. Derendarz40, J.E. Derkaoui135d, F. Derue81, P. Dervan75, K. Desch22, C. Deterre43, K. Dette44, P.O. Deviveiros31, A. Dewhurst131, S. Dhaliwal24, A. Di Ciaccio133a;133b, L. Di Ciaccio5, W.K. Di Clemente122, A. Di Domenico132a;132b, C. Di Donato132a;132b, A. Di Girolamo31, B. Di Girolamo31, A. Di Mattia152, B. Di Micco134a;134b, R. Di Nardo48, A. Di Simone49, R. Di Sipio158, D. Di Valentino30, C. Diaconu86, M. Diamond158, F.A. Dias47, M.A. Diaz33a, E.B. Diehl90, J. Dietrich16, S. Diglio86, A. Dimitrievska13, J. Dingfelder22, P. Dita27b, S. Dita27b, F. Dittus31, F. Djama86, T. Djobava52b, J.I. Djuvsland59a, M.A.B. do Vale25c, D. Dobos31, M. Dobre27b, C. Doglioni82, T. Dohmae155, J. Dolejsi129, Z. Dolezal129, B.A. Dolgoshein98; , M. Donadelli25d, S. Donati124a;124b, P. Dondero121a;121b, J. Donini35, J. Dopke131, A. Doria104a, M.T. Dova72, A.T. Doyle54, E. Drechsler55, M. Dris10, Y. Du34d, J. Duarte-Campderros153, E. Duchovni171, G. Duckeck100, O.A. Ducu27b, D. Duda107, A. Dudarev31, L. Du ot117, L. Duguid78, M. Duhrssen31, M. Dunford59a, H. Duran Yildiz4a, M. Duren53, A. Durglishvili52b, D. Duschinger45, B. Dutta43, M. Dyndal39a, C. Eckardt43, K.M. Ecker101, R.C. Edgar90, W. Edson2, N.C. Edwards47, T. Eifert31, G. Eigen14, K. Einsweiler15, T. Ekelof164, M. El Kacimi135c, V. Ellajosyula86, M. Ellert164, S. Elles5, F. Ellinghaus174, A.A. Elliot168, N. Ellis31, J. Elmsheuser100, M. Elsing31, D. Emeliyanov131, Y. Enari155, O.C. Endner84, M. Endo118, J.S. Ennis169, J. Erdmann44, A. Ereditato17, G. Ernis174, J. Ernst2, M. Ernst26, S. Errede165, E. Ertel84, M. Escalier117, H. Esch44, C. Escobar125, B. Esposito48, A.I. Etienvre136, E. Etzion153, H. Evans62, A. Ezhilov123, F. Fabbri21a;21b, L. Fabbri21a;21b, G. Facini32, R.M. Fakhrutdinov130, S. Falciano132a, R.J. Falla79, J. Faltova129, Y. Fang34a, M. Fanti92a;92b, A. Farbin8, A. Farilla134a, C. Farina125, T. Farooque12, S. Farrell15, S.M. Farrington169, P. Farthouat31, F. Fassi135e, P. Fassnacht31, D. Fassouliotis9, M. Faucci Giannelli78, A. Favareto51a;51b, W.J. Fawcett120, L. Fayard117, O.L. Fedin123;m, W. Fedorko167, S. Feigl119, L. Feligioni86, C. Feng34d, E.J. Feng31, H. Feng90, A.B. Fenyuk130, L. Feremenga8, P. Fernandez Martinez166, S. Fernandez Perez12, J. Ferrando54, A. Ferrari164, P. Ferrari107, R. Ferrari121a, D.E. Ferreira de Lima54, A. Ferrer166, D. Ferrere50, C. Ferretti90, A. Ferretto Parodi51a;51b, F. Fiedler84, A. Filipcic76, M. Filipuzzi43, F. Filthaut106, M. Fincke-Keeler168, K.D. Finelli150, M.C.N. Fiolhais126a;126c, L. Fiorini166, A. Firan41, A. Fischer2, C. Fischer12, J. Fischer174, W.C. Fisher91, N. Flaschel43, I. Fleck141, P. Fleischmann90, G.T. Fletcher139, G. Fletcher77, R.R.M. Fletcher122, T. Flick174, A. Floderus82, HJEP08(216)4 A.G. Foster18, D. Fournier117, H. Fox73, S. Fracchia12, P. Francavilla81, M. Franchini21a;21b, D. Francis31, L. Franconi119, M. Franklin58, M. Frate162, M. Fraternali121a;121b, D. Freeborn79, S.M. Fressard-Batraneanu31, F. Friedrich45, D. Froidevaux31, J.A. Frost120, C. Fukunaga156, E. Fullana Torregrosa84, T. Fusayasu102, J. Fuster166, C. Gabaldon56, O. Gabizon174, A. Gabrielli21a;21b, A. Gabrielli15, G.P. Gach39a, S. Gadatsch31, S. Gadomski50, G. Gagliardi51a;51b, L.G. Gagnon95, P. Gagnon62, C. Galea106, B. Galhardo126a;126c, E.J. Gallas120, B.J. Gallop131, P. Gallus128, G. Galster37, K.K. Gan111, J. Gao34b;86, Y. Gao47, Y.S. Gao143;f, F.M. Garay Walls47, C. Garc a166, J.E. Garc a Navarro166, M. Garcia-Sciveres15, R.W. Gardner32, N. Garelli143, V. Garonne119, A. Gascon Bravo43, C. Gatti48, A. Gaudiello51a;51b, G. Gaudio121a, B. Gaur141, L. Gauthier95, I.L. Gavrilenko96, C. Gay167, G. Gaycken22, E.N. Gazis10, Z. Gecse167, C.N.P. Gee131, Ch. Geich-Gimbel22, M.P. Geisler59a, C. Gemme51a, M.H. Genest56, C. Geng34b;n, S. Gentile132a;132b, S. George78, D. Gerbaudo162, A. Gershon153, S. Ghasemi141, H. Ghazlane135b, B. Giacobbe21a, S. Giagu132a;132b, P. Giannetti124a;124b, B. Gibbard26, S.M. Gibson78, M. Gignac167, M. Gilchriese15, T.P.S. Gillam29, D. Gillberg30, G. Gilles174, D.M. Gingrich3;d, N. Giokaris9, M.P. Giordani163a;163c, F.M. Giorgi21a, F.M. Giorgi16, P.F. Giraud136, P. Giromini58, D. Giugni92a, C. Giuliani101, M. Giulini59b, B.K. Gjelsten119, S. Gkaitatzis154, I. Gkialas154, E.L. Gkougkousis117, L.K. Gladilin99, C. Glasman83, J. Glatzer31, P.C.F. Glaysher47, A. Glazov43, M. Goblirsch-Kolb101, J. Godlewski40, S. Goldfarb90, T. Golling50, D. Golubkov130, A. Gomes126a;126b;126d, R. Goncalo126a, J. Goncalves Pinto Firmino Da Costa136, L. Gonella18, A. Gongadze66, S. Gonzalez de la Hoz166, G. Gonzalez Parra12, S. Gonzalez-Sevilla50, L. Goossens31, P.A. Gorbounov97, H.A. Gordon26, I. Gorelov105, B. Gorini31, E. Gorini74a;74b, A. Gorisek76, E. Gornicki40, A.T. Goshaw46, C. Gossling44, M.I. Gostkin66, C.R. Goudet117, D. Goujdami135c, A.G. Goussiou138, N. Govender145b, E. Gozani152, L. Graber55, I. Grabowska-Bold39a, P.O.J. Gradin164, P. Grafstrom21a;21b, J. Gramling50, E. Gramstad119, S. Grancagnolo16, V. Gratchev123, H.M. Gray31, E. Graziani134a, Z.D. Greenwood80;o, C. Grefe22, K. Gregersen79, I.M. Gregor43, P. Grenier143, K. Grevtsov5, J. Gri ths8, A.A. Grillo137, K. Grimm73, S. Grinstein12;p, Ph. Gris35, J.-F. Grivaz117, S. Groh84, J.P. Grohs45, E. Gross171, J. Grosse-Knetter55, G.C. Grossi80, Z.J. Grout149, L. Guan90, W. Guan172, J. Guenther128, F. Guescini50, D. Guest162, O. Gueta153, E. Guido51a;51b, T. Guillemin5, S. Guindon2, U. Gul54, C. Gumpert31, J. Guo34e, Y. Guo34b;n, S. Gupta120, G. Gustavino132a;132b, P. Gutierrez113, N.G. Gutierrez Ortiz79, C. Gutschow45, C. Guyot136, C. Gwenlan120, C.B. Gwilliam75, A. Haas110, C. Haber15, H.K. Hadavand8, N. Haddad135e, A. Hadef86, P. Haefner22, S. Hagebock22, Z. Hajduk40, H. Hakobyan176; , M. Haleem43, J. Haley114, D. Hall120, G. Halladjian91, G.D. Hallewell86, K. Hamacher174, P. Hamal115, K. Hamano168, A. Hamilton145a, G.N. Hamity139, P.G. Hamnett43, L. Han34b, K. Hanagaki67;q, K. Hanawa155, M. Hance137, B. Haney122, P. Hanke59a, R. Hanna136, J.B. Hansen37, J.D. Hansen37, M.C. Hansen22, P.H. Hansen37, K. Hara160, A.S. Hard172, T. Harenberg174, F. Hariri117, S. Harkusha93, R.D. Harrington47, P.F. Harrison169, F. Hartjes107, M. Hasegawa68, Y. Hasegawa140, A. Hasib113, S. Hassani136, S. Haug17, R. Hauser91, L. Hauswald45, M. Havranek127, C.M. Hawkes18, R.J. Hawkings31, A.D. Hawkins82, D. Hayden91, C.P. Hays120, J.M. Hays77, H.S. Hayward75, S.J. Haywood131, S.J. Head18, T. Heck84, V. Hedberg82, L. Heelan8, S. Heim122, T. Heim15, B. Heinemann15, J.J. Heinrich100, L. Heinrich110, C. Heinz53, J. Hejbal127, L. Helary23, S. Hellman146a;146b, C. Helsens31, J. Henderson120, R.C.W. Henderson73, Y. Heng172, S. Henkelmann167, A.M. Henriques Correia31, S. Henrot-Versille117, G.H. Herbert16, Y. Hernandez Jimenez166, G. Herten49, R. Hertenberger100, L. Hervas31, G.G. Hesketh79, N.P. Hessey107, J.W. Hetherly41, R. Hickling77, E. Higon-Rodriguez166, E. Hill168, J.C. Hill29, HJEP08(216)4 D. Hirschbuehl174, J. Hobbs148, N. Hod107, M.C. Hodgkinson139, P. Hodgson139, A. Hoecker31, M.R. Hoeferkamp105, F. Hoenig100, M. Hohlfeld84, D. Hohn22, T.R. Holmes15, M. Homann44, T.M. Hong125, B.H. Hooberman165, W.H. Hopkins116, Y. Horii103, A.J. Horton142, J-Y. Hostachy56, S. Hou151, A. Hoummada135a, J. Howard120, J. Howarth43, M. Hrabovsky115, I. Hristova16, J. Hrivnac117, T. Hryn'ova5, A. Hrynevich94, C. Hsu145c, P.J. Hsu151;r, S.-C. Hsu138, D. Hu36, Q. Hu34b, Y. Huang43, Z. Hubacek128, F. Hubaut86, F. Huegging22, T.B. Hu man120, E.W. Hughes36, G. Hughes73, M. Huhtinen31, T.A. Hulsing84, N. Huseynov66;b, J. Huston91, J. Huth58, G. Iacobucci50, G. Iakovidis26, I. Ibragimov141, L. Iconomidou-Fayard117, E. Ideal175, Z. Idrissi135e, P. Iengo31, O. Igonkina107, T. Iizawa170, Y. Ikegami67, M. Ikeno67, Y. Ilchenko32;s, D. Iliadis154, N. Ilic143, T. Ince101, G. Introzzi121a;121b, P. Ioannou9; , M. Iodice134a, K. Iordanidou36, V. Ippolito58, A. Irles Quiles166, C. Isaksson164, M. Ishino69, M. Ishitsuka157, R. Ishmukhametov111, C. Issever120, S. Istin19a, F. Ito160, J.M. Iturbe Ponce85, R. Iuppa133a;133b, J. Ivarsson82, W. Iwanski40, H. Iwasaki67, J.M. Izen42, V. Izzo104a, S. Jabbar3, B. Jackson122, M. Jackson75, P. Jackson1, V. Jain2, K.B. Jakobi84, K. Jakobs49, S. Jakobsen31, T. Jakoubek127, D.O. Jamin114, D.K. Jana80, E. Jansen79, R. Jansky63, J. Janssen22, M. Janus55, G. Jarlskog82, N. Javadov66;b, T. Javurek49, F. Jeanneau136, L. Jeanty15, J. Jejelava52a;t, G.-Y. Jeng150, D. Jennens89, P. Jenni49;u, J. Jentzsch44, C. Jeske169, S. Jezequel5, H. Ji172, J. Jia148, H. Jiang65, Y. Jiang34b, S. Jiggins79, J. Jimenez Pena166, S. Jin34a, A. Jinaru27b, O. Jinnouchi157, P. Johansson139, K.A. Johns7, W.J. Johnson138, K. Jon-And146a;146b, G. Jones169, R.W.L. Jones73, S. Jones7, T.J. Jones75, J. Jongmanns59a, P.M. Jorge126a;126b, J. Jovicevic159a, X. Ju172, A. Juste Rozas12;p, M.K. Kohler171, A. Kaczmarska40, M. Kado117, H. Kagan111, M. Kagan143, S.J. Kahn86, E. Kajomovitz46, C.W. Kalderon120, A. Kaluza84, S. Kama41, A. Kamenshchikov130, N. Kanaya155, S. Kaneti29, V.A. Kantserov98, J. Kanzaki67, B. Kaplan110, L.S. Kaplan172, A. Kapliy32, D. Kar145c, K. Karakostas10, A. Karamaoun3, N. Karastathis10, M.J. Kareem55, E. Karentzos10, M. Karnevskiy84, S.N. Karpov66, Z.M. Karpova66, K. Karthik110, V. Kartvelishvili73, A.N. Karyukhin130, K. Kasahara160, L. Kashif172, R.D. Kass111, A. Kastanas14, Y. Kataoka155, C. Kato155, A. Katre50, J. Katzy43, K. Kawade103, K. Kawagoe71, T. Kawamoto155, G. Kawamura55, S. Kazama155, V.F. Kazanin109;c, R. Keeler168, R. Kehoe41, J.S. Keller43, J.J. Kempster78, H. Keoshkerian85, O. Kepka127, B.P. Kersevan76, S. Kersten174, R.A. Keyes88, F. Khalil-zada11, H. Khandanyan146a;146b, A. Khanov114, A.G. Kharlamov109;c, T.J. Khoo29, V. Khovanskiy97, E. Khramov66, J. Khubua52b;v, S. Kido68, H.Y. Kim8, S.H. Kim160, Y.K. Kim32, N. Kimura154, O.M. Kind16, B.T. King75, M. King166, S.B. King167, J. Kirk131, A.E. Kiryunin101, T. Kishimoto68, D. Kisielewska39a, F. Kiss49, K. Kiuchi160, O. Kivernyk136, E. Kladiva144b, M.H. Klein36, M. Klein75, U. Klein75, K. Kleinknecht84, P. Klimek146a;146b, A. Klimentov26, R. Klingenberg44, J.A. Klinger139, T. Klioutchnikova31, E.-E. Kluge59a, P. Kluit107, S. Kluth101, J. Knapik40, E. Kneringer63, E.B.F.G. Knoops86, A. Knue54, A. Kobayashi155, D. Kobayashi157, T. Kobayashi155, M. Kobel45, M. Kocian143, P. Kodys129, T. Ko as30, E. Ko eman107, L.A. Kogan120, T. Kohriki67, T. Koi143, H. Kolanoski16, M. Kolb59b, I. Koletsou5, A.A. Komar96; , Y. Komori155, T. Kondo67, N. Kondrashova43, K. Koneke49, A.C. Konig106, T. Kono67;w, R. Konoplich110;x, N. Konstantinidis79, R. Kopeliansky62, S. Koperny39a, L. Kopke84, A.K. Kopp49, K. Korcyl40, K. Kordas154, A. Korn79, A.A. Korol109;c, I. Korolkov12, E.V. Korolkova139, O. Kortner101, S. Kortner101, T. Kosek129, V.V. Kostyukhin22, V.M. Kotov66, A. Kotwal46, A. Kourkoumeli-Charalampidi154, C. Kourkoumelis9, V. Kouskoura26, A. Koutsman159a, A.B. Kowalewska40, R. Kowalewski168, T.Z. Kowalski39a, W. Kozanecki136, A.S. Kozhin130, V.A. Kramarenko99, G. Kramberger76, D. Krasnopevtsev98, A. Krasznahorkay31, J.K. Kraus22, A. Kravchenko26, M. Kretz59c, J. Kretzschmar75, K. Kreutzfeldt53, P. Krieger158, K. Krizka32, K. Kroeninger44, H. Kroha101, HJEP08(216)4 A. Kruse172, M.C. Kruse46, M. Kruskal23, T. Kubota89, H. Kucuk79, S. Kuday4b, T. Lazovich58, M. Lazzaroni92a;92b, O. Le Dortz81, E. Le Guirriec86, E. Le Menedeu12, E.P. Le Quilleuc136, M. LeBlanc168, T. LeCompte6, F. Ledroit-Guillon56, C.A. Lee26, S.C. Lee151, L. Lee1, G. Lefebvre81, M. Lefebvre168, F. Legger100, C. Leggett15, A. Lehan75, G. Lehmann Miotto31, X. Lei7, W.A. Leight30, A. Leisos154;y, A.G. Leister175, M.A.L. Leite25d, R. Leitner129, D. Lellouch171, B. Lemmer55, K.J.C. Leney79, T. Lenz22, B. Lenzi31, R. Leone7, S. Leone124a;124b, C. Leonidopoulos47, S. Leontsinis10, G. Lerner149, C. Leroy95, A.A.J. Lesage136, C.G. Lester29, M. Levchenko123, J. Lev^eque5, D. Levin90, L.J. Levinson171, M. Levy18, A.M. Leyko22, M. Leyton42, B. Li34b;z, H. Li148, H.L. Li32, L. Li46, L. Li34e, Q. Li34a, S. Li46, X. Li85, Y. Li141, Z. Liang137, H. Liao35, B. Liberti133a, A. Liblong158, P. Lichard31, K. Lie165, J. Liebal22, W. Liebig14, C. Limbach22, A. Limosani150, S.C. Lin151;aa, T.H. Lin84, B.E. Lindquist148, E. Lipeles122, A. Lipniacka14, M. Lisovyi59b, T.M. Liss165, D. Lissauer26, A. Lister167, A.M. Litke137, B. Liu151;ab, D. Liu151, H. Liu90, H. Liu26, J. Liu86, J.B. Liu34b, K. Liu86, L. Liu165, M. Liu46, M. Liu34b, Y.L. Liu34b, Y. Liu34b, M. Livan121a;121b, A. Lleres56, J. Llorente Merino83, S.L. Lloyd77, F. Lo Sterzo151, E. Lobodzinska43, P. Loch7, W.S. Lockman137, F.K. Loebinger85, A.E. Loevschall-Jensen37, K.M. Loew24, A. Loginov175, T. Lohse16, K. Lohwasser43, M. Lokajicek127, B.A. Long23, J.D. Long165, R.E. Long73, L. Longo74a;74b, K.A. Looper111, L. Lopes126a, D. Lopez Mateos58, B. Lopez Paredes139, I. Lopez Paz12, A. Lopez Solis81, J. Lorenz100, N. Lorenzo Martinez62, M. Losada20, P.J. Losel100, X. Lou34a, A. Lounis117, J. Love6, P.A. Love73, H. Lu61a, N. Lu90, H.J. Lubatti138, C. Luci132a;132b, A. Lucotte56, C. Luedtke49, F. Luehring62, W. Lukas63, L. Luminari132a, O. Lundberg146a;146b, B. Lund-Jensen147, D. Lynn26, R. Lysak127, E. Lytken82, V. Lyubushkin66, H. Ma26, L.L. Ma34d, G. Maccarrone48, A. Macchiolo101, C.M. Macdonald139, B. Macek76, J. Machado Miguens122;126b, D. Mada ari86, R. Madar35, H.J. Maddocks164, W.F. Mader45, A. Madsen43, J. Maeda68, S. Maeland14, T. Maeno26, A. Maevskiy99, E. Magradze55, J. Mahlstedt107, C. Maiani117, C. Maidantchik25a, A.A. Maier101, T. Maier100, A. Maio126a;126b;126d, S. Majewski116, Y. Makida67, N. Makovec117, B. Malaescu81, Pa. Malecki40, V.P. Maleev123, F. Malek56, U. Mallik64, D. Malon6, C. Malone143, S. Maltezos10, V.M. Malyshev109, S. Malyukov31, J. Mamuzic43, G. Mancini48, B. Mandelli31, L. Mandelli92a, I. Mandic76, J. Maneira126a;126b, L. Manhaes de Andrade Filho25b, J. Manjarres Ramos159b, A. Mann100, B. Mansoulie136, R. Mantifel88, M. Mantoani55, S. Manzoni92a;92b, L. Mapelli31, G. Marceca28, L. March50, G. Marchiori81, M. Marcisovsky127, M. Marjanovic13, D.E. Marley90, F. Marroquim25a, S.P. Marsden85, Z. Marshall15, L.F. Marti17, S. Marti-Garcia166, B. Martin91, T.A. Martin169, V.J. Martin47, B. Martin dit Latour14, M. Martinez12;p, S. Martin-Haugh131, V.S. Martoiu27b, A.C. Martyniuk79, M. Marx138, F. Marzano132a, A. Marzin31, L. Masetti84, T. Mashimo155, R. Mashinistov96, J. Masik85, A.L. Maslennikov109;c, I. Massa21a;21b, L. Massa21a;21b, P. Mastrandrea5, A. Mastroberardino38a;38b, T. Masubuchi155, P. Mattig174, J. Mattmann84, J. Maurer27b, S.J. Max eld75, D.A. Maximov109;c, R. Mazini151, HJEP08(216)4 R.L. McCarthy148, T.G. McCarthy30, L.I. McClymont79, K.W. McFarlane57; , J.A. Mcfayden79, G. Mchedlidze55, S.J. McMahon131, R.A. McPherson168;l, M. Medinnis43, S. Meehan138, S. Mehlhase100, A. Mehta75, K. Meier59a, C. Meineck100, B. Meirose42, B.R. Mellado Garcia145c, F. Meloni17, A. Mengarelli21a;21b, S. Menke101, E. Meoni161, K.M. Mercurio58, S. Mergelmeyer16, P. Mermod50, L. Merola104a;104b, C. Meroni92a, F.S. Merritt32, A. Messina132a;132b, J. Metcalfe6, A.S. Mete162, C. Meyer84, C. Meyer122, J-P. Meyer136, J. Meyer107, H. Meyer Zu Theenhausen59a, R.P. Middleton131, S. Miglioranzi163a;163c, L. Mijovic22, G. Mikenberg171, M. Mikestikova127, M. Mikuz76, M. Milesi89, A. Milic31, D.W. Miller32, C. Mills47, A. Milov171, D.A. Milstead146a;146b, A.A. Minaenko130, Y. Minami155, I.A. Minashvili66, A.I. Mincer110, B. Mindur39a, M. Mineev66, Y. Ming172, L.M. Mir12, K.P. Mistry122, T. Mitani170, J. Mitrevski100, V.A. Mitsou166, A. Miucci50, P.S. Miyagawa139, J.U. Mjornmark82, T. Moa146a;146b, K. Mochizuki86, S. Mohapatra36, W. Mohr49, S. Molander146a;146b, R. Moles-Valls22, R. Monden69, M.C. Mondragon91, K. Monig43, J. Monk37, E. Monnier86, A. Montalbano148, J. Montejo Berlingen31, F. Monticelli72, S. Monzani92a;92b, R.W. Moore3, N. Morange117, D. Moreno20, M. Moreno Llacer55, P. Morettini51a, D. Mori142, T. Mori155, M. Morii58, M. Morinaga155, V. Morisbak119, S. Moritz84, A.K. Morley150, G. Mornacchi31, J.D. Morris77, S.S. Mortensen37, L. Morvaj148, M. Mosidze52b, J. Moss143, K. Motohashi157, R. Mount143, E. Mountricha26, S.V. Mouraviev96; , E.J.W. Moyse87, S. Muanza86, R.D. Mudd18, F. Mueller101, J. Mueller125, R.S.P. Mueller100, T. Mueller29, D. Muenstermann73, P. Mullen54, G.A. Mullier17, F.J. Munoz Sanchez85, J.A. Murillo Quijada18, W.J. Murray169;131, H. Musheghyan55, A.G. Myagkov130;ac, M. Myska128, B.P. Nachman143, O. Nackenhorst50, J. Nadal55, K. Nagai120, R. Nagai67;w, Y. Nagai86, K. Nagano67, Y. Nagasaka60, K. Nagata160, M. Nagel101, E. Nagy86, A.M. Nairz31, Y. Nakahama31, K. Nakamura67, T. Nakamura155, I. Nakano112, H. Namasivayam42, R.F. Naranjo Garcia43, R. Narayan32, D.I. Narrias Villar59a, I. Naryshkin123, T. Naumann43, G. Navarro20, R. Nayyar7, H.A. Neal90, P.Yu. Nechaeva96, T.J. Neep85, P.D. Nef143, A. Negri121a;121b, M. Negrini21a, S. Nektarijevic106, C. Nellist117, A. Nelson162, S. Nemecek127, P. Nemethy110, A.A. Nepomuceno25a, M. Nessi31;ad, M.S. Neubauer165, M. Neumann174, R.M. Neves110, P. Nevski26, P.R. Newman18, D.H. Nguyen6, R.B. Nickerson120, R. Nicolaidou136, B. Nicquevert31, J. Nielsen137, A. Nikiforov16, V. Nikolaenko130;ac, I. Nikolic-Audit81, K. Nikolopoulos18, J.K. Nilsen119, P. Nilsson26, Y. Ninomiya155, A. Nisati132a, R. Nisius101, T. Nobe155, L. Nodulman6, M. Nomachi118, I. Nomidis30, T. Nooney77, S. Norberg113, M. Nordberg31, N. Norjoharuddeen120, O. Novgorodova45, S. Nowak101, M. Nozaki67, L. Nozka115, K. Ntekas10, E. Nurse79, F. Nuti89, F. O'grady7, D.C. O'Neil142, A.A. O'Rourke43, V. O'Shea54, F.G. Oakham30;d, H. Oberlack101, T. Obermann22, J. Ocariz81, A. Ochi68, I. Ochoa36, J.P. Ochoa-Ricoux33a, S. Oda71, S. Odaka67, H. Ogren62, A. Oh85, S.H. Oh46, C.C. Ohm15, H. Ohman164, H. Oide31, H. Okawa160, Y. Okumura32, T. Okuyama67, A. Olariu27b, L.F. Oleiro Seabra126a, S.A. Olivares Pino47, D. Oliveira Damazio26, A. Olszewski40, J. Olszowska40, A. Onofre126a;126e, K. Onogi103, P.U.E. Onyisi32;s, C.J. Oram159a, M.J. Oreglia32, Y. Oren153, D. Orestano134a;134b, N. Orlando61b, R.S. Orr158, B. Osculati51a;51b, R. Ospanov85, G. Otero y Garzon28, H. Otono71, M. Ouchrif135d, F. Ould-Saada119, A. Ouraou136, K.P. Oussoren107, Q. Ouyang34a, A. Ovcharova15, M. Owen54, R.E. Owen18, V.E. Ozcan19a, N. Ozturk8, K. Pachal142, A. Pacheco Pages12, C. Padilla Aranda12, M. Pagacova49, S. Pagan Griso15, F. Paige26, P. Pais87, K. Pajchel119, G. Palacino159b, S. Palestini31, M. Palka39b, D. Pallin35, A. Palma126a;126b, E.St. Panagiotopoulou10, C.E. Pandini81, J.G. Panduro Vazquez78, P. Pani146a;146b, S. Panitkin26, D. Pantea27b, L. Paolozzi50, Th.D. Papadopoulou10, K. Papageorgiou154, A. Paramonov6, D. Paredes Hernandez175, M.A. Parker29, K.A. Parker139, F. Parodi51a;51b, J.A. Parsons36, HJEP08(216)4 Fr. Pastore78, G. Pasztor30, S. Pataraia174, N.D. Patel150, J.R. Pater85, T. Pauly31, J. Pearce168, B. Pearson113, L.E. Pedersen37, M. Pedersen119, S. Pedraza Lopez166, R. Pedro126a;126b, S.V. Peleganchuk109;c, D. Pelikan164, O. Penc127, C. Peng34a, H. Peng34b, J. Penwell62, B.S. Peralva25b, M.M. Perego136, D.V. Perepelitsa26, E. Perez Codina159a, L. Perini92a;92b, H. Pernegger31, S. Perrella104a;104b, R. Peschke43, V.D. Peshekhonov66, K. Peters31, R.F.Y. Peters85, B.A. Petersen31, T.C. Petersen37, E. Petit56, A. Petridis1, C. Petridou154, P. Petro 117, E. Petrolo132a, M. Petrov120, F. Petrucci134a;134b, N.E. Pettersson157, A. Peyaud136, R. Pezoa33b, P.W. Phillips131, G. Piacquadio143, E. Pianori169, A. Picazio87, E. Piccaro77, M. Piccinini21a;21b, M.A. Pickering120, R. Piegaia28, J.E. Pilcher32, A.D. Pilkington85, A.W.J. Pin85, J. Pina126a;126b;126d, M. Pinamonti163a;163c;ae, J.L. Pinfold3, A. Pingel37, S. Pires81, H. Pirumov43, M. Pitt171, L. Plazak144a, M.-A. Pleier26, V. Pleskot84, E. Plotnikova66, P. Plucinski146a;146b, D. Pluth65, R. Poettgen146a;146b, L. Poggioli117, D. Pohl22, G. Polesello121a, A. Poley43, A. Policicchio38a;38b, R. Polifka158, A. Polini21a, C.S. Pollard54, V. Polychronakos26, K. Pommes31, L. Pontecorvo132a, B.G. Pope91, G.A. Popeneciu27c, D.S. Popovic13, A. Poppleton31, S. Pospisil128, K. Potamianos15, I.N. Potrap66, C.J. Potter29, C.T. Potter116, G. Poulard31, J. Poveda31, V. Pozdnyakov66, M.E. Pozo Astigarraga31, P. Pralavorio86, A. Pranko15, S. Prell65, D. Price85, L.E. Price6, M. Primavera74a, S. Prince88, M. Proissl47, K. Proko ev61c, F. Prokoshin33b, S. Protopopescu26, J. Proudfoot6, M. Przybycien39a, D. Puddu134a;134b, D. Puldon148, M. Purohit26;af, P. Puzo117, J. Qian90, G. Qin54, Y. Qin85, A. Quadt55, W.B. Quayle163a;163b, M. Queitsch-Maitland85, D. Quilty54, S. Raddum119, V. Radeka26, V. Radescu59b, S.K. Radhakrishnan148, P. Radlo 116, P. Rados89, F. Ragusa92a;92b, G. Rahal177, S. Rajagopalan26, M. Rammensee31, C. Rangel-Smith164, M.G. Ratti92a;92b, F. Rauscher100, S. Rave84, T. Ravenscroft54, M. Raymond31, A.L. Read119, N.P. Readio 75, D.M. Rebuzzi121a;121b, A. Redelbach173, G. Redlinger26, R. Reece137, K. Reeves42, L. Rehnisch16, J. Reichert122, H. Reisin28, C. Rembser31, H. Ren34a, M. Rescigno132a, S. Resconi92a, O.L. Rezanova109;c, P. Reznicek129, R. Rezvani95, R. Richter101, S. Richter79, E. Richter-Was39b, O. Ricken22, M. Ridel81, P. Rieck16, C.J. Riegel174, J. Rieger55, O. Rifki113, M. Rijssenbeek148, A. Rimoldi121a;121b, L. Rinaldi21a, B. Ristic50, E. Ritsch31, I. Riu12, F. Rizatdinova114, E. Rizvi77, C. Rizzi12, S.H. Robertson88;l, A. Robichaud-Veronneau88, D. Robinson29, J.E.M. Robinson43, A. Robson54, C. Roda124a;124b, Y. Rodina86, A. Rodriguez Perez12, D. Rodriguez Rodriguez166, S. Roe31, C.S. Rogan58, O. R hne119, A. Romaniouk98, M. Romano21a;21b, S.M. Romano Saez35, E. Romero Adam166, N. Rompotis138, M. Ronzani49, L. Roos81, E. Ros166, S. Rosati132a, K. Rosbach49, P. Rose137, O. Rosenthal141, V. Rossetti146a;146b, E. Rossi104a;104b, L.P. Rossi51a, J.H.N. Rosten29, R. Rosten138, M. Rotaru27b, I. Roth171, J. Rothberg138, D. Rousseau117, C.R. Royon136, A. Rozanov86, Y. Rozen152, X. Ruan145c, F. Rubbo143, I. Rubinskiy43, V.I. Rud99, M.S. Rudolph158, F. Ruhr49, A. Ruiz-Martinez31, Z. Rurikova49, N.A. Rusakovich66, A. Ruschke100, H.L. Russell138, J.P. Rutherfoord7, N. Ruthmann31, Y.F. Ryabov123, M. Rybar165, G. Rybkin117, S. Ryu6, A. Ryzhov130, A.F. Saavedra150, G. Sabato107, S. Sacerdoti28, H.F-W. Sadrozinski137, R. Sadykov66, F. Safai Tehrani132a, P. Saha108, M. Sahinsoy59a, M. Saimpert136, T. Saito155, H. Sakamoto155, Y. Sakurai170, G. Salamanna134a;134b, A. Salamon133a;133b, J.E. Salazar Loyola33b, D. Salek107, P.H. Sales De Bruin138, D. Salihagic101, A. Salnikov143, J. Salt166, D. Salvatore38a;38b, F. Salvatore149, A. Salvucci61a, A. Salzburger31, D. Sammel49, D. Sampsonidis154, A. Sanchez104a;104b, J. Sanchez166, V. Sanchez Martinez166, H. Sandaker119, R.L. Sandbach77, H.G. Sander84, M.P. Sanders100, M. Sandho 174, C. Sandoval20, R. Sandstroem101, D.P.C. Sankey131, M. Sannino51a;51b, A. Sansoni48, C. Santoni35, R. Santonico133a;133b, H. Santos126a, I. Santoyo Castillo149, K. Sapp125, A. Sapronov66, J.G. Saraiva126a;126d, B. Sarrazin22, O. Sasaki67, Y. Sasaki155, K. Sato160, G. Sauvage5; , E. Sauvan5, G. Savage78, P. Savard158;d, C. Sawyer131, L. Sawyer80;o, J. Saxon32, C. Sbarra21a, A. Sbrizzi21a;21b, T. Scanlon79, D.A. Scannicchio162, M. Scarcella150, V. Scarfone38a;38b, J. Schaarschmidt171, P. Schacht101, D. Schaefer31, R. Schaefer43, J. Schae er84, S. Schaepe22, S. Schaetzel59b, U. Schafer84, A.C. Scha er117, D. Schaile100, R.D. Schamberger148, V. Scharf59a, V.A. Schegelsky123, D. Scheirich129, M. Schernau162, C. Schiavi51a;51b, C. Schillo49, M. Schioppa38a;38b, S. Schlenker31, K. Schmieden31, C. Schmitt84, S. Schmitt43, S. Schmitz84, B. Schneider159a, Y.J. Schnellbach75, U. Schnoor49, L. Schoe el136, A. Schoening59b, B.D. Schoenrock91, E. Schopf22, A.L.S. Schorlemmer44, M. Schott84, D. Schouten159a, J. Schovancova8, S. Schramm50, M. Schreyer173, N. Schuh84, M.J. Schultens22, H.-C. Schultz-Coulon59a, H. Schulz16, M. Schumacher49, B.A. Schumm137, Ph. Schune136, C. Schwanenberger85, A. Schwartzman143, T.A. Schwarz90, Ph. Schwegler101, H. Schweiger85, Ph. Schwemling136, R. Schwienhorst91, J. Schwindling136, T. Schwindt22, G. Sciolla24, F. Scuri124a;124b, F. Scutti89, J. Searcy90, P. Seema22, S.C. Seidel105, A. Seiden137, F. Seifert128, J.M. Seixas25a, G. Sekhniaidze104a, K. Sekhon90, S.J. Sekula41, D.M. Seliverstov123; , N. Semprini-Cesari21a;21b, C. Serfon119, L. Serin117, L. Serkin163a;163b, M. Sessa134a;134b, R. Seuster159a, H. Severini113, T. S ligoj76, F. Sforza31, A. Sfyrla50, E. Shabalina55, N.W. Shaikh146a;146b, L.Y. Shan34a, R. Shang165, J.T. Shank23, M. Shapiro15, P.B. Shatalov97, K. Shaw163a;163b, S.M. Shaw85, A. Shcherbakova146a;146b, C.Y. Shehu149, P. Sherwood79, L. Shi151;ag, S. Shimizu68, C.O. Shimmin162, M. Shimojima102, M. Shiyakova66;ah, A. Shmeleva96, D. Shoaleh Saadi95, M.J. Shochet32, S. Shojaii92a;92b, S. Shrestha111, E. Shulga98, M.A. Shupe7, P. Sicho127, P.E. Sidebo147, O. Sidiropoulou173, D. Sidorov114, A. Sidoti21a;21b, F. Siegert45, Dj. Sijacki13, J. Silva126a;126d, S.B. Silverstein146a, V. Simak128, O. Simard5, Lj. Simic13, S. Simion117, E. Simioni84, B. Simmons79, D. Simon35, M. Simon84, P. Sinervo158, N.B. Sinev116, M. Sioli21a;21b, G. Siragusa173, S.Yu. Sivoklokov99, J. Sjolin146a;146b, T.B. Sjursen14, M.B. Skinner73, H.P. Skottowe58, P. Skubic113, M. Slater18, T. Slavicek128, M. Slawinska107, K. Sliwa161, R. Slovak129, V. Smakhtin171, B.H. Smart5, L. Smestad14, S.Yu. Smirnov98, Y. Smirnov98, L.N. Smirnova99;ai, O. Smirnova82, M.N.K. Smith36, R.W. Smith36, M. Smizanska73, K. Smolek128, A.A. Snesarev96, G. Snidero77, S. Snyder26, R. Sobie168;l, F. Socher45, A. So er153, D.A. Soh151;ag, G. Sokhrannyi76, C.A. Solans Sanchez31, M. Solar128, E.Yu. Soldatov98, U. Soldevila166, A.A. Solodkov130, A. Soloshenko66, O.V. Solovyanov130, V. Solovyev123, P. Sommer49, H. Son161, H.Y. Song34b;z, A. Sood15, A. Sopczak128, V. Sopko128, V. Sorin12, D. Sosa59b, C.L. Sotiropoulou124a;124b, R. Soualah163a;163c, A.M. Soukharev109;c, D. South43, B.C. Sowden78, S. Spagnolo74a;74b, M. Spalla124a;124b, M. Spangenberg169, F. Spano78, D. Sperlich16, F. Spettel101, R. Spighi21a, G. Spigo31, L.A. Spiller89, M. Spousta129, R.D. St. Denis54; , A. Stabile92a, S. Staerz31, J. Stahlman122, R. Stamen59a, S. Stamm16, E. Stanecka40, R.W. Stanek6, C. Stanescu134a, M. Stanescu-Bellu43, M.M. Stanitzki43, S. Stapnes119, E.A. Starchenko130, G.H. Stark32, J. Stark56, P. Staroba127, P. Starovoitov59a, R. Staszewski40, P. Steinberg26, B. Stelzer142, H.J. Stelzer31, O. Stelzer-Chilton159a, H. Stenzel53, G.A. Stewart54, J.A. Stillings22, M.C. Stockton88, M. Stoebe88, G. Stoicea27b, P. Stolte55, S. Stonjek101, A.R. Stradling8, A. Straessner45, M.E. Stramaglia17, J. Strandberg147, S. Strandberg146a;146b, A. Strandlie119, M. Strauss113, P. Strizenec144b, R. Strohmer173, D.M. Strom116, R. Stroynowski41, A. Strubig106, S.A. Stucci17, B. Stugu14, N.A. Styles43, D. Su143, J. Su125, R. Subramaniam80, S. Suchek59a, Y. Sugaya118, M. Suk128, V.V. Sulin96, S. Sultansoy4c, T. Sumida69, S. Sun58, X. Sun34a, J.E. Sundermann49, K. Suruliz149, G. Susinno38a;38b, M.R. Sutton149, S. Suzuki67, M. Svatos127, M. Swiatlowski32, I. Sykora144a, T. Sykora129, D. Ta49, C. Taccini134a;134b, K. Tackmann43, J. Taenzer158, A. Ta ard162, R. Ta rout159a, N. Taiblum153, H. Takai26, R. Takashima70, H. Takeda68, T. Takeshita140, Y. Takubo67, M. Talby86, A.A. Talyshev109;c, J.Y.C. Tam173, K.G. Tan89, J. Tanaka155, HJEP08(216)4 G.F. Tartarelli92a, P. Tas129, M. Tasevsky127, T. Tashiro69, E. Tassi38a;38b, A. Tavares Delgado126a;126b, Y. Tayalati135d, A.C. Taylor105, G.N. Taylor89, P.T.E. Taylor89, W. Taylor159b, F.A. Teischinger31, P. Teixeira-Dias78, K.K. Temming49, D. Temple142, H. Ten Kate31, P.K. Teng151, J.J. Teoh118, F. Tepel174, S. Terada67, K. Terashi155, J. Terron83, S. Terzo101, M. Testa48, R.J. Teuscher158;l, T. Theveneaux-Pelzer86, J.P. Thomas18, J. Thomas-Wilsker78, E.N. Thompson36, P.D. Thompson18, R.J. Thompson85, A.S. Thompson54, L.A. Thomsen175, E. Thomson122, M. Thomson29, M.J. Tibbetts15, R.E. Ticse Torres86, V.O. Tikhomirov96;aj, Yu.A. Tikhonov109;c, S. Timoshenko98, P. Tipton175, S. Tisserant86, K. Todome157, T. Todorov5; , S. Todorova-Nova129, J. Tojo71, S. Tokar144a, K. Tokushuku67, E. Tolley58, L. Tomlinson85, M. Tomoto103, L. Tompkins143;ak, K. Toms105, B. Tong58, E. Torrence116, H. Torres142, E. Torro Pastor138, J. Toth86;al, F. Touchard86, D.R. Tovey139, T. Trefzger173, L. Tremblet31, A. Tricoli31, I.M. Trigger159a, S. Trincaz-Duvoid81, M.F. Tripiana12, W. Trischuk158, B. Trocme56, A. Trofymov43, C. Troncon92a, M. Trottier-McDonald15, M. Trovatelli168, L. Truong163a;163b, M. Trzebinski40, A. Trzupek40, J.C-L. Tseng120, P.V. Tsiareshka93, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze12, V. Tsiskaridze49, E.G. Tskhadadze52a, K.M. Tsui61a, I.I. Tsukerman97, V. Tsulaia15, S. Tsuno67, D. Tsybychev148, A. Tudorache27b, V. Tudorache27b, A.N. Tuna58, S.A. Tupputi21a;21b, S. Turchikhin99;ai, D. Turecek128, D. Turgeman171, R. Turra92a;92b, A.J. Turvey41, P.M. Tuts36, M. Tylmad146a;146b, M. Tyndel131, G. Ucchielli21a;21b, I. Ueda155, R. Ueno30, M. Ughetto146a;146b, F. Ukegawa160, G. Unal31, A. Undrus26, G. Unel162, F.C. Ungaro89, Y. Unno67, C. Unverdorben100, J. Urban144b, P. Urquijo89, P. Urrejola84, G. Usai8, A. Usanova63, L. Vacavant86, V. Vacek128, B. Vachon88, C. Valderanis84, E. Valdes Santurio146a;146b, N. Valencic107, S. Valentinetti21a;21b, A. Valero166, L. Valery12, S. Valkar129, S. Vallecorsa50, J.A. Valls Ferrer166, W. Van Den Wollenberg107, P.C. Van Der Deijl107, R. van der Geer107, H. van der Graaf107, N. van Eldik152, P. van Gemmeren6, J. Van Nieuwkoop142, I. van Vulpen107, M.C. van Woerden31, M. Vanadia132a;132b, W. Vandelli31, R. Vanguri122, A. Vaniachine6, P. Vankov107, G. Vardanyan176, R. Vari132a, E.W. Varnes7, T. Varol41, D. Varouchas81, A. Vartapetian8, K.E. Varvell150, F. Vazeille35, T. Vazquez Schroeder88, J. Veatch7, L.M. Veloce158, F. Veloso126a;126c, S. Veneziano132a, A. Ventura74a;74b, M. Venturi168, N. Venturi158, A. Venturini24, V. Vercesi121a, M. Verducci132a;132b, W. Verkerke107, J.C. Vermeulen107, A. Vest45;am, M.C. Vetterli142;d, O. Viazlo82, I. Vichou165, T. Vickey139, O.E. Vickey Boeriu139, G.H.A. Viehhauser120, S. Viel15, R. Vigne63, M. Villa21a;21b, M. Villaplana Perez92a;92b, E. Vilucchi48, M.G. Vincter30, V.B. Vinogradov66, C. Vittori21a;21b, I. Vivarelli149, S. Vlachos10, M. Vlasak128, M. Vogel174, P. Vokac128, G. Volpi124a;124b, M. Volpi89, H. von der Schmitt101, E. von Toerne22, V. Vorobel129, K. Vorobev98, M. Vos166, R. Voss31, J.H. Vossebeld75, N. Vranjes13, M. Vranjes Milosavljevic13, V. Vrba127, M. Vreeswijk107, R. Vuillermet31, I. Vukotic32, Z. Vykydal128, P. Wagner22, W. Wagner174, H. Wahlberg72, S. Wahrmund45, J. Wakabayashi103, J. Walder73, R. Walker100, W. Walkowiak141, V. Wallangen146a;146b, C. Wang151, C. Wang34d;86, F. Wang172, H. Wang15, H. Wang41, J. Wang43, J. Wang150, K. Wang88, R. Wang6, S.M. Wang151, T. Wang22, T. Wang36, X. Wang175, C. Wanotayaroj116, A. Warburton88, C.P. Ward29, D.R. Wardrope79, A. Washbrook47, P.M. Watkins18, A.T. Watson18, I.J. Watson150, M.F. Watson18, G. Watts138, S. Watts85, B.M. Waugh79, S. Webb84, M.S. Weber17, S.W. Weber173, J.S. Webster6, A.R. Weidberg120, B. Weinert62, J. Weingarten55, C. Weiser49, H. Weits107, P.S. Wells31, T. Wenaus26, T. Wengler31, S. Wenig31, N. Wermes22, M. Werner49, P. Werner31, M. Wessels59a, J. Wetter161, K. Whalen116, N.L. Whallon138, A.M. Wharton73, A. White8, M.J. White1, R. White33b, S. White124a;124b, D. Whiteson162, F.J. Wickens131, W. Wiedenmann172, HJEP08(216)4 H.G. Wilkens31, H.H. Williams122, S. Williams107, C. Willis91, S. Willocq87, J.A. Wilson18, I. Wingerter-Seez5, F. Winklmeier116, O.J. Winston149, B.T. Winter22, M. Wittgen143, J. Wittkowski100, S.J. Wollstadt84, M.W. Wolter40, H. Wolters126a;126c, B.K. Wosiek40, J. Wotschack31, M.J. Woudstra85, K.W. Wozniak40, M. Wu56, M. Wu32, S.L. Wu172, X. Wu50, Y. Wu90, T.R. Wyatt85, B.M. Wynne47, S. Xella37, D. Xu34a, L. Xu26, B. Yabsley150, S. Yacoob145a, R. Yakabe68, D. Yamaguchi157, Y. Yamaguchi118, A. Yamamoto67, S. Yamamoto155, T. Yamanaka155, K. Yamauchi103, Y. Yamazaki68, Z. Yan23, H. Yang34e, H. Yang172, Y. Yang151, Z. Yang14, W-M. Yao15, Y.C. Yap81, Y. Yasu67, E. Yatsenko5, K.H. Yau Wong22, J. Ye41, S. Ye26, I. Yeletskikh66, A.L. Yen58, E. Yildirim43, K. Yorita170, R. Yoshida6, K. Yoshihara122, C. Young143, C.J.S. Young31, S. Youssef23, D.R. Yu15, J. Yu8, J.M. Yu90, J. Yu65, L. Yuan68, S.P.Y. Yuen22, I. Yusu 29;an, B. Zabinski40, R. Zaidan34d, A.M. Zaitsev130;ac, N. Zakharchuk43, J. Zalieckas14, A. Zaman148, S. Zambito58, L. Zanello132a;132b, D. Zanzi89, C. Zeitnitz174, M. Zeman128, A. Zemla39a, J.C. Zeng165, Q. Zeng143, K. Zengel24, O. Zenin130, T. Zenis144a, D. Zerwas117, D. Zhang90, F. Zhang172, G. Zhang34b;z, H. Zhang34c, J. Zhang6, L. Zhang49, R. Zhang22, R. Zhang34b;ao, X. Zhang34d, Z. Zhang117, X. Zhao41, Y. Zhao34d;117, Z. Zhao34b, A. Zhemchugov66, J. Zhong120, B. Zhou90, C. Zhou46, L. Zhou36, L. Zhou41, M. Zhou148, N. Zhou34f , C.G. Zhu34d, H. Zhu34a, J. Zhu90, Y. Zhu34b, X. Zhuang34a, K. Zhukov96, A. Zibell173, D. Zieminska62, N.I. Zimine66, C. Zimmermann84, S. Zimmermann49, Z. Zinonos55, M. Zinser84, M. Ziolkowski141, L. Zivkovic13, G. Zobernig172, A. Zoccoli21a;21b, M. zur Nedden16, G. Zurzolo104a;104b and L. Zwalinski31 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany NY, United States of America 3 Department of Physics, University of Alberta, Edmonton AB, Canada 4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, CNRS/IN2P3 and Universite Savoie Mont Blanc, Annecy-le-Vieux, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America 7 Department of Physics, University of Arizona, Tucson AZ, United States of America 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of Barcelona, Spain, Spain CA, United States of America 9 Physics Department, University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 12 Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, 13 Institute of Physics, University of Belgrade, Belgrade, Serbia 14 Department for Physics and Technology, University of Bergen, Bergen, Norway 15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley 16 Department of Physics, Humboldt University, Berlin, Germany 17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland 18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul,Turkey; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey, Turkey 20 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia Bologna, Italy Paulo, Brazil 22 Physikalisches Institut, University of Bonn, Bonn, Germany 23 Department of Physics, Boston University, Boston MA, United States of America 24 Department of Physics, Brandeis University, Waltham MA, United States of America 25 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao 26 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America 27 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest; (c) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (d) University Politehnica Bucharest, Bucharest; (e) West University in Timisoara, Timisoara, Romania 28 Departamento de F sica, Universidad de Buenos Aires, Buenos Aires, Argentina 29 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 30 Department of Physics, Carleton University, Ottawa ON, Canada 31 CERN, Geneva, Switzerland 32 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America 33 (a) Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago; (b) Departamento de F sica, Universidad Tecnica Federico Santa Mar a, Valpara so, Chile 34 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (also a liated with PKU-CHEP); (f) Physics Department, Tsinghua University, Beijing 100084, China CNRS/IN2P3, Clermont-Ferrand, France 35 Laboratoire de Physique Corpusculaire, Clermont Universite and Universite Blaise Pascal and 36 Nevis Laboratory, Columbia University, Irvington NY, United States of America 37 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 38 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita della Calabria, Rende, Italy 39 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 40 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland 41 Physics Department, Southern Methodist University, Dallas TX, United States of America 42 Physics Department, University of Texas at Dallas, Richardson TX, United States of America 43 DESY, Hamburg and Zeuthen, Germany 44 Institut fur Experimentelle Physik IV, Technische Universitat Dortmund, Dortmund, Germany 45 Institut fur Kern- und Teilchenphysik, Technische Universitat Dresden, Dresden, Germany 46 Department of Physics, Duke University, Durham NC, United States of America 47 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 48 INFN Laboratori Nazionali di Frascati, Frascati, Italy 49 Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany 50 Section de Physique, Universite de Geneve, Geneva, Switzerland 51 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universita di Genova, Genova, Italy 52 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 53 II Physikalisches Institut, Justus-Liebig-Universitat Giessen, Giessen, Germany 54 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom 55 II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany Grenoble, France 57 Department of Physics, Hampton University, Hampton VA, United States of America 59 (a) Kirchho -Institut fur Physik, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (c) ZITI Institut fur technische Informatik, Ruprecht-Karls-Universitat Heidelberg, Mannheim, Germany 60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 61 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 62 Department of Physics, Indiana University, Bloomington IN, United States of America 63 Institut fur Astro- und Teilchenphysik, Leopold-Franzens-Universitat, Innsbruck, Austria 64 University of Iowa, Iowa City IA, United States of America 65 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America 66 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 67 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 68 Graduate School of Science, Kobe University, Kobe, Japan 69 Faculty of Science, Kyoto University, Kyoto, Japan 70 Kyoto University of Education, Kyoto, Japan 71 Department of Physics, Kyushu University, Fukuoka, Japan 72 Instituto de F sica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 73 Physics Department, Lancaster University, Lancaster, United Kingdom 74 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Universita del Salento, Lecce, Italy 75 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 76 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia 77 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom 78 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom 79 Department of Physics and Astronomy, University College London, London, United Kingdom 80 Louisiana Tech University, Ruston LA, United States of America 81 Laboratoire de Physique Nucleaire et de Hautes Energies, UPMC and Universite Paris-Diderot and CNRS/IN2P3, Paris, France 82 Fysiska institutionen, Lunds universitet, Lund, Sweden 83 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain 84 Institut fur Physik, Universitat Mainz, Mainz, Germany 85 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 86 CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France 87 Department of Physics, University of Massachusetts, Amherst MA, United States of America 88 Department of Physics, McGill University, Montreal QC, Canada 89 School of Physics, University of Melbourne, Victoria, Australia 90 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America 91 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America Belarus of Belarus 92 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Universita di Milano, Milano, Italy 93 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of 94 National Scienti c and Educational Centre for Particle and High Energy Physics, Minsk, Republic 95 Group of Particle Physics, University of Montreal, Montreal QC, Canada 96 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia 98 National Research Nuclear University MEPhI, Moscow, Russia 99 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, 100 Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany 101 Max-Planck-Institut fur Physik (Werner-Heisenberg-Institut), Munchen, Germany 102 Nagasaki Institute of Applied Science, Nagasaki, Japan 103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 104 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Universita di Napoli, Napoli, Italy 105 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States 106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University 107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, 108 Department of Physics, Northern Illinois University, DeKalb IL, United States of America 109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 110 Department of Physics, New York University, New York NY, United States of America 111 Ohio State University, Columbus OH, United States of America 112 Faculty of Science, Okayama University, Okayama, Japan 113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America 114 Department of Physics, Oklahoma State University, Stillwater OK, United States of America 115 Palacky University, RCPTM, Olomouc, Czech Republic 116 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America 117 LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France 118 Graduate School of Science, Osaka University, Osaka, Japan 119 Department of Physics, University of Oslo, Oslo, Norway 120 Department of Physics, Oxford University, Oxford, United Kingdom 121 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Universita di Pavia, Pavia, Italy 122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America 123 National Research Centre \Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia 124 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa, Italy 125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of Vergata, Roma, Italy Roma, Italy 126 (a) Laboratorio de Instrumentaca~o e F sica Experimental de Part culas - LIP, Lisboa; (b) Faculdade de Ci^encias, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F sica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 128 Czech Technical University in Prague, Praha, Czech Republic 129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic 130 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia 131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom 132 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita di Roma, Roma, Italy 133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universita di Roma Tor 134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita Roma Tre, Universite Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculte des Sciences Semlalia, Universite Cadi Ayyad, LPHEA-Marrakech; (d) Faculte des Sciences, Universite Mohamed Premier and LPTPM, Oujda; (e) Faculte des sciences, Universite Mohammed V, Rabat, Morocco 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France 137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, 138 Department of Physics, University of Washington, Seattle WA, United States of America 139 Department of Physics and Astronomy, University of She eld, She eld, United Kingdom 140 Department of Physics, Shinshu University, Nagano, Japan 141 Fachbereich Physik, Universitat Siegen, Siegen, Germany 142 Department of Physics, Simon Fraser University, Burnaby BC, Canada 143 SLAC National Accelerator Laboratory, Stanford CA, United States of America 144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 145 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa United States of America 146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden 147 Physics Department, Royal Institute of Technology, Stockholm, Sweden 148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, 149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom 150 School of Physics, University of Sydney, Sydney, Australia 151 Institute of Physics, Academia Sinica, Taipei, Taiwan 152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan ON, Canada 156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 158 Department of Physics, University of Toronto, Toronto ON, Canada 159 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto 160 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan 161 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America 162 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of 163 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Universita di Udine, Udine, Italy 164 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 165 Department of Physics, University of Illinois, Urbana IL, United States of America 166 Instituto de F sica Corpuscular (IFIC) and Departamento de F sica Atomica, Molecular y Nuclear and Departamento de Ingenier a Electronica and Instituto de Microelectronica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain 167 Department of Physics, University of British Columbia, Vancouver BC, Canada 169 Department of Physics, University of Warwick, Coventry, United Kingdom 170 Waseda University, Tokyo, Japan 171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 172 Department of Physics, University of Wisconsin, Madison WI, United States of America 173 Fakultat fur Physik und Astronomie, Julius-Maximilians-Universitat, Wurzburg, Germany 174 Fakultat fur Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universitat Wuppertal, Wuppertal, Germany 175 Department of Physics, Yale University, New Haven CT, United States of America 176 Yerevan Physics Institute, Yerevan, Armenia 177 Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France a Also at Department of Physics, King's College London, London, United Kingdom b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at TRIUMF, Vancouver BC, Canada e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America f Also at Department of Physics, California State University, Fresno CA, United States of America g Also at Department of Physics, University of Fribourg, Fribourg, Switzerland h Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain i Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal j Also at Tomsk State University, Tomsk, Russia k Also at Universita di Napoli Parthenope, Napoli, Italy l Also at Institute of Particle Physics (IPP), Canada m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, n Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of o Also at Louisiana Tech University, Ruston LA, United States of America p Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain q Also at Graduate School of Science, Osaka University, Osaka, Japan r Also at Department of Physics, National Tsing Hua University, Taiwan s Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of t Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia u Also at CERN, Geneva, Switzerland v Also at Georgian Technical University (GTU),Tbilisi, Georgia w Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan x Also at Manhattan College, New York NY, United States of America y Also at Hellenic Open University, Patras, Greece z Also at Institute of Physics, Academia Sinica, Taipei, Taiwan aa Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan ab Also at School of Physics, Shandong University, Shandong, China ac Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia ad Also at Section de Physique, Universite de Geneve, Geneva, Switzerland ae Also at International School for Advanced Studies (SISSA), Trieste, Italy af Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America ag Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China Sciences, So a, Bulgaria ai Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia aj Also at National Research Nuclear University MEPhI, Moscow, Russia ak Also at Department of Physics, Stanford University, Stanford CA, United States of America al Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary Deceased Also at Flensburg University of Applied Sciences, Flensburg, Germany an Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia ao Also at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France 2. [4] P.W. Higgs , Broken symmetries, massless particles and gauge elds , Phys. Lett . 12 ( 1964 ) [5] P.W. Higgs , Broken symmetries and the masses of gauge bosons , Phys. Rev. Lett . 13 ( 1964 ) [6] G.S. Guralnik , C.R. Hagen and T.W.B. Kibble , Global conservation laws and massless particles , Phys. Rev. Lett . 13 ( 1964 ) 585 [INSPIRE]. [7] P.W. Higgs , Spontaneous symmetry breakdown without massless bosons , Phys. Rev . 145 [8] T.W.B. Kibble , Symmetry breaking in non-Abelian gauge theories , Phys. Rev . 155 ( 1967 ) [21] ATLAS collaboration, Performance of the ATLAS trigger system in 2010, Eur . Phys. J. C [23] S. Alioli , P. Nason , C. Oleari and E. Re, NLO Higgs boson production via gluon fusion [26] T. Sj ostrand, S. Mrenna and P.Z. Skands , A brief introduction to PYTHIA 8:1 , Comput .


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP08%282016%29104.pdf

The ATLAS collaboration, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos, R. Aben, M. Abolins, O. S. AbouZeid, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, L. Adamczyk, D. L. Adams, J. Adelman, S. Adomeit, T. Adye, A. A. Affolder, T. Agatonovic-Jovin, J. Agricola, J. A. Aguilar-Saavedra, S. P. Ahlen, F. Ahmadov, G. Aielli, H. Akerstedt, T. P. A. Åkesson, A. V. Akimov, G. L. Alberghi, J. Albert, S. Albrand, M. J. Alconada Verzini, M. Aleksa, I. N. Aleksandrov, C. Alexa, G. Alexander, T. Alexopoulos, M. Alhroob, G. Alimonti, J. Alison, S. P. Alkire, B. M. M. Allbrooke, B. W. Allen, P. P. Allport, A. Aloisio, A. Alonso, F. Alonso, C. Alpigiani, B. Alvarez Gonzalez, D. Álvarez Piqueras, M. G. Alviggi, B. T. Amadio, K. Amako, Y. Amaral Coutinho, C. Amelung, D. Amidei, S. P. Amor Dos Santos, A. Amorim, S. Amoroso, N. Amram, G. Amundsen, C. Anastopoulos, L. S. Ancu, N. Andari, T. Andeen, C. F. Anders, G. Anders, J. K. Anders, K. J. Anderson, A. Andreazza, V. Andrei, S. Angelidakis, I. Angelozzi, P. Anger, A. Angerami, F. Anghinolfi, A. V. Anisenkov, N. Anjos, A. Annovi, M. Antonelli, A. Antonov, J. Antos, F. Anulli, M. Aoki, L. Aperio Bella, G. Arabidze, Y. Arai, J. P. Araque, A. T. H. Arce, F. A. Arduh, J-F. Arguin, S. Argyropoulos, M. Arik, A. J. Armbruster, L. J. Armitage, O. Arnaez, H. Arnold, M. Arratia, O. Arslan, A. Artamonov, G. Artoni, S. Artz, S. Asai, N. Asbah, A. Ashkenazi, B. Åsman, L. Asquith, K. Assamagan, R. Astalos, M. Atkinson, N. B. Atlay, K. Augsten, G. Avolio, B. Axen, M. K. Ayoub, G. Azuelos, M. A. Baak, A. E. Baas, M. J. Baca, H. Bachacou, K. Bachas, M. Backes, M. Backhaus, P. Bagiacchi, P. Bagnaia, Y. Bai, J. T. Baines, O. K. Baker, E. M. Baldin, P. Balek, T. Balestri, F. Balli, W. K. Balunas, E. Banas, Sw. Banerjee, A. A. E. Bannoura, L. Barak, E. L. Barberio, D. Barberis, M. Barbero, T. Barillari, M. Barisonzi, T. Barklow, N. Barlow, S. L. Barnes, B. M. Barnett, R. M. Barnett, Z. Barnovska, A. Baroncelli, G. Barone, A. J. Barr, L. Barranco Navarro, F. Barreiro, J. Barreiro Guimarães da Costa, R. Bartoldus, A. E. Barton, P. Bartos, A. Basalaev, A. Bassalat, A. Basye, R. L. Bates, S. J. Batista, J. R. Batley, M. Battaglia, M. Bauce, F. Bauer, H. S. Bawa, J. B. Beacham, M. D. Beattie, T. Beau, P. H. Beauchemin, P. Bechtle, H. P. Beck, K. Becker, M. Becker, M. Beckingham, C. Becot, A. J. Beddall, A. Beddall, V. A. Bednyakov, M. Bedognetti, C. P. Bee, L. J. Beemster, T. A. Beermann, M. Begel, J. K. Behr, C. Belanger-Champagne, A. S. Bell, W. H. Bell, G. Bella, L. Bellagamba, A. Bellerive, M. Bellomo, K. Belotskiy, O. Beltramello, N. L. Belyaev, O. Benary, D. Benchekroun, M. Bender, K. Bendtz, N. Benekos, Y. Benhammou, E. Benhar Noccioli, J. Benitez, J. A. Benitez Garcia, D. P. Benjamin, J. R. Bensinger, S. Bentvelsen, L. Beresford, M. Beretta, D. Berge, E. Bergeaas Kuutmann, N. Berger, F. Berghaus, J. Beringer, S. Berlendis, N. R. Bernard, C. Bernius, F. U. Bernlochner, T. Berry, P. Berta, C. Bertella, G. Bertoli, F. Bertolucci, I. A. Bertram, C. Bertsche, D. Bertsche, G. J. Besjes, O. Bessidskaia Bylund, M. Bessner, N. Besson, C. Betancourt, S. Bethke, A. J. Bevan, W. Bhimji, R. M. Bianchi, L. Bianchini, M. Bianco, O. Biebel, D. Biedermann, R. Bielski, N. V. Biesuz, M. Biglietti, J. Bilbao De Mendizabal, H. Bilokon, M. Bindi, S. Binet, A. Bingul, C. Bini, S. Biondi, D. M. Bjergaard, C. W. Black, J. E. Black, K. M. Black, D. Blackburn, R. E. Blair, J.-B. Blanchard, J. E. Blanco, T. Blazek, I. Bloch, C. Blocker, W. Blum, U. Blumenschein, S. Blunier, G. J. Bobbink, V. S. Bobrovnikov, S. S. Bocchetta, A. Bocci, C. Bock, M. Boehler, D. Boerner, J. A. Bogaerts, D. Bogavac, A. G. Bogdanchikov, C. Bohm, V. Boisvert, T. Bold, V. Boldea, A. S. Boldyrev, M. Bomben, M. Bona, M. Boonekamp, A. Borisov, G. Borissov, J. Bortfeldt, D. Bortoletto, V. Bortolotto, K. Bos, D. Boscherini, M. Bosman, J. D. Bossio Sola, J. Boudreau, J. Bouffard, E. V. Bouhova-Thacker, D. Boumediene, C. Bourdarios, N. Bousson, S. K. Boutle, A. Boveia, J. Boyd, I. R. Boyko, J. Bracinik, A. Brandt, G. Brandt, O. Brandt, U. Bratzler, B. Brau, J. E. Brau, H. M. Braun, W. D. Breaden Madden, K. Brendlinger, A. J. Brennan, L. Brenner, R. Brenner, S. Bressler, T. M. Bristow, D. Britton, D. Britzger, F. M. Brochu, I. Brock, R. Brock, G. Brooijmans, T. Brooks, W. K. Brooks, J. Brosamer, E. Brost, J. H Broughton, P. A. Bruckman de Renstrom, D. Bruncko, R. Bruneliere, A. Bruni, G. Bruni, BH Brunt, M. Bruschi, N. Bruscino, P. Bryant, L. Bryngemark, T. Buanes, Q. Buat, P. Buchholz, A. G. Buckley, I. A. Budagov, F. Buehrer, M. K. Bugge, O. Bulekov, D. Bullock, H. Burckhart, S. Burdin, C. D. Burgard, B. Burghgrave, K. Burka, S. Burke, I. Burmeister, E. Busato, D. Büscher, V. Büscher, P. Bussey, J. M. Butler, A. I. Butt, C. M. Buttar, J. M. Butterworth, P. Butti, W. Buttinger, A. Buzatu, A. R. Buzykaev, S. Cabrera Urbán, D. Caforio, V. M. Cairo, O. Cakir, N. Calace, P. Calafiura, A. Calandri, G. Calderini, P. Calfayan. Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to WW ∗→eνμν with the ATLAS detector at \( \sqrt{s}=8 \) TeV, Journal of High Energy Physics, 2016, 104, DOI: 10.1007/JHEP08(2016)104