Studies of Zγ production in association with a high-mass dijet system in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector

Journal of High Energy Physics, Jul 2017

Abstract The production of a Z boson and a photon in association with a high-mass dijet system is studied using 20.2 fb−1 of proton-proton collision data at a centre-of-mass energy of \( \sqrt{s}=8 \) TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total pp → Zγjj cross-sections are extracted in two fiducial regions with different sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes VV → Zγ. No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using effective field theory. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

Studies of Zγ production in association with a high-mass dijet system in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector

Received: May 8 TeV l-)γjj EWK The production of a Z boson and a photon in association with a high-mass dijet system is studied using 20.2 fb 1 of proton-proton collision data at a centre-of-mass energy of p s = 8 TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total pp ! Z jj cross-sections are extracted in two ducial regions with di erent sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes V V ! Z . No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using e ective eld theory. Electroweak interaction; Hadron-Hadron scattering (experiments) 1 Introduction 2 ATLAS detector and data 3 Simulated samples and theory predictions 4 Event reconstruction and selection Event reconstruction 5 Background estimate and event yields Backgrounds in the charged-lepton channels Backgrounds in the neutrino channel 5.3 Expected and observed event yields 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 6 Fiducial Z jj cross-section measurements in the charged-lepton channel 16 Fiducial electroweak production cross-section determination Total Z jj ducial cross-section measurements 7 Limits on quartic gauge-boson couplings Fiducial EWK production cross-section limits in high-ET regions Extracting con dence intervals on anomalous quartic gauge-boson couplings. 23 8 Conclusions The ATLAS collaboration 1 Introduction The scattering of two vector bosons, V V ! V V with V = W /Z/ , is a key process for probing the SU(2)L U( 1 )Y gauge symmetry of the electroweak theory that determines The Z jj electroweak (EWK) production (qq ! qqZ ) | where j represents a jet and q a quark | contains processes with fourth-order electroweak coupling O( e4m). These include vector-boson scattering (VBS) as well as non-VBS diagrams, e.g. when the Z boson and the photon are radiated o the initial- or nal- state quarks ( gure 1, left). The VBS processes do not respect the electroweak gauge symmetry when taken in isolation and cannot be studied separately from other electroweak processes, due to large interference e ects. The same Z jj nal state can be produced by QCD-mediated processes | in the following simply called \QCD production" | with second-order electroweak coupling and second-order strong coupling O( e2m s2) ( gure 1, right). Such processes can involve radiated gluons in the initial and/or nal state as well as quark scattering processes mediated by gluons. According to the SM, a small constructive interference occurs between production of QCD and EWK quark scattering. Experimentally, Z jj EWK processes are characterized by the production of two energetic hadronic jets with wide rapidity separation and large dijet invariant mass [17]. The vector-boson pair is typically produced more centrally than in non-EWK processes. These kinematic properties are exploited to select a phase-space region where the electroweak production is enhanced with respect to the QCD-mediated processes. Previous measurements of inclusive and di erential cross-sections of Z production in proton-proton collisions at the centre-of-mass energy of 8 TeV performed by the ATLAS experiment [9] show good agreement (within 6%) between data and next-to-next-to-leadingorder (NNLO) predictions. { 2 { in both the search and control ducial regions is also measured. The Z jj EWK production is also studied in events with high-transverse-energy (ET) photons, where an enhancement of the VBS cross-section is typically predicted by theories section 4. The determination of the backgrounds and event yields are discussed in section 5. The extraction of the cross-sections are described in section 6. Finally, a search for aQGCs using events with high-ET photons is presented in section 7. Conclusions are drawn in section 8. 2 ATLAS detector and data The ATLAS experiment [18] at the LHC is a multipurpose particle detector with a forwardbackward symmetric cylindrical geometry and an almost 4 coverage in solid angle.1 It consists of a tracking system called the inner detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic eld, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS). The ID covers the pseudorapidity range 1The ATLAS reference system is a Cartesian right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam direction. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r; ) are used in the plane that is transverse to the beam direction, where describes the azimuthal angle around the beam pipe as measured from the positive x-axis. The rapidity (y) is de ned as y = 1=2 ln[(E +pz)=(E pz)] where E (pz) is the energy (the z-component of the momentum) of a particle. The pseudorapidity ( ) is de ned as = ln(tan( =2)) where is the polar angle. The distance between two objects in the { space is de ned as R 2)2 + ( 1 2)2 where 1;2 ( 1;2) represents the p( 1 pseudorapidities (azimuthal angles) of the two objects. The transverse momentum (pT) is de ned relative to the beam axis and is calculated as pT = p sin where p is the momentum. { 3 { j j < 2:5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Within the region of j j < 3:2, electromagnetic (EM) calorimetry is provided by high-granularity lead/liquid-argon (LAr) sampling calorimeters, with an additional thin LAr presampler covering j j < 1:8 to correct for energy loss in material upstream of the calorimeters. A hadronic (steel/scintillator-tile) calorimeter covers the central pseudorapidity range (j j < 1:7). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to j j = 4:9. The MS surrounds the calorimeters and is based on three large air-core toroidal superconducting magnets with eight coils each. It includes a system of precision tracking chambers and fast detectors for triggering. A three-level trigger system is used to select events. The rst-level trigger is implemented in hardware and uses a subset of the detector information to reduce the accepted rate to at most 75 kHz. This is followed by two software-based systems, called the high-level triggers, that together reduce the accepted event rate to 400 Hz on average, depending on the data-taking conditions. The data set used in this analysis was obtained from proton-proton collisions recorded in 2012 by the ATLAS detector, when the LHC operated at p s = 8 TeV. The integrated luminosity of the data set used in this measurement is 20.2 fb 1 with an uncertainty of 1.9% [19]. In the charged-lepton channel analysis, events are selected online by requiring the presence of either an isolated electron or muon candidate with a minimum transverse momentum (pT) of 24 GeV, or a pair of isolated electron candidates with pT > 12 GeV, or a pair of isolated muon candidates satisfying pT > 18 GeV and pT > 8 GeV for the leading and subleading muons. Trigger e ciencies are included in the overall reconstruction e ciency, and the uncertainties in the e ciency of these trigger selections were estimated using control samples in data and amount to 0.2% and 0.5% in the e+e jj and + jj channels, respectively. In the neutrino channel, the events are selected online by requiring a photon candidate with ET > 40 GeV and missing transverse momentum greater than 60 GeV. Trigger e ciencies are included in the overall reconstruction e ciency, and the uncertainties in the e ciency of these trigger selections were estimated using control samples in data and amount to 2.0%. 3 Simulated samples and theory predictions Monte Carlo (MC) event samples, using a full simulation [20] of the ATLAS detector by Geant 4 [21], are used to model the data, including contributions from the SM signal and expected backgrounds. The individual Z jj EWK and the Z QCD (with up to three additional nal-state partons) processes are modelled at leading order (LO) with the Sherpa event generator v1.4.5 [22]. The EWK-QCD interference contribution is predicted from MadGraph [23] to be less than 10% of the EWK cross-section in the search region | invariant mass of the two leading jets, mjj , greater than 500 GeV| with a decreasing trend as a function of mjj . This interference is treated as an uncertainty in the measurements, as discussed in section 6.1. { 4 { Major background processes, such as Z+jets, +jets, W +jets, W W +jets, and W Z+jets are also modelled by the Sherpa event generator. These include up to ve additional nal-state partons at LO for the V +jets processes and up to three additional partons at LO for the V V +jets processes. All the Sherpa samples include parton showering (with the CKKW matching scheme [24, 25] scale set to 20 GeV), and fragmentation processes along with simulation of the underlying event. They are generated using the CT10 [26] parton distribution function (PDF) set. Uncertainties in the Sherpa modelling of the Z jj processes are estimated using 68% con dence-level PDF uncertainties, independent variations of renormalization and factorization scales by a factor of two and variations of the choice of CKKW scale (from HJEP07(21) 15 to 30 GeV). Production of tt pairs is modelled by MC@NLO v4.06 [27, 28], interfaced to Herwig v6.520.2 for parton showering and fragmentation, and to Jimmy v4.31.3 [29] for underlyingevent simulation. The tt production is modelled with v5.2.1.2 [23] and the CTEQ6L1 [30] PDF set, with parton showering, hadronization, and the underlying event modelled by Pythia v8.183 [31]. The cross-section is computed at next-to-leading-order (NLO) according to ref. [32]. Some of the systematic uncertainties of the Z+jets background estimate, which is extracted from data, are estimated using Z+jets NLO Powheg-Box v1.0 and LO Alpgen v2.1.4 (with up to ve additional nal-state partons) generated events. These samples are interfaced with Pythia v8.175 and Herwig v6.520.2 + Jimmy v4.31.3 respectively for the modelling of the parton shower, hadronization and underlying event. Multiple proton-proton collisions (pile-up), corresponding to the conditions observed during the 2012 run, are added to each MC sample. This pile-up is simulated using Pythia v8.165 [31] with parameter values set according to the A2 tune [33] and the MSTW2008LO PDF set [34]. MC events are then reweighted so that the pile-up conditions in the simulation match those observed in the data. The SM cross-section predictions for both the Z jj EWK and QCD processes with exactly two additional nal-state partons are calculated at NLO precision in s using the Vbfnlo event generator v2.7.1 [35{37]. All spin correlations and nite-width e ects are included in the matrix-element calculation, and for EWK production all resonant and nonresonant t-channel exchange contributions giving rise to a speci c leptonic nal state are considered. The CT10 PDF set is used for both EWK and QCD production as well as for the underlying-event generation and tune. These samples are generated separately (i.e. the interference between EWK and QCD is not taken into account in the modelling). A photon isolation requirement to remove the contributions from partons collinear to the photon is also included in the calculation. The uncertainty in these predictions due to the PDF and the choice of renormalization/factorization scale ranges from 4% to 10% depending on the processes and phase-space regions. { 5 { 4.1 Event reconstruction and selection Event reconstruction Events are required to have a reconstructed primary vertex formed by at least two tracks with pT > 400 MeV and j j < 2:5. If more than one primary vertex is found, the one with the largest sum of the p2T of the associated tracks is chosen as the hard-interaction vertex. Electron candidates, reconstructed by matching an energy deposit in the calorimeter to a track in the ID, are required to have ET > 25 GeV and j j < 2:47. In addition, they must satisfy a set of \Loose" [38] identi cation criteria based on a combination of shower shape information from the EM calorimeter and tracking information from the ID, corresponding to an average selection e ciency of about 93%. The electron tracks are required to have longitudinal impact parameter smaller than 0.5 mm with respect to the hard-interaction vertex, and the absolute value of the transverse impact parameter with respect to the primary vertex less than six times its measured uncertainty, to reduce semi-leptonic heavy avor decay backgrounds. Electron candidates are also required to be isolated. This is achieved by requiring the sum of the transverse momenta of ID tracks associated with the primary vertex in a cone of size R = 0:3 around the electron direction, excluding the electron track, to be less than 10% of the transverse energy of the electron candidate itself. Uncertainties in the electron selection arise from: identi cation [38] and impact parameter selection variations; changes in the isolation de nition; and uncertainties in the electron energy scale and resolution [39]. Muon candidates are reconstructed by combining tracks in the ID with tracks in the MS and are required to have pT > 25 GeV and j j < 2:5. The ID tracks associated with these muons must satisfy several quality selection criteria [40]. The same requirement on the longitudinal impact parameter as for the electron track is also imposed on the combined muon track. The overall selection e ciency of the muon identi cation is about 97%. Muon candidates are required to be isolated using the same criteria as for electrons, but using a cone of size R = 0:2. Uncertainties in the muon selection are derived from uncertainties in the muon momentum scale and resolution [40], and by varying the selection criteria on the muon track quality, impact parameter or isolation. Photon reconstruction and identi cation criteria are based on the expected shapes of showers developing in the electromagnetic calorimeter, as described in ref. [41]. Photons must be within the ducial volume of the central calorimeter (j j < 2:37) and outside the transition region between the barrel and endcap calorimeters (1:37 < j j < 1:52). The sum of the transverse energies of topological clusters reconstructed in the electromagnetic and hadronic calorimeters in a cone of size R = 0:4 around the photon candidate, from which the energy of the photon cluster together with the median energy density of the event times the cone area are subtracted [42, 43], is required to be less than 6 GeV. Photon candidates are rejected if they are not well separated from the previously selected leptons, i.e. if R( ; `) < 0:4. The overall e ciency of this photon selection on Z jj EWK events is about 37% (96%) for photons with E T > 15 (150) GeV. Uncertainties in the photon selection come from: variations in the reconstruction and identi cation criteria [41]; changes in the isolation requirements; and uncertainties in the photon energy scale and resolution [39]. { 6 { Jets are reconstructed from clusters of energy in the calorimeter using the anti-kt algorithm [44] with radius parameter R = 0:4. Jet energies are calibrated using energyand -dependent correction factors derived using MC simulation and validated by studying collision data [45]. Jets are considered if they have pT > 30 GeV and j j < 4:5. To remove jets originating from additional collisions in the same bunch crossing, at least 50% of the summed scalar pT of the tracks within a cone of size R = 0:4 around the jet axis must originate from the hard-interaction vertex. This criterion is applied only to jets with pT < 50 GeV and j j < 2:4 [46]. Jet candidates are rejected if they are not well separated from the previously selected leptons and photons, i.e if R(j; `) < 0:3 or R(j; ) < 0:4. Systematic e ects in jet reconstruction lead primarily to uncertainties in the jet energy scale (JES) and resolution (JER) and are described in ref. [45]. The determination of the two-dimensional missing transverse-momentum vector, p~ miss, is based on the measurement of all topological clusters in the calorimeter and muon tracks reconstructed in the ID and MS [47]. Calorimeter cells associated with reconstructed objects, such as electrons, photons, decays, and jets, are calibrated at their own energy scale, whereas calorimeter cells not associated with any object are calibrated at the electromagnetic energy scale. The magnitude of this vector is denoted by ETmiss. Uncertainties in the measurement of ETmiss are derived from uncertainties in measurements of the contributing objects. 4.2 T > 15 GeV, a pair of opposite-sign (OS), same- avour leptons (electrons or muons) and at least two reconstructed jets. The invariant mass of the two leptons, m``, must be at least 40 GeV. The sum of the dilepton mass and the three-body `` invariant mass is required to be larger than 182 GeV, which is approximately twice the Z boson mass. This requirement ensures that the threebody invariant mass is larger than the Z boson mass, thus suppressing the cases where the Z boson decay products radiate a photon. The event topology of Z jj EWK production is characterized by the presence of two bosons in the central region and two jets with large rapidity di erence and large dijet mass. Di erent phase-space regions are considered based on mjj . The inclusive region is de ned by events with no requirement on the dijet invariant mass, the control region (CR) is de ned by events with 150 < mjj < 500 GeV, and the search region (SR) is de ned by requiring mjj > 500 GeV. The requirement of mjj > 150 GeV suppresses the background process of Z + W (! jj) triboson to negligible levels. The search region de nition is optimized for the best expected signi cance for the Z jj EWK process, given the amount of data. Finally, the ducial phase-space region optimized for sensitivity to anomalous quartic couplings (the \aQGC region"), is de ned by requiring events in the search region to have a photon with E T > 250 GeV. The expected numbers of Z jj EWK events in the search and aQGC regions are 22:8 1:5 and 0:41 0:04, respectively. { 7 { A centrality observable is de ned to quantify the relative position in pseudorapidity of a particle or system of particles with respect to the two leading jets (j1 and j2): jj jj with jj = j1 + j2 ; 2 jj = j1 Z , allows discrimination between Z jj EWK and QCD production, with the former contributing more at low values of Z . However, to maximize the statistical power of the sample, no explicit Z requirement is implemented, but rather the full Z distribution is used to extract the Z jj cross-sections, as detailed in section 6. memtum from the undetected neutrino pair. Therefore, the jj candidate events are required to have ETmiss > 100 GeV, which corresponds to a relative Z jj EWK e ciency of 85%, along with the presence of a candidate photon with E T > 150 GeV and at least two jets. A lepton veto requirement (on the presence of electrons or muons as de ned above) is applied to reduce the large contribution from W (` ) +jets events. This requirement is almost 100% e cient for Z jj events. Requirements on event topology are introduced to suppress the large background from T +jets (where p~ miss is usually collinear with jets) and W (e )+jets events. This is achieved by applying a set of angular selection criteria: the azimuthal di erence between p~ miss and the total transverse momentum of the photon and the two jets should be larger than 3 =4, ( (p~Tmiss; jj) > 3 =4); the azimuthal di erence between p~ miss and the photon should T be larger than =2, ( (p~Tmiss; ) > each of the two jets should be larger than 1, ( =2); and the azimuthal di erence between p~ miss and (p~Tmiss; j) > 1). Overall, these angular T T separation requirements suppress the background by a factor of 40, with a relative Z jj EWK e ciency of 33%. To enhance the Z jj EWK production and maximize the sensitivity to aQGC, further than 0.3 ( < 0:3), the pbalance of the T jj object, de ned as event topology selections are applied: the absolute rapidity di erence between the two jets is required to be greater than 2.5 (j yjj j > 2:5), the photon centrality must be smaller pbalance T p~ miss + p~ E miss + jp~T j + jp~Tj1 j + jTp~Tjj2 j ; j T T T + p~Tj1 + p~ j2 (4.2) must be smaller than 0.1, and the dijet invariant mass must be greater than 600 GeV. These event topology requirements further reduce the background by a factor of 80, with a relative Z jj EWK e ciency of 20%. The expected number of Z jj EWK events after all the selection requirements is 0.65 0.05. { 8 { 5.1 Background estimate and event yields Backgrounds in the charged-lepton channels The main background to the Z jj production processes comes from the misidenti cation of hadronic jets as photons (jets faking photons) in Z+jets events. This background is not well modelled by the MC simulation. It is estimated with data using the same twodimensional sideband method [43] used in the inclusive Z cross-section measurement [9]. The method is based on control regions populated by events satisfying all selection criteria but with the candidate photon failing to satisfy some of the identi cation criteria and/or the isolation requirement. Due to the very limited number of events in the search and control regions, the background contribution from Z+jets events is estimated in an enlarged phase-space region, relaxing the dijet mass requirement to mjj > 100 GeV. This is the most stringent requirement on mjj where the uncertainty on the background estimated is still dominated by systematic errors. The extrapolation of the background estimate to the search and control regions relies on the observation that the shape of the mjj distribution of Z+jets background events (i.e. with one jet faking a photon) in both the Powheg and Alpgen MC samples is similar to the mjj distribution of Z mjj > 100 GeV. Therefore, the ratio of Z+jets to Z events in Sherpa MC samples, for contribution can be considered the same in the enlarged phase-space region as in the search and control regions. In the enlarged phase-space region (mjj > 100 GeV), the contribution from Z+jets events is estimated with data to be (23 6)% of Z events. The uncertainty is dominated by the systematic uncertainty due to the correlation between photon identi cation and isolation requirements. This correlation is calculated from MC simulation and the large systematic uncertainty re ects the di erent responses from Sherpa , Pythia and Alpgen modelling. Other systematic uncertainties related to control region de nition, signal contamination in control regions, and mjj shape di erence between Z+jets and Z are found to be negligible compared to the normalization uncertainty and are neglected. Besides the Z+jets process, other background contributions are from W Z+jets events, with a misidenti cation of an electron as a photon, and tt events, with the photon emitted from initial-state partons or nal-state leptons. The yields of these two processes are estimated from MC simulation with an uncertainty determined by the measured crosssections uncertainty. 5.2 Backgrounds in the neutrino channel For the neutrino channel, background events mainly arise from processes having nal states similar to the signal, from events with jets or electrons misidenti ed as photons, and from events with high fake ETmiss (i.e. due to mismeasurement of hadronic energy deposits rather than the presence of neutrinos in the events). The main background processes are W (` ) +jets, Z( )+jets, +jets and W (e )+jets accounting for approximately 59%, 15%, 7%, and 5% of the total background, respectively. The dominant background is W (` ) +jets production, where the lepton is either not reconstructed or not identi ed, making the lepton veto requirement ine ective. In particu{ 9 { decays, provide a considerable contribution to this background. The W +jets background, which includes both the QCD and EWK components, is estimated using the Sherpa MC samples. The normalization is determined with data. The MC yield of W (` ) +jets events is corrected by constructing a data sample from events passing the jj inclusive selection and requiring exactly one charged lepton in the event (instead of vetoing them). The fraction of W events in this sample is about 80%, and these data events (after subtracting non-W contributions from MC estimates) are used to determine a correction factor for the MC yield of the W +jets sample, which is found to be 1.06. The di erence between the background estimates extracted from Sherpa and Alpgen MC samples is the dominant systematic uncertainty in the W +jets background prediction, corresponding to a relative uncertainty of 41%. The second largest source of background comes from Z( )+jets, where a jet is misidenti ed as an energetic photon. The contribution of this background is estimated with the same two-dimensional sideband method used to determine the Z+jets contribution in the charged-lepton channel. In this case, however, the background estimate is performed directly in the phase-space region of interest. The statistical uncertainty of 50% is signi cantly larger than the systematic uncertainty, which amounts to 20%. Another important source of background is the production of +jets events with fake ETmiss. This background is estimated with data, again using a two-dimensional sideband method. The control regions are composed of events with low ETmiss and/or with low values of (p~Tmiss; j). Due to the limited size of the data sample, the background estimate is performed with a relaxed energy requirement on the photon (ET > 45 GeV) and then extrapolated to the phase-space region of interest using MC samples. The di erence between the extrapolation results obtained with Sherpa and Alpgen samples ( 40%) is the dominant uncertainty for this background. The sizeable production of W (e )+jets is also a source of background when the electron is misidenti ed as a high-energy photon. To estimate this background, rst the fake rate of e ! misidenti cation is extracted from data using electrons from Z ! ee events. Then the W (e )+jets background contribution is estimated by applying this fake rate to events passing the full event selection but choosing a high-energy electron instead of a photon. The main uncertainty comes from the limited size of the control sample and equals 43%. The background contribution from Z( ) is also estimated with MC samples and found to be less than 1%. 5.3 Expected and observed event yields the various signal and background processes. Three di erent phase-space regions are presented: inclusive Z + 2 jets selection, CR and SR. A breakdown of the sources of systematic uncertainty in the CR and SR is given in table 2. Table 3 summarizes the event yield for both the charged-lepton and neutrino channels in the aQGC region with systematic uncertainties summarized in table 4. In the aQGC region, relative uncertainties in the yield in the charged-lepton channel are the same as those in the SR except for that Data Z+jets bkg. Other bkg. (tt , W Z) Lepton selection Photon selection Jet reconstruction Bkg. 2D sideband Theory CR 1.1 5.2 6)%, of NZ QCD. The last line corresponds to the sum of the two previous lines (NZ QCD + NZ EWK). The uncertainties correspond to the statistical and systematic uncertainties added EWK yield [%] QCD yield [%] Bkg. yield [%] SR 2.5 8.7 CR 5.0 5.6 Total experimental 4.3 (3.1) CR and SR, for the electron (muon when di erent) channel and for the signal and main background components. arising from photon selection. This component is larger due to the higher value required for the photon transverse energy in the aQGC region. Figure 2 displays the transverse energy of the photon after various selection requirements (inclusive selection, control and search regions); gure 3 shows the numbers of selected jets in the control and search regions; gure 4 shows the distribution of the dijet mass for the inclusive selection; and nally gure 5 displays the distributions of Z in the inclusive, control and search regions. Corresponding kinematic distributions for the neutrino channel are shown in gure 6. The Sherpa MC prediction is found to describe the data well for all these variables and in all phase-space regions. Data Z+jets background W (` ) +jets background +jets background W (e )+jets background tt , W Z background Ndata Nbkg ) jj production processes in the aQGC region. The last line corresponds to the sum of the two previous lines (NZ QCD + NZ EWK). The quoted uncertainty corresponds to the total statistical plus systematic uncertainty added in quadrature. +jets, and W (e )+jets yields, estimated with data, are detailed in the text. s=8 TeV, 20.2 fb-1 t/s 60 t/a 1 D D Z(l+l-)γjj EWK Z(l+l-)γjj QCD Z(l+l-)γjj EWK Z(l+l-)γjj QCD reP1.5 /ta 1 E 20 15 10 5 t/a 1 Data Z(l+l-)γjj EWK Z(l+l-)γjj QCD Z+jets ttγ WZjj added together in the inclusive region (top left), in the control region (top right) and in the search region (bottom), for the data (black points), and for the signal process and various background components (coloured templates) before any t is done. The ratio of the data to the sum of all pret expected contributions (\Pred.") is shown below each histogram. The hatched blue band shows the systematic and statistical uncertainty added in quadrature (\Tot. unc.") in the signal and background prediction, while the error bars on the data points represent the statistical uncertainty of the data set. The number of events in each bin is divided by the bin width. The last bin also includes events beyond the range shown. tsn 700 ATLAS e vE600 /ta 1 Z(l+l-)γjj QCD Z+jets ttγ WZjj t/a 1 Z(l+l-)γjj QCD Z+jets ttγ WZjj D D 2 3 4 ≥ 5 Number of jets 2 3 4 ≥ 5 Number of jets Distributions of the number of jets passing the selection for the electron and muon channels added together in the control region (left) and in the search region (right), for the data (black points), and for the signal process and various background components (coloured templates) before any t is done. The ratio of the data to the sum of all pre- t expected contributions (\Pred.") is shown below each histogram. The hatched blue band shows the systematic and statistical uncertainty added in quadrature (\Tot. unc.") in the signal and background prediction, while the error bars on the data points represent the statistical uncertainty of the data set. The last bin also includes events beyond the range shown. eV 14 ATLAS G t/s 12 E muon channels added together in the inclusive region, for the data (black points), and for the signal process and various background components (coloured templates) before any t is done. The ratio of the data to the sum of all pre- t expected contributions (\Pred.") is shown below the histogram. The hatched blue band shows the systematic and statistical uncertainty added in quadrature (\Tot. unc.") in the signal and background prediction, while the error bars on the data points represent the statistical uncertainty of the data set. The number of events in each bin is divided by the bin width. The last bin also includes events beyond the range shown. Z(l+l-)γjj QCD Z+jets ttγ WZjj Z(l+l-)γjj QCD Z+jets ttγ WZjj t/a 1 D D t/a 1 E 100 50 0 reP1.5 t/a 1 ATLAS system, Z , for the electron and muon channels added together in the inclusive region (top left), in the control region (top right) and in the search region (bottom), for the data (black points), and for the signal process and various background components (coloured templates) before any t is done. The ratio of the data to the sum of all pret expected contribution (\Pred.") is shown below each histogram. The hatched blue band shows the systematic and statistical uncertainty added in quadrature (\Tot. unc.") in the signal and background prediction, while the error bars on the data points represent the statistical uncertainty of the data set. The number of events in each bin is divided by the bin width. The last bin also includes events beyond the range shown. ATLAS e G 150 GeV for the data (black points), and for the signal process and various background components (coloured templates). The hatched blue band shows the systematic and statistical uncertainty added in quadrature (\Tot. unc.") in the signal and background prediction, while the error bars on the data points represent the statistical uncertainty of the data set. The number of events in each bin is divided by the bin width. The last bin also includes events beyond the range shown. 6 Fiducial Z jj cross-section measurements in the charged-lepton chan0.04 0.03 In this section, the extraction of the Z jj EWK production cross-section in the SR of the charged-lepton channel along with the Z jj total (EWK+QCD) production cross-section in both the search and control regions of the charged-lepton channel is reported. Given the very limited number of signal events expected after the jj selection, that topology is only used in the search for anomalous quartic couplings described in section 7. Fiducial regions are de ned at the particle level, using stable particles | those with proper lifetime longer than 10 ps | before their interaction with the detector. Prompt lepton four-momenta | not from hadron or decays | are obtained through a fourvector sum of leptons with radiated photons within a cone of radius R = 0:1 around the leptons (\dressed leptons"). Jets are reconstructed with the anti-kt jet reconstruction algorithm with radius parameter R = 0:4 using stable particles, excluding muons and neutrinos. The photon isolation energy is taken as the energy of the jet matching the photon ( R(j; ) < 0:3), with the photon energy subtracted. These ducial phase-space regions where the measurements are performed are de ned to be as close as possible to the experimental phase-space regions, corresponding to the reconstructed-event selection described in section 4. This minimizes the extrapolation to the particle-level phase space by the MC simulation. Table 5 summarizes the selection that are applied to obtain the various ducial regions. The fraction of events in the SR ducial region passing the reconstructed event selection is about 94% for the charged-lepton channel. The parton-level selection, used to calculate the predicted cross-section with the Vbfnlo MC event generator, is basically identical to the particle-level selection described above, with jet selection requirements directly applied to the outgoing partons. Objects Leptons Photon (kinematics) Photon (isolation) FSR cut (j = jets) (p = outgoing quarks or gluons) Control region (CR) Search region (SR) aQGC region Particle- (Parton-) level selection p `T > 25 GeV and j `j < 2:5 Dressed leptons, OS charge ET > 15 GeV, j j < 2:37 di erent) for both pp ! Z jj EWK and QCD production. If there are more than two jets/ nalstate partons, the two highest transverse momentum ones are considered. In order to compare the measured ducial cross-section (at particle level) with the NLO theory predictions by Vbfnlo (at parton level) [48], a correction factor Aparton is derived. Such a correction accounts for di erences between the parton- and particle-level phase-space regions. It is de ned as the ratio of the number of generated events in the parton-level phase-space region to the number of events in the particle-level phase-space region, and it depends on fragmentation and hadronization models implemented in MC event generators. Using the Z jj EWK Sherpa MC simulation, Aparton is found to be 1.02 and 0.86 for the CR and SR respectively (with negligible statistical uncertainty). 6.1 Fiducial electroweak production cross-section determination The determination of the ducial cross-section is carried out using the signal strength parameter = Ndsiagtnaal N MsigCnal = data ; MC (6.1) where Ndsiagtnaal is the signal yield in the data and N MsigCnal is the number of signal events predicted by the Sherpa MC simulation, with selection e ciencies extracted from data. The measured cross-section data is derived from the signal strength by multiplying it by the Sherpa MC cross-section prediction MC in the ducial region. The signal strength is extracted using a likelihood t over the centrality of the Z two-body system, Z (see equation (4.1) and gure 5), which provides good discrimination between the EWK and QCD production processes. Probability density functions are built [49] from binned histograms of Z distributions (referred to as templates) using MC 3 2.5 2 1 the Z template. The observed result is shown by the solid curve, while the dashed curve shows the results with only the statistical uncertainty included. The observed signi cance of the measurement is given by p 2 log (0) and equals 2.0 in this case. events for signal and each of the backgrounds described in section 5. The interference between the EWK and QCD induced processes is not included in the probability density functions but rather taken as an uncertainty ( 7% of the signal yield, determined with Sherpa MC samples). An extended likelihood is built from the product of four likelihoods corresponding to Z distributions in the SR and CR for the electron channel and the SR and CR for the muon channel. The inclusion of the CR likelihoods in the t (where the EWK signal process is suppressed) provides a strong constraint on the QCD process normalization in the SR. The QCD normalization is introduced in the likelihood as a single parameter for both the CR and the SR. It is treated as an unconstrained nuisance parameter and mainly determined by the data in the CR, where events from the QCD process dominate. The normalizations and shapes of the other backgrounds are taken from MC predictions and can vary within the uncertainties reported in section 5. The signal strength for the EWK production, EWK, and its uncertainty are determined with a pro le-likelihood-ratio test statistic [50]. Systematic uncertainties in the input templates are handled using nuisance parameters corresponding to each systematic e ect, which are assumed to have Gaussian distributions with standard deviation equal to the systematic uncertainty in the parameter in question. The pro le of the negative loglikelihood ratio of the signal strength EWK is shown in gure 7. From the best- t value of EWK, the observed Z jj EWK production ducial crosssection in the SR de ned in table 5, is found to be: ZEWjKj = 1:1 0:5 (stat) 0:4 (syst) fb = 1:1 0:6 fb: while the SM NLO prediction [48] from Vbfnlo, after applying the Aparton correction uncertainty Statistical Jet energy scale described above, and with uncertainties calculated as described in section 3, is Z jj Vbfnlo;EWK = 0:94 The signi cance of the observed EWK production signal is 2.0 (1.8 expected), not large enough to claim an observation of this process. The measured 95% con dence level (CL) cross-section upper limit obtained with the CLS technique [50] is 2.2 fb. A breakdown of the uncertainties of the ZEWjKj cross-section measurement, as well as the total (EWK+QCD) cross-sections discussed in the next section, is given in table 6. The statistical uncertainty of the measurement of ZEWjKj is 40%. The 38% systematic uncertainty is dominated by the 36% jet energy scale (JES) uncertainty contribution. In particular, the contribution of the uncertainty in the -intercalibration method of the JES is quite large, since events at low Z tend to have jets with high rapidity. This uncertainty strongly a ects both the normalization and the shape of the EWK and QCD Z distribution. The impact of the JES uncertainty in the shape of the Z distributions increases the normalization-only uncertainty by about 40%, and a ects the SR and CR uncertainties by di erent amounts. As a consequence, the constraint from CR data is not as e ective in reducing the JES uncertainty as it is for other systematic uncertainties. Nonetheless, the use of the CR data reduces the total systematic uncertainty of the EWK cross-section measurement in the SR from about 60% to 38%. The second largest contribution to the systematic uncertainty is from the theory uncertainty (Sherpa modelling of the Z jj production processes and interference between the QCD and EWK processes) and amounts to 10%, while all other contributions combined (photon and lepton identi cation, reconstruction, isolation and energy scale, and uncertainty from the Z+jet background estimate) are around 8%. The post- t QCD production normalization is found to be in agreement with the Sherpa predictions within one standard deviation. Cross-sections extracted separately in the electron and muon channels are also compatible within their statistical uncertainty. 6.2 Total Z jj ducial cross-section measurements The total Z jj production (QCD+EWK) cross-section in the SR and CR is extracted from data with a slight modi cation of the template t method described in section 6.1. In this case both the EWK and QCD Z jj production are considered as signal. As a consequence 95% CL intervals Measured [TeV 4 Expected [TeV 4 n = 0 n = 2 eters (in the Vbfnlo formalism) using the combination of all Z jj channels (charged-lepton and neutrino). The FF exponent n = 0 entries correspond to an in nite FF scale and therefore result in non-unitarized 95% CL intervals. FF exponent n = 2 con dence intervals preserve unitarity with individual form-factor scales as shown in the last column for each dimension-8 operator. The maximum allowed form-factor values FF are chosen, according to the unitarity bounds calculated by Vbfnlo and are also reported in this table. The latest NLO cross-section prediction of Vbfnlo is used in the aQGC parameterization [48]. 8 Conclusions Studies of electroweak production of a Z boson and a photon in association with a high-mass dijet system, with the Z boson decaying into a pair of either electrons, muons, or neutrinos, have been performed using 20.2 fb 1 of proton-proton collision data at ps = 8 TeV collected by the ATLAS experiment at the LHC. In the charged-lepton channel, the Z jj EWK production cross-section in a ducial region with a signal purity of about 18% is found to be: ZEWjKj = 1:1 0:6 fb; which is consistent with the NLO SM prediction from Vbfnlo, and corresponds to a signi cance of 2 . The total Z jj production cross-section is also measured in the same ducial region and in a phase-space region dominated by QCD production and both are found to be in good agreement with the NLO SM predictions from Vbfnlo. Events with high-ET photons in both the charged-lepton and neutrino decay modes of the Z boson are used to extract con dence intervals on seven di erent aQGC parameters modelled by dimension-8 operators of an e ective eld theory. In both channels, 95% CL upper limits on the SM Z jj EWK production cross-sections are placed in these highET photon phase-space regions. The 95% CL intervals on the aQGC parameters are competitive or even more stringent than previous constraints obtained with events with Z jj and di erent nal states. Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support sta from our institutions without whom ATLAS could not be operated e ciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [52]. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. LHC, Phys. Rev. D 69 (2004) 095005 [hep-ph/0310141] [INSPIRE]. and jje at O( e6m) and O( e4m s2) for the study of the quartic electroweak gauge boson vertex at CERN LHC, Phys. Rev. D 74 (2006) 073005 [hep-ph/0606118] [INSPIRE]. [INSPIRE]. Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE]. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE]. [4] C. Degrande et al., E ective eld theory: a modern approach to anomalous couplings, Annals [5] C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. [6] CMS collaboration, Search for W W and W Z production and constraints on anomalous quartic gauge couplings in pp collisions at ps = 8 TeV, Phys. Rev. D 90 (2014) 032008 [arXiv:1404.4619] [INSPIRE]. [7] ATLAS collaboration, Evidence of W Production in pp Collisions at p s = 8 TeV and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector, Phys. Rev. Lett. 115 (2015) 031802 [arXiv:1503.03243] [INSPIRE]. [8] CMS collaboration, Measurements of the pp ! W on anomalous quartic gauge couplings at p and pp ! Z cross sections and limits s = 8 TeV, arXiv:1704.00366 [INSPIRE]. [9] ATLAS collaboration, Measurements of Z and Z production in pp collisions at s = 8 TeV with the ATLAS detector, Phys. Rev. D 93 (2016) 112002 [arXiv:1604.05232] p p p [INSPIRE]. [INSPIRE]. [10] ATLAS collaboration, , Search for triboson W W W production in pp collisions at s = 8 TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 141 [arXiv:1610.05088] [11] CMS collaboration, Study of exclusive two-photon production of W +W in pp collisions at s = 7 TeV and constraints on anomalous quartic gauge couplings, JHEP 07 (2013) 116 [arXiv:1305.5596] [INSPIRE]. [12] ATLAS collaboration, Measurement of exclusive exclusive Higgs boson production in pp collisions at p ! W +W production and search for s = 8 TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032011 [arXiv:1607.03745] [INSPIRE]. [13] ATLAS collaboration, Measurement of W W vector-boson scattering and limits on anomalous quartic gauge couplings with the ATLAS detector, arXiv:1611.02428 [INSPIRE]. [14] ATLAS collaboration, Search for anomalous electroweak production of W W=W Z in association with a high-mass dijet system in pp collisions at p s = 8 TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 032001 [arXiv:1609.05122] [INSPIRE]. [15] CMS collaboration, Measurement of the cross section for electroweak production of Z in association with two jets and constraints on anomalous quartic gauge couplings in s = 8 TeV, Phys. Lett. B 770 (2017) 380 [arXiv:1702.03025] [16] CMS collaboration, Measurement of electroweak-induced production of W with two jets in s = 8 TeV and constraints on anomalous quartic gauge couplings, JHEP 06 proton{proton collisions at p [INSPIRE]. pp collisions at p (2017) 106 [arXiv:1612.09256] [INSPIRE]. [17] J.D. Bjorken, Rapidity gaps and jets as a new physics signature in very high-energy hadron hadron collisions, Phys. Rev. D 47 (1993) 101 [INSPIRE]. JINST 3 S08003 [INSPIRE]. [18] ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 [19] ATLAS collaboration, Luminosity determination in pp collisions at p s = 8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653 [arXiv:1608.03953] [INSPIRE]. 823 [arXiv:1005.4568] [INSPIRE]. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [arXiv:0811.4622] [INSPIRE]. di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [24] S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE]. [25] F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE]. [arXiv:1007.2241] [INSPIRE]. [27] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE]. [28] S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE]. [29] J.M. Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [INSPIRE]. [30] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. [31] T. Sjostrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [32] K. Melnikov, M. Schulze and A. Scharf, QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev. D 83 (2011) 074013 [arXiv:1102.1967] [INSPIRE]. [33] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003 (2012). [34] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. [35] K. Arnold et al., VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE]. [36] K. Arnold et al., VBFNLO: A parton level monte carlo for processes with electroweak bosons | Manual for version 2.7.0, arXiv:1107.4038 [INSPIRE]. [38] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using 2012 LHC proton{proton collision data, Eur. Phys. J. C 77 (2017) 195 [arXiv:1612.01456] [39] ATLAS collaboration, Electron performance measurements with the ATLAS detector using [arXiv:1110.3174] [INSPIRE]. [40] ATLAS collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton{proton collision data, Eur. Phys. J. C 74 (2014) 3130 [arXiv:1407.3935] [INSPIRE]. [INSPIRE]. [41] ATLAS collaboration, Measurement of the photon identi cation e ciencies with the ATLAS detector using LHC Run-1 data, Eur. Phys. J. C 76 (2016) 666 [arXiv:1606.01813] (2008) 063 [arXiv:0802.1189] [INSPIRE]. proton-proton collisions at p 17 [arXiv:1406.0076] [INSPIRE]. at p [arXiv:1510.03823] [INSPIRE]. [42] M. Cacciari, G.P. Salam and S. Sapeta, On the characterisation of the underlying event, JHEP 04 (2010) 065 [arXiv:0912.4926] [INSPIRE]. [43] ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross section in s = 7 TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 052005 [44] M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 [45] ATLAS collaboration, Jet energy measurement and its systematic uncertainty in s = 7 TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) [46] ATLAS collaboration, Performance of pile-up mitigation techniques for jets in pp collisions s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581 [arXiv:1007.1727] [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. ATL-GEN-PUB-2016-002 (2016). [47] ATLAS collaboration, Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS, Eur. Phys. J. C 72 (2012) 1844 [arXiv:1108.5602] [INSPIRE]. [48] F. Campanario, M. Kerner and D. Zeppenfeld, ZA production in vector-boson scattering at next-to-leading order QCD, arXiv:1704.01921 [INSPIRE]. [49] (NIKHEF, Amsterdam), HistFactory: A tool for creating statistical models for use with RooFit and RooStats, CERN-OPEN-2012-016 (2012). [50] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [51] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 [52] ATLAS collaboration, ATLAS Computing Acknowledgements 2016-2017, M. Aaboud137d, G. Aad88, B. Abbott115, J. Abdallah8, O. Abdinov12; , B. Abeloos119, S.H. Abidi161, O.S. AbouZeid139, N.L. Abraham151, H. Abramowicz155, H. Abreu154, R. Abreu118, Y. Abulaiti148a,148b, B.S. Acharya167a,167b;a, S. Adachi157, L. Adamczyk41a, J. Adelman110, M. Adersberger102, T. Adye133, A.A. A older139, T. Agatonovic-Jovin14, C. Agheorghiesei28c, J.A. Aguilar-Saavedra128a,128f, S.P. Ahlen24, F. Ahmadov68;b, G. Aielli135a,135b, S. Akatsuka71, H. Akerstedt148a,148b, T.P.A. Akesson84, A.V. Akimov98, G.L. Alberghi22a,22b, J. Albert172, M.J. Alconada Verzini74, M. Aleksa32, I.N. Aleksandrov68, C. Alexa28b, G. Alexander155, T. Alexopoulos10, M. Alhroob115, B. Ali130, M. Aliev76a,76b, G. Alimonti94a, J. Alison33, S.P. Alkire38, B.M.M. Allbrooke151, B.W. Allen118, P.P. Allport19, A. Aloisio106a,106b, A. Alonso39, F. Alonso74, C. Alpigiani140, A.A. Alshehri56, M. Alstaty88, B. Alvarez Gonzalez32, D. Alvarez Piqueras170, M.G. Alviggi106a,106b, B.T. Amadio16, Y. Amaral Coutinho26a, C. Amelung25, D. Amidei92, S.P. Amor Dos Santos128a,128c, A. Amorim128a,128b, S. Amoroso32, G. Amundsen25, C. Anastopoulos141, L.S. Ancu52, N. Andari19, T. Andeen11, C.F. Anders60b, J.K. Anders77, K.J. Anderson33, A. Andreazza94a,94b, V. Andrei60a, S. Angelidakis9, I. Angelozzi109, A. Angerami38, A.V. Anisenkov111;c, N. Anjos13, A. Annovi126a,126b, C. Antel60a, M. Antonelli50, A. Antonov100; , D.J. Antrim166, F. Anulli134a, M. Aoki69, L. Aperio Bella32, G. Arabidze93, Y. Arai69, J.P. Araque128a, V. Araujo Ferraz26a, A.T.H. Arce48, R.E. Ardell80, F.A. Arduh74, J-F. Arguin97, S. Argyropoulos66, M. Arik20a, A.J. Armbruster145, L.J. Armitage79, O. Arnaez161, H. Arnold51, M. Arratia30, O. Arslan23, A. Artamonov99, G. Artoni122, S. Artz86, S. Asai157, N. Asbah45, A. Ashkenazi155, L. Asquith151, K. Assamagan27, R. Astalos146a, M. Atkinson169, N.B. Atlay143, K. Augsten130, G. Avolio32, B. Axen16, M.K. Ayoub119, G. Azuelos97;d, A.E. Baas60a, M.J. Baca19, H. Bachacou138, K. Bachas76a,76b, M. Backes122, M. Backhaus32, P. Bagiacchi134a,134b, P. Bagnaia134a,134b, H. Bahrasemani144, J.T. Baines133, M. Bajic39, O.K. Baker179, E.M. Baldin111;c, P. Balek175, T. Balestri150, F. Balli138, W.K. Balunas124, E. Banas42, Sw. Banerjee176;e, A.A.E. Bannoura178, L. Barak32, E.L. Barberio91, D. Barberis53a,53b, M. Barbero88, T. Barillari103, M-S Barisits32, T. Barklow145, N. Barlow30, S.L. Barnes36c, B.M. Barnett133, R.M. Barnett16, Z. Barnovska-Blenessy36a, A. Baroncelli136a, G. Barone25, A.J. Barr122, L. Barranco Navarro170, F. Barreiro85, J. Barreiro Guimar~aes da Costa35a, R. Bartoldus145, A.E. Barton75, P. Bartos146a, A. Basalaev125, A. Bassalat119;f , R.L. Bates56, S.J. Batista161, J.R. Batley30, M. Battaglia139, M. Bauce134a,134b, F. Bauer138, H.S. Bawa145;g, J.B. Beacham113, M.D. Beattie75, T. Beau83, P.H. Beauchemin165, P. Bechtle23, H.P. Beck18;h, K. Becker122, M. Becker86, M. Beckingham173, C. Becot112, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov68, M. Bedognetti109, C.P. Bee150, T.A. Beermann32, M. Begalli26a, M. Begel27, J.K. Behr45, A.S. Bell81, G. Bella155, L. Bellagamba22a, A. Bellerive31, M. Bellomo154, K. Belotskiy100, O. Beltramello32, N.L. Belyaev100, O. Benary155; , D. Benchekroun137a, M. Bender102, K. Bendtz148a,148b, N. Benekos10, Y. Benhammou155, E. Benhar Noccioli179, J. Benitez66, D.P. Benjamin48, M. Benoit52, J.R. Bensinger25, S. Bentvelsen109, L. Beresford122, M. Beretta50, D. Berge109, E. Bergeaas Kuutmann168, N. Berger5, J. Beringer16, S. Berlendis58, N.R. Bernard89, G. Bernardi83, C. Bernius145, F.U. Bernlochner23, T. Berry80, P. Berta131, C. Bertella35a, G. Bertoli148a,148b, F. Bertolucci126a,126b, I.A. Bertram75, C. Bertsche45, D. Bertsche115, G.J. Besjes39, O. Bessidskaia Bylund148a,148b, M. Bessner45, N. Besson138, C. Betancourt51, A. Bethani87, S. Bethke103, A.J. Bevan79, R.M. Bianchi127, O. Biebel102, D. Biedermann17, R. Bielski87, N.V. Biesuz126a,126b, M. Biglietti136a, J. Bilbao De Mendizabal52, T.R.V. Billoud97, H. Bilokon50, M. Bindi57, A. Bingul20b, C. Bini134a,134b, S. Biondi22a,22b, T. Bisanz57, C. Bittrich47, D.M. Bjergaard48, C.W. Black152, J.E. Black145, K.M. Black24, HJEP07(21) U. Blumenschein79, S. Blunier34a, G.J. Bobbink109, V.S. Bobrovnikov111;c, S.S. Bocchetta84, A. Bocci48, C. Bock102, M. Boehler51, D. Boerner178, D. Bogavac102, A.G. Bogdanchikov111, C. Bohm148a, V. Boisvert80, P. Bokan168;i, T. Bold41a, A.S. Boldyrev101, A.E. Bolz60b, M. Bomben83, M. Bona79, M. Boonekamp138, A. Borisov132, G. Borissov75, J. Bortfeldt32, D. Bortoletto122, V. Bortolotto62a,62b,62c, D. Boscherini22a, M. Bosman13, J.D. Bossio Sola29, J. Boudreau127, J. Bou ard2, E.V. Bouhova-Thacker75, D. Boumediene37, C. Bourdarios119, S.K. Boutle56, A. Boveia113, J. Boyd32, I.R. Boyko68, J. Bracinik19, A. Brandt8, G. Brandt57, O. Brandt60a, U. Bratzler158, B. Brau89, J.E. Brau118, W.D. Breaden Madden56, K. Brendlinger45, A.J. Brennan91, L. Brenner109, R. Brenner168, S. Bressler175, D.L. Briglin19, T.M. Bristow49, D. Britton56, D. Britzger45, F.M. Brochu30, I. Brock23, R. Brock93, G. Brooijmans38, T. Brooks80, W.K. Brooks34b, J. Brosamer16, E. Brost110, J.H Broughton19, P.A. Bruckman de Renstrom42, D. Bruncko146b, A. Bruni22a, G. Bruni22a, L.S. Bruni109, BH Brunt30, M. Bruschi22a, N. Bruscino23, P. Bryant33, L. Bryngemark84, T. Buanes15, Q. Buat144, P. Buchholz143, A.G. Buckley56, I.A. Budagov68, F. Buehrer51, M.K. Bugge121, O. Bulekov100, D. Bullock8, H. Burckhart32, S. Burdin77, C.D. Burgard51, A.M. Burger5, B. Burghgrave110, K. Burka42, S. Burke133, I. Burmeister46, J.T.P. Burr122, E. Busato37, D. Buscher51, V. Buscher86, P. Bussey56, J.M. Butler24, C.M. Buttar56, J.M. Butterworth81, P. Butti32, W. Buttinger27, A. Buzatu35c, A.R. Buzykaev111;c, S. Cabrera Urban170, D. Caforio130, V.M. Cairo40a,40b, O. Cakir4a, N. Calace52, P. Cala ura16, A. Calandri88, G. Calderini83, P. Calfayan64, G. Callea40a,40b, L.P. Caloba26a, S. Calvente Lopez85, D. Calvet37, S. Calvet37, T.P. Calvet88, R. Camacho Toro33, S. Camarda32, P. Camarri135a,135b, D. Cameron121, R. Caminal Armadans169, C. Camincher58, S. Campana32, M. Campanelli81, A. Camplani94a,94b, A. Campoverde143, V. Canale106a,106b, M. Cano Bret36c, J. Cantero116, T. Cao155, M.D.M. Capeans Garrido32, I. Caprini28b, M. Caprini28b, M. Capua40a,40b, R.M. Carbone38, R. Cardarelli135a, F. Cardillo51, I. Carli131, T. Carli32, G. Carlino106a, B.T. Carlson127, L. Carminati94a,94b, R.M.D. Carney148a,148b, S. Caron108, E. Carquin34b, S. Carra94a,94b, G.D. Carrillo-Montoya32, J. Carvalho128a,128c, D. Casadei19, M.P. Casado13;j , M. Casolino13, D.W. Casper166, R. Castelijn109, A. Castelli109, V. Castillo Gimenez170, N.F. Castro128a;k, A. Catinaccio32, J.R. Catmore121, A. Cattai32, J. Caudron23, V. Cavaliere169, E. Cavallaro13, D. Cavalli94a, M. Cavalli-Sforza13, V. Cavasinni126a,126b, E. Celebi20a, F. Ceradini136a,136b, L. Cerda Alberich170, A.S. Cerqueira26b, A. Cerri151, L. Cerrito135a,135b, F. Cerutti16, A. Cervelli18, S.A. Cetin20d, A. Chafaq137a, D. Chakraborty110, S.K. Chan59, W.S. Chan109, Y.L. Chan62a, P. Chang169, J.D. Chapman30, D.G. Charlton19, A. Chatterjee52, C.C. Chau161, C.A. Chavez Barajas151, S. Che113, S. Cheatham167a,167c, A. Chegwidden93, S. Chekanov6, S.V. Chekulaev163a, G.A. Chelkov68;l, M.A. Chelstowska32, C. Chen67, H. Chen27, S. Chen35b, S. Chen157, X. Chen35c;m, Y. Chen70, H.C. Cheng92, H.J. Cheng35a, Y. Cheng33, A. Cheplakov68, E. Cheremushkina132, R. Cherkaoui El Moursli137e, V. Chernyatin27; , E. Cheu7, L. Chevalier138, V. Chiarella50, G. Chiarelli126a,126b, G. Chiodini76a, A.S. Chisholm32, A. Chitan28b, Y.H. Chiu172, M.V. Chizhov68, K. Choi64, A.R. Chomont37, S. Chouridou156, B.K.B. Chow102, V. Christodoulou81, D. Chromek-Burckhart32, M.C. Chu62a, J. Chudoba129, A.J. Chuinard90, J.J. Chwastowski42, L. Chytka117, A.K. Ciftci4a, D. Cinca46, V. Cindro78, I.A. Cioara23, C. Ciocca22a,22b, A. Ciocio16, F. Cirotto106a,106b, Z.H. Citron175, M. Citterio94a, M. Ciubancan28b, A. Clark52, B.L. Clark59, M.R. Clark38, P.J. Clark49, R.N. Clarke16, C. Clement148a,148b, Y. Coadou88, M. Cobal167a,167c, A. Coccaro52, J. Cochran67, L. Colasurdo108, B. Cole38, A.P. Colijn109, J. Collot58, T. Colombo166, P. Conde Muin~o128a,128b, E. Coniavitis51, S.H. Connell147b, I.A. Connelly87, V. Consorti51, S. Constantinescu28b, G. Conti32, F. Conventi106a;n, M. Cooke16, B.D. Cooper81, A.M. Cooper-Sarkar122, HJEP07(21) G. Cortiana103, G. Costa94a, M.J. Costa170, D. Costanzo141, G. Cottin30, G. Cowan80, D. De Pedis134a, A. De Salvo134a, U. De Sanctis135a,135b, A. De Santo151, K. De Vasconcelos Corga88, J.B. De Vivie De Regie119, W.J. Dearnaley75, R. Debbe27, C. Debenedetti139, D.V. Dedovich68, N. Dehghanian3, I. Deigaard109, M. Del Gaudio40a,40b, J. Del Peso85, T. Del Prete126a,126b, D. Delgove119, F. Deliot138, C.M. Delitzsch52, A. Dell'Acqua32, L. Dell'Asta24, M. Dell'Orso126a,126b, M. Della Pietra106a,106b, D. della Volpe52, M. Delmastro5, C. Delporte119, P.A. Delsart58, D.A. DeMarco161, S. Demers179, M. Demichev68, A. Demilly83, S.P. Denisov132, D. Denysiuk138, D. Derendarz42, J.E. Derkaoui137d, F. Derue83, P. Dervan77, K. Desch23, C. Deterre45, K. Dette46, P.O. Deviveiros32, A. Dewhurst133, S. Dhaliwal25, A. Di Ciaccio135a,135b, L. Di Ciaccio5, W.K. Di Clemente124, C. Di Donato106a,106b, A. Di Girolamo32, B. Di Girolamo32, B. Di Micco136a,136b, R. Di Nardo32, K.F. Di Petrillo59, A. Di Simone51, R. Di Sipio161, D. Di Valentino31, C. Diaconu88, M. Diamond161, F.A. Dias49, M.A. Diaz34a, E.B. Diehl92, J. Dietrich17, S. D ez Cornell45, A. Dimitrievska14, J. Dingfelder23, P. Dita28b, S. Dita28b, F. Dittus32, F. Djama88, T. Djobava54b, J.I. Djuvsland60a, M.A.B. do Vale26c, D. Dobos32, M. Dobre28b, C. Doglioni84, J. Dolejsi131, Z. Dolezal131, M. Donadelli26d, S. Donati126a,126b, P. Dondero123a,123b, J. Donini37, J. Dopke133, A. Doria106a, M.T. Dova74, A.T. Doyle56, E. Drechsler57, M. Dris10, Y. Du36b, J. Duarte-Campderros155, E. Duchovni175, G. Duckeck102, A. Ducourthial83, O.A. Ducu97;p, D. Duda109, A. Dudarev32, A.Chr. Dudder86, E.M. Du eld16, L. Du ot119, M. Duhrssen32, M. Dumancic175, A.E. Dumitriu28b, A.K. Duncan56, M. Dunford60a, H. Duran Yildiz4a, M. Duren55, A. Durglishvili54b, D. Duschinger47, B. Dutta45, M. Dyndal45, C. Eckardt45, K.M. Ecker103, R.C. Edgar92, T. Eifert32, G. Eigen15, K. Einsweiler16, T. Ekelof168, M. El Kacimi137c, R. El Kossei 88, V. Ellajosyula88, M. Ellert168, S. Elles5, F. Ellinghaus178, A.A. Elliot172, N. Ellis32, J. Elmsheuser27, M. Elsing32, D. Emeliyanov133, Y. Enari157, O.C. Endner86, J.S. Ennis173, J. Erdmann46, A. Ereditato18, G. Ernis178, M. Ernst27, S. Errede169, E. Ertel86, M. Escalier119, H. Esch46, C. Escobar127, B. Esposito50, O. Estrada Pastor170, A.I. Etienvre138, E. Etzion155, H. Evans64, A. Ezhilov125, M. Ezzi137e, F. Fabbri22a,22b, L. Fabbri22a,22b, G. Facini33, R.M. Fakhrutdinov132, S. Falciano134a, R.J. Falla81, J. Faltova32, Y. Fang35a, M. Fanti94a,94b, A. Farbin8, A. Farilla136a, C. Farina127, E.M. Farina123a,123b, T. Farooque93, S. Farrell16, S.M. Farrington173, P. Farthouat32, F. Fassi137e, P. Fassnacht32, D. Fassouliotis9, M. Faucci Giannelli80, A. Favareto53a,53b, W.J. Fawcett122, L. Fayard119, O.L. Fedin125;q, W. Fedorko171, S. Feigl121, L. Feligioni88, C. Feng36b, E.J. Feng32, H. Feng92, A.B. Fenyuk132, L. Feremenga8, P. Fernandez Martinez170, S. Fernandez Perez13, J. Ferrando45, A. Ferrari168, P. Ferrari109, R. Ferrari123a, D.E. Ferreira de Lima60b, A. Ferrer170, D. Ferrere52, C. Ferretti92, F. Fiedler86, A. Filipcic78, M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172, K.D. Finelli152, M.C.N. Fiolhais128a,128c;r, HJEP07(21) P. Fleischmann92, R.R.M. Fletcher124, T. Flick178, B.M. Flierl102, L.R. Flores Castillo62a, M.J. Flowerdew103, G.T. Forcolin87, A. Formica138, F.A. Forster13, A. Forti87, A.G. Foster19, D. Fournier119, H. Fox75, S. Fracchia141, P. Francavilla83, M. Franchini22a,22b, S. Franchino60a, D. Francis32, L. Franconi121, M. Franklin59, M. Frate166, M. Fraternali123a,123b, D. Freeborn81, S.M. Fressard-Batraneanu32, B. Freund97, D. Froidevaux32, J.A. Frost122, C. Fukunaga158, T. Fusayasu104, J. Fuster170, C. Gabaldon58, O. Gabizon154, A. Gabrielli22a,22b, A. Gabrielli16, G.P. Gach41a, S. Gadatsch32, S. Gadomski80, G. Gagliardi53a,53b, L.G. Gagnon97, P. Gagnon64, C. Galea108, B. Galhardo128a,128c, E.J. Gallas122, B.J. Gallop133, P. Gallus130, G. Galster39, K.K. Gan113, S. Ganguly37, J. Gao36a, Y. Gao77, Y.S. Gao145;g, F.M. Garay Walls49, C. Garc a170, J.E. Garc a Navarro170, M. Garcia-Sciveres16, R.W. Gardner33, N. Garelli145, V. Garonne121, A. Gascon Bravo45, K. Gasnikova45, C. Gatti50, A. Gaudiello53a,53b, G. Gaudio123a, I.L. Gavrilenko98, C. Gay171, G. Gaycken23, E.N. Gazis10, C.N.P. Gee133, M. Geisen86, M.P. Geisler60a, K. Gellerstedt148a,148b, C. Gemme53a, M.H. Genest58, C. Geng36a;s, S. Gentile134a,134b, C. Gentsos156, S. George80, D. Gerbaudo13, A. Gershon155, S. Ghasemi143, M. Ghneimat23, B. Giacobbe22a, S. Giagu134a,134b, P. Giannetti126a,126b, S.M. Gibson80, M. Gignac171, M. Gilchriese16, D. Gillberg31, G. Gilles178, D.M. Gingrich3;d, N. Giokaris9; , M.P. Giordani167a,167c, F.M. Giorgi22a, P.F. Giraud138, P. Giromini59, D. Giugni94a, F. Giuli122, C. Giuliani103, M. Giulini60b, B.K. Gjelsten121, S. Gkaitatzis156, I. Gkialas9, E.L. Gkougkousis139, L.K. Gladilin101, C. Glasman85, J. Glatzer13, P.C.F. Glaysher45, A. Glazov45, M. Goblirsch-Kolb25, J. Godlewski42, S. Goldfarb91, T. Golling52, D. Golubkov132, A. Gomes128a,128b,128d, R. Goncalo128a, R. Goncalves Gama26a, J. Goncalves Pinto Firmino Da Costa138, G. Gonella51, L. Gonella19, A. Gongadze68, S. Gonzalez de la Hoz170, S. Gonzalez-Sevilla52, L. Goossens32, P.A. Gorbounov99, H.A. Gordon27, I. Gorelov107, B. Gorini32, E. Gorini76a,76b, A. Gorisek78, A.T. Goshaw48, C. Gossling46, M.I. Gostkin68, C.R. Goudet119, D. Goujdami137c, A.G. Goussiou140, N. Govender147b;t, E. Gozani154, L. Graber57, I. Grabowska-Bold41a, P.O.J. Gradin168, J. Gramling52, E. Gramstad121, S. Grancagnolo17, V. Gratchev125, P.M. Gravila28f, C. Gray56, H.M. Gray32, Z.D. Greenwood82;u, C. Grefe23, K. Gregersen81, I.M. Gregor45, P. Grenier145, K. Grevtsov5, J. Gri ths8, A.A. Grillo139, K. Grimm75, S. Grinstein13;v, Ph. Gris37, J.-F. Grivaz119, S. Groh86, E. Gross175, J. Grosse-Knetter57, G.C. Grossi82, Z.J. Grout81, A. Grummer107, L. Guan92, W. Guan176, J. Guenther65, F. Guescini163a, D. Guest166, O. Gueta155, B. Gui113, E. Guido53a,53b, T. Guillemin5, S. Guindon2, U. Gul56, C. Gumpert32, J. Guo36c, W. Guo92, Y. Guo36a, R. Gupta43, S. Gupta122, G. Gustavino134a,134b, P. Gutierrez115, N.G. Gutierrez Ortiz81, C. Gutschow81, C. Guyot138, M.P. Guzik41a, C. Gwenlan122, C.B. Gwilliam77, A. Haas112, C. Haber16, H.K. Hadavand8, N. Haddad137e, A. Hadef88, S. Hagebock23, M. Hagihara164, H. Hakobyan180; , M. Haleem45, J. Haley116, G. Halladjian93, G.D. Hallewell88, K. Hamacher178, P. Hamal117, K. Hamano172, A. Hamilton147a, G.N. Hamity141, P.G. Hamnett45, L. Han36a, S. Han35a, K. Hanagaki69;w, K. Hanawa157, M. Hance139, B. Haney124, P. Hanke60a, J.B. Hansen39, J.D. Hansen39, M.C. Hansen23, P.H. Hansen39, K. Hara164, A.S. Hard176, T. Harenberg178, F. Hariri119, S. Harkusha95, R.D. Harrington49, P.F. Harrison173, N.M. Hartmann102, M. Hasegawa70, Y. Hasegawa142, A. Hasib49, S. Hassani138, S. Haug18, R. Hauser93, L. Hauswald47, L.B. Havener38, M. Havranek130, C.M. Hawkes19, R.J. Hawkings32, D. Hayakawa159, D. Hayden93, C.P. Hays122, J.M. Hays79, H.S. Hayward77, S.J. Haywood133, S.J. Head19, T. Heck86, V. Hedberg84, L. Heelan8, K.K. Heidegger51, S. Heim45, T. Heim16, B. Heinemann45;x, J.J. Heinrich102, L. Heinrich112, C. Heinz55, J. Hejbal129, L. Helary32, A. Held171, S. Hellman148a,148b, C. Helsens32, J. Henderson122, R.C.W. Henderson75, Y. Heng176, HJEP07(21) V. Herget177, Y. Hernandez Jimenez147c, G. Herten51, R. Hertenberger102, L. Hervas32, T.C. Herwig124, G.G. Hesketh81, N.P. Hessey163a, J.W. Hetherly43, S. Higashino69, E. Higon-Rodriguez170, E. Hill172, J.C. Hill30, K.H. Hiller45, S.J. Hillier19, I. Hinchli e16, M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49, J. Hobbs150, N. Hod163a, M.C. Hodgkinson141, P. Hodgson141, A. Hoecker32, M.R. Hoeferkamp107, F. Hoenig102, D. Hohn23, T.R. Holmes16, M. Homann46, S. Honda164, T. Honda69, T.M. Hong127, B.H. Hooberman169, W.H. Hopkins118, Y. Horii105, A.J. Horton144, J-Y. Hostachy58, S. Hou153, A. Hoummada137a, J. Howarth45, J. Hoya74, M. Hrabovsky117, I. Hristova17, J. Hrivnac119, T. Hryn'ova5, A. Hrynevich96, P.J. Hsu63, S.-C. Hsu140, Q. Hu36a, S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, F. Huegging23, T.B. Hu man122, E.W. Hughes38, G. Hughes75, M. Huhtinen32, P. Huo150, N. Huseynov68;b, J. Huston93, J. Huth59, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143, L. Iconomidou-Fayard119, Z. Idrissi137e, P. Iengo32, O. Igonkina109;y, T. Iizawa174, Y. Ikegami69, M. Ikeno69, Y. Ilchenko11;z, D. Iliadis156, N. Ilic145, G. Introzzi123a,123b, P. Ioannou9; , M. Iodice136a, K. Iordanidou38, V. Ippolito59, M.F. Isacson168, N. Ishijima120, M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a, F. Ito164, J.M. Iturbe Ponce87, R. Iuppa162a,162b, H. Iwasaki69, J.M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1, V. Jain2, K.B. Jakobi86, K. Jakobs51, S. Jakobsen32, T. Jakoubek129, D.O. Jamin116, D.K. Jana82, R. Jansky65, J. Janssen23, M. Janus57, P.A. Janus41a, G. Jarlskog84, N. Javadov68;b, T. Javurek51, M. Javurkova51, F. Jeanneau138, L. Jeanty16, J. Jejelava54a;aa, A. Jelinskas173, P. Jenni51;ab, C. Jeske173, S. Jezequel5, H. Ji176, J. Jia150, H. Jiang67, Y. Jiang36a, Z. Jiang145, S. Jiggins81, J. Jimenez Pena170, S. Jin35a, A. Jinaru28b, O. Jinnouchi159, H. Jivan147c, P. Johansson141, K.A. Johns7, C.A. Johnson64, W.J. Johnson140, K. Jon-And148a,148b, R.W.L. Jones75, S.D. Jones151, S. Jones7, T.J. Jones77, J. Jongmanns60a, P.M. Jorge128a,128b, J. Jovicevic163a, X. Ju176, A. Juste Rozas13;v, M.K. Kohler175, A. Kaczmarska42, M. Kado119, H. Kagan113, M. Kagan145, S.J. Kahn88, T. Kaji174, E. Kajomovitz48, C.W. Kalderon84, A. Kaluza86, S. Kama43, A. Kamenshchikov132, N. Kanaya157, S. Kaneti30, L. Kanjir78, V.A. Kantserov100, J. Kanzaki69, B. Kaplan112, L.S. Kaplan176, D. Kar147c, K. Karakostas10, N. Karastathis10, M.J. Kareem57, E. Karentzos10, S.N. Karpov68, Z.M. Karpova68, K. Karthik112, V. Kartvelishvili75, A.N. Karyukhin132, K. Kasahara164, L. Kashif176, R.D. Kass113, A. Kastanas149, Y. Kataoka157, C. Kato157, A. Katre52, J. Katzy45, K. Kawade105, K. Kawagoe73, T. Kawamoto157, G. Kawamura57, E.F. Kay77, V.F. Kazanin111;c, R. Keeler172, R. Kehoe43, J.S. Keller45, J.J. Kempster80, H. Keoshkerian161, O. Kepka129, B.P. Kersevan78, S. Kersten178, R.A. Keyes90, M. Khader169, F. Khalil-zada12, A. Khanov116, A.G. Kharlamov111;c, T. Kharlamova111;c, A. Khodinov160, T.J. Khoo52, V. Khovanskiy99; , E. Khramov68, J. Khubua54b;ac, S. Kido70, C.R. Kilby80, H.Y. Kim8, S.H. Kim164, Y.K. Kim33, N. Kimura156, O.M. Kind17, B.T. King77, D. Kirchmeier47, J. Kirk133, A.E. Kiryunin103, T. Kishimoto157, D. Kisielewska41a, K. Kiuchi164, O. Kivernyk5, E. Kladiva146b, T. Klapdor-Kleingrothaus51, M.H. Klein38, M. Klein77, U. Klein77, K. Kleinknecht86, P. Klimek110, A. Klimentov27, R. Klingenberg46, T. Klingl23, T. Klioutchnikova32, E.-E. Kluge60a, P. Kluit109, S. Kluth103, J. Knapik42, E. Kneringer65, E.B.F.G. Knoops88, A. Knue103, A. Kobayashi157, D. Kobayashi159, T. Kobayashi157, M. Kobel47, M. Kocian145, P. Kodys131, T. Ko as31, E. Ko eman109, N.M. Kohler103, T. Koi145, M. Kolb60b, I. Koletsou5, A.A. Komar98; , Y. Komori157, T. Kondo69, N. Kondrashova36c, K. Koneke51, A.C. Konig108, T. Kono69;ad, R. Konoplich112;ae, N. Konstantinidis81, R. Kopeliansky64, S. Koperny41a, A.K. Kopp51, K. Korcyl42, K. Kordas156, A. Korn81, A.A. Korol111;c, I. Korolkov13, E.V. Korolkova141, O. Kortner103, S. Kortner103, T. Kosek131, V.V. Kostyukhin23, A. Kotwal48, A. Koulouris10, A. Kourkoumeli-Charalampidi123a,123b, C. Kourkoumelis9, E. Kourlitis141, HJEP07(21) W. Kozanecki138, A.S. Kozhin132, V.A. Kramarenko101, G. Kramberger78, D. Krasnopevtsev100, M.W. Krasny83, A. Krasznahorkay32, D. Krauss103, A. Kravchenko27, J.A. Kremer41a, M. Kretz60c, J. Kretzschmar77, K. Kreutzfeldt55, P. Krieger161, K. Krizka33, K. Kroeninger46, H. Kroha103, J. Kroll129, J. Kroll124, J. Kroseberg23, J. Krstic14, U. Kruchonak68, H. Kruger23, N. Krumnack67, M.C. Kruse48, M. Kruskal24, T. Kubota91, H. Kucuk81, S. Kuday4b, J.T. Kuechler178, S. Kuehn32, A. Kugel60c, F. Kuger177, T. Kuhl45, V. Kukhtin68, R. Kukla88, Y. Kulchitsky95, S. Kuleshov34b, Y.P. Kulinich169, M. Kuna134a,134b, T. Kunigo71, A. Kupco129, O. Kuprash155, H. Kurashige70, L.L. Kurchaninov163a, Y.A. Kurochkin95, M.G. Kurth35a, V. Kus129, E.S. Kuwertz172, M. Kuze159, J. Kvita117, T. Kwan172, D. Kyriazopoulos141, A. La Rosa103, J.L. La Rosa Navarro26d, L. La Rotonda40a,40b, C. Lacasta170, F. Lacava134a,134b, J. Lacey45, H. Lacker17, D. Lacour83, E. Ladygin68, R. Lafaye5, B. Laforge83, T. Lagouri179, S. Lai57, S. Lammers64, W. Lampl7, E. Lancon27, U. Landgraf51, M.P.J. Landon79, M.C. Lanfermann52, V.S. Lang60a, J.C. Lange13, A.J. Lankford166, F. Lanni27, K. Lantzsch23, A. Lanza123a, A. Lapertosa53a,53b, S. Laplace83, J.F. Laporte138, T. Lari94a, F. Lasagni Manghi22a,22b, M. Lassnig32, P. Laurelli50, W. Lavrijsen16, A.T. Law139, P. Laycock77, T. Lazovich59, M. Lazzaroni94a,94b, B. Le91, O. Le Dortz83, E. Le Guirriec88, E.P. Le Quilleuc138, M. LeBlanc172, T. LeCompte6, F. Ledroit-Guillon58, C.A. Lee27, G.R. Lee133;af , S.C. Lee153, L. Lee59, B. Lefebvre90, G. Lefebvre83, M. Lefebvre172, F. Legger102, C. Leggett16, A. Lehan77, G. Lehmann Miotto32, X. Lei7, W.A. Leight45, M.A.L. Leite26d, R. Leitner131, D. Lellouch175, B. Lemmer57, K.J.C. Leney81, T. Lenz23, B. Lenzi32, R. Leone7, S. Leone126a,126b, C. Leonidopoulos49, G. Lerner151, C. Leroy97, A.A.J. Lesage138, C.G. Lester30, M. Levchenko125, J. Lev^eque5, D. Levin92, L.J. Levinson175, M. Levy19, D. Lewis79, B. Li36a;s, C. Li36a, H. Li150, L. Li36c, Q. Li35a, S. Li48, X. Li36c, Y. Li143, Z. Liang35a, B. Liberti135a, A. Liblong161, K. Lie62c, J. Liebal23, W. Liebig15, A. Limosani152, S.C. Lin153;ag, T.H. Lin86, B.E. Lindquist150, A.E. Lionti52, E. Lipeles124, A. Lipniacka15, M. Lisovyi60b, T.M. Liss169, A. Lister171, A.M. Litke139, B. Liu153;ah, H. Liu92, H. Liu27, J.K.K. Liu122, J. Liu36b, J.B. Liu36a, K. Liu88, L. Liu169, M. Liu36a, Y.L. Liu36a, Y. Liu36a, M. Livan123a,123b, A. Lleres58, J. Llorente Merino35a, S.L. Lloyd79, C.Y. Lo62b, F. Lo Sterzo153, E.M. Lobodzinska45, P. Loch7, F.K. Loebinger87, K.M. Loew25, A. Loginov179; , T. Lohse17, K. Lohwasser45, M. Lokajicek129, B.A. Long24, J.D. Long169, R.E. Long75, L. Longo76a,76b, K.A. Looper113, J.A. Lopez34b, D. Lopez Mateos59, I. Lopez Paz13, A. Lopez Solis83, J. Lorenz102, N. Lorenzo Martinez5, M. Losada21, P.J. Losel102, X. Lou35a, A. Lounis119, J. Love6, P.A. Love75, H. Lu62a, N. Lu92, Y.J. Lu63, H.J. Lubatti140, C. Luci134a,134b, A. Lucotte58, C. Luedtke51, F. Luehring64, W. Lukas65, L. Luminari134a, O. Lundberg148a,148b, B. Lund-Jensen149, P.M. Luzi83, D. Lynn27, R. Lysak129, E. Lytken84, V. Lyubushkin68, H. Ma27, L.L. Ma36b, Y. Ma36b, G. Maccarrone50, A. Macchiolo103, C.M. Macdonald141, B. Macek78, J. Machado Miguens124,128b, D. Mada ari88, R. Madar37, H.J. Maddocks168, W.F. Mader47, A. Madsen45, J. Maeda70, S. Maeland15, T. Maeno27, A.S. Maevskiy101, E. Magradze57, J. Mahlstedt109, C. Maiani119, C. Maidantchik26a, A.A. Maier103, T. Maier102, A. Maio128a,128b,128d, S. Majewski118, Y. Makida69, N. Makovec119, B. Malaescu83, Pa. Malecki42, V.P. Maleev125, F. Malek58, U. Mallik66, D. Malon6, C. Malone30, S. Maltezos10, S. Malyukov32, J. Mamuzic170, G. Mancini50, L. Mandelli94a, I. Mandic78, J. Maneira128a,128b, L. Manhaes de Andrade Filho26b, J. Manjarres Ramos163b, A. Mann102, A. Manousos32, B. Mansoulie138, J.D. Mansour35a, R. Mantifel90, M. Mantoani57, S. Manzoni94a,94b, L. Mapelli32, G. Marceca29, L. March52, L. Marchese122, G. Marchiori83, M. Marcisovsky129, M. Marjanovic37, D.E. Marley92, F. Marroquim26a, S.P. Marsden87, Z. Marshall16, M.U.F Martensson168, S. Marti-Garcia170, C.B. Martin113, T.A. Martin173, V.J. Martin49, B. Martin dit Latour15, M. Martinez13;v, HJEP07(21) A. Marzin32, L. Masetti86, T. Mashimo157, R. Mashinistov98, J. Masik87, A.L. Maslennikov111;c, L. Massa135a,135b, P. Mastrandrea5, A. Mastroberardino40a,40b, T. Masubuchi157, P. Mattig178, J. Maurer28b, S.J. Max eld77, D.A. Maximov111;c, R. Mazini153, I. Maznas156, S.M. Mazza94a,94b, N.C. Mc Fadden107, G. Mc Goldrick161, S.P. Mc Kee92, A. McCarn92, R.L. McCarthy150, T.G. McCarthy103, L.I. McClymont81, E.F. McDonald91, J.A. Mcfayden81, G. Mchedlidze57, S.J. McMahon133, P.C. McNamara91, R.A. McPherson172;o, S. Meehan140, T.J. Megy51, S. Mehlhase102, A. Mehta77, T. Meideck58, K. Meier60a, C. Meineck102, B. Meirose44, D. Melini170;ai, B.R. Mellado Garcia147c, M. Melo146a, F. Meloni18, S.B. Menary87, L. Meng77, X.T. Meng92, A. Mengarelli22a,22b, S. Menke103, E. Meoni40a,40b, S. Mergelmeyer17, P. Mermod52, L. Merola106a,106b, C. Meroni94a, F.S. Merritt33, A. Messina134a,134b, J. Metcalfe6, A.S. Mete166, C. Meyer124, J-P. Meyer138, J. Meyer109, H. Meyer Zu Theenhausen60a, F. Miano151, R.P. Middleton133, S. Miglioranzi53a,53b, L. Mijovic49, G. Mikenberg175, M. Mikestikova129, M. Mikuz78, M. Milesi91, A. Milic27, D.W. Miller33, C. Mills49, A. Milov175, D.A. Milstead148a,148b, A.A. Minaenko132, Y. Minami157, I.A. Minashvili68, A.I. Mincer112, B. Mindur41a, M. Mineev68, Y. Minegishi157, Y. Ming176, L.M. Mir13, K.P. Mistry124, T. Mitani174, J. Mitrevski102, V.A. Mitsou170, A. Miucci18, P.S. Miyagawa141, A. Mizukami69, J.U. Mjornmark84, M. Mlynarikova131, T. Moa148a,148b, K. Mochizuki97, P. Mogg51, S. Mohapatra38, S. Molander148a,148b, R. Moles-Valls23, R. Monden71, M.C. Mondragon93, K. Monig45, J. Monk39, E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, F. Monticelli74, S. Monzani94a,94b, R.W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llacer57, P. Morettini53a, S. Morgenstern32, D. Mori144, T. Mori157, M. Morii59, M. Morinaga157, V. Morisbak121, A.K. Morley152, G. Mornacchi32, J.D. Morris79, L. Morvaj150, P. Moschovakos10, M. Mosidze54b, H.J. Moss141, J. Moss145;aj , K. Motohashi159, R. Mount145, E. Mountricha27, E.J.W. Moyse89, S. Muanza88, R.D. Mudd19, F. Mueller103, J. Mueller127, R.S.P. Mueller102, D. Muenstermann75, P. Mullen56, G.A. Mullier18, F.J. Munoz Sanchez87, W.J. Murray173,133, H. Musheghyan181, M. Muskinja78, A.G. Myagkov132;ak, M. Myska130, B.P. Nachman16, O. Nackenhorst52, K. Nagai122, R. Nagai69;ad, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51, E. Nagy88, A.M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114, R.F. Naranjo Garcia45, R. Narayan11, D.I. Narrias Villar60a, I. Naryshkin125, T. Naumann45, G. Navarro21, R. Nayyar7, H.A. Neal92, P.Yu. Nechaeva98, T.J. Neep138, A. Negri123a,123b, M. Negrini22a, S. Nektarijevic108, C. Nellist119, A. Nelson166, M.E. Nelson122, S. Nemecek129, P. Nemethy112, A.A. Nepomuceno26a, M. Nessi32;al, M.S. Neubauer169, M. Neumann178, P.R. Newman19, T.Y. Ng62c, T. Nguyen Manh97, R.B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132;ak, I. Nikolic-Audit83, K. Nikolopoulos19, J.K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, N. Nishu35c, R. Nisius103, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31, M.A. Nomura27, T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47, S. Nowak103, M. Nozaki69, L. Nozka117, K. Ntekas166, E. Nurse81, F. Nuti91, K. O'connor25, D.C. O'Neil144, A.A. O'Rourke45, V. O'Shea56, F.G. Oakham31;d, H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J.P. Ochoa-Ricoux34a, S. Oda73, S. Odaka69, H. Ogren64, A. Oh87, S.H. Oh48, C.C. Ohm16, H. Ohman168, H. Oide53a,53b, H. Okawa164, Y. Okumura157, T. Okuyama69, A. Olariu28b, L.F. Oleiro Seabra128a, S.A. Olivares Pino49, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42, A. Onofre128a,128e, K. Onogi105, P.U.E. Onyisi11;z, M.J. Oreglia33, Y. Oren155, D. Orestano136a,136b, N. Orlando62b, R.S. Orr161, B. Osculati53a,53b; , R. Ospanov87, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d, F. Ould-Saada121, A. Ouraou138, K.P. Oussoren109, Q. Ouyang35a, M. Owen56, R.E. Owen19, V.E. Ozcan20a, N. Ozturk8, K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138, HJEP07(21) S. Palazzo40a,40b, S. Palestini32, M. Palka41b, D. Pallin37, E.St. Panagiotopoulou10, I. Panagoulias10, C.E. Pandini83, J.G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52, Th.D. Papadopoulou10, K. Papageorgiou9, A. Paramonov6, D. Paredes Hernandez179, A.J. Parker75, M.A. Parker30, K.A. Parker45, F. Parodi53a,53b, J.A. Parsons38, U. Parzefall51, V.R. Pascuzzi161, J.M. Pasner139, E. Pasqualucci134a, S. Passaggio53a, Fr. Pastore80, S. Pataraia178, J.R. Pater87, T. Pauly32, J. Pearce172, B. Pearson103, S. Pedraza Lopez170, R. Pedro128a,128b, S.V. Peleganchuk111;c, O. Penc129, C. Peng35a, H. Peng36a, J. Penwell64, B.S. Peralva26b, M.M. Perego138, D.V. Perepelitsa27, L. Perini94a,94b, H. Pernegger32, S. Perrella106a,106b, R. Peschke45, V.D. Peshekhonov68; , K. Peters45, R.F.Y. Peters87, B.A. Petersen32, T.C. Petersen39, E. Petit58, A. Petridis1, C. Petridou156, P. Petro 119, E. Petrolo134a, M. Petrov122, F. Petrucci136a,136b, N.E. Pettersson89, A. Peyaud138, R. Pezoa34b, F.H. Phillips93, P.W. Phillips133, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79, M.A. Pickering122, R. Piegaia29, J.E. Pilcher33, A.D. Pilkington87, A.W.J. Pin87, M. Pinamonti135a,135b, J.L. Pinfold3, H. Pirumov45, M. Pitt175, L. Plazak146a, M.-A. Pleier27, V. Pleskot86, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen148a,148b, R. Poggi123a,123b, L. Poggioli119, D. Pohl23, G. Polesello123a, A. Poley45, A. Policicchio40a,40b, R. Polifka32, A. Polini22a, C.S. Pollard56, V. Polychronakos27, K. Pommes32, D. Ponomarenko100, L. Pontecorvo134a, B.G. Pope93, G.A. Popeneciu28d, A. Poppleton32, S. Pospisil130, K. Potamianos16, I.N. Potrap68, C.J. Potter30, G. Poulard32, J. Poveda32, M.E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16, S. Prell67, D. Price87, L.E. Price6, M. Primavera76a, S. Prince90, N. Proklova100, K. Proko ev62c, F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, D. Puddu136a,136b, A. Puri169, P. Puzo119, J. Qian92, G. Qin56, Y. Qin87, A. Quadt57, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121, V. Radeka27, V. Radescu122, S.K. Radhakrishnan150, P. Radlo 118, P. Rados91, F. Ragusa94a,94b, G. Rahal182, J.A. Raine87, S. Rajagopalan27, C. Rangel-Smith168, T. Rashid119, M.G. Ratti94a,94b, D.M. Rauch45, F. Rauscher102, S. Rave86, T. Ravenscroft56, I. Ravinovich175, J.H. Rawling87, M. Raymond32, A.L. Read121, N.P. Readio 77, M. Reale76a,76b, D.M. Rebuzzi123a,123b, A. Redelbach177, G. Redlinger27, R. Reece139, R.G. Reed147c, K. Reeves44, L. Rehnisch17, J. Reichert124, A. Reiss86, C. Rembser32, H. Ren35a, M. Rescigno134a, S. Resconi94a, E.D. Resseguie124, S. Rettie171, E. Reynolds19, O.L. Rezanova111;c, P. Reznicek131, R. Rezvani97, R. Richter103, S. Richter81, E. Richter-Was41b, O. Ricken23, M. Ridel83, P. Rieck103, C.J. Riegel178, J. Rieger57, O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a,123b, M. Rimoldi18, L. Rinaldi22a, B. Ristic52, E. Ritsch32, I. Riu13, F. Rizatdinova116, E. Rizvi79, C. Rizzi13, R.T. Roberts87, S.H. Robertson90;o, A. Robichaud-Veronneau90, D. Robinson30, J.E.M. Robinson45, A. Robson56, E. Rocco86, C. Roda126a,126b, Y. Rodina88;am, S. Rodriguez Bosca170, A. Rodriguez Perez13, D. Rodriguez Rodriguez170, S. Roe32, C.S. Rogan59, O. R hne121, J. Rolo 59, A. Romaniouk100, M. Romano22a,22b, S.M. Romano Saez37, E. Romero Adam170, N. Rompotis77, M. Ronzani51, L. Roos83, S. Rosati134a, K. Rosbach51, P. Rose139, N.-A. Rosien57, V. Rossetti148a,148b, E. Rossi106a,106b, L.P. Rossi53a, J.H.N. Rosten30, R. Rosten140, M. Rotaru28b, I. Roth175, J. Rothberg140, D. Rousseau119, A. Rozanov88, Y. Rozen154, X. Ruan147c, F. Rubbo145, F. Ruhr51, A. Ruiz-Martinez31, Z. Rurikova51, N.A. Rusakovich68, H.L. Russell140, J.P. Rutherfoord7, N. Ruthmann32, Y.F. Ryabov125, M. Rybar169, G. Rybkin119, S. Ryu6, A. Ryzhov132, G.F. Rzehorz57, A.F. Saavedra152, G. Sabato109, S. Sacerdoti29, H.F-W. Sadrozinski139, R. Sadykov68, F. Safai Tehrani134a, P. Saha110, M. Sahinsoy60a, M. Saimpert45, M. Saito157, T. Saito157, H. Sakamoto157, Y. Sakurai174, G. Salamanna136a,136b, J.E. Salazar Loyola34b, D. Salek109, P.H. Sales De Bruin168, D. Salihagic103, A. Salnikov145, HJEP07(21) D. Sammel51, D. Sampsonidis156, D. Sampsonidou156, J. Sanchez170, V. Sanchez Martinez170, J. Schaarschmidt140, P. Schacht103, B.M. Schachtner102, D. Schaefer32, L. Schaefer124, R. Schaefer45, J. Schae er86, S. Schaepe23, S. Schaetzel60b, U. Schafer86, A.C. Scha er119, D. Schaile102, R.D. Schamberger150, V. Scharf60a, V.A. Schegelsky125, D. Scheirich131, M. Schernau166, C. Schiavi53a,53b, S. Schier139, L.K. Schildgen23, C. Schillo51, M. Schioppa40a,40b, S. Schlenker32, K.R. Schmidt-Sommerfeld103, K. Schmieden32, C. Schmitt86, S. Schmitt45, S. Schmitz86, U. Schnoor51, L. Schoe el138, A. Schoening60b, B.D. Schoenrock93, E. Schopf23, M. Schott86, J.F.P. Schouwenberg108, J. Schovancova181, S. Schramm52, N. Schuh86, A. Schulte86, M.J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher51, B.A. Schumm139, Ph. Schune138, A. Schwartzman145, T.A. Schwarz92, H. Schweiger87, Ph. Schwemling138, R. Schwienhorst93, J. Schwindling138, T. Schwindt23, A. Sciandra23, G. Sciolla25, F. Scuri126a,126b, F. Scutti91, J. Searcy92, P. Seema23, S.C. Seidel107, A. Seiden139, J.M. Seixas26a, G. Sekhniaidze106a, K. Sekhon92, S.J. Sekula43, N. Semprini-Cesari22a,22b, S. Senkin37, C. Serfon121, L. Serin119, L. Serkin167a,167b, M. Sessa136a,136b, R. Seuster172, H. Severini115, T. S ligoj78, F. Sforza32, A. Sfyrla52, E. Shabalina57, N.W. Shaikh148a,148b, L.Y. Shan35a, R. Shang169, J.T. Shank24, M. Shapiro16, P.B. Shatalov99, K. Shaw167a,167b, S.M. Shaw87, A. Shcherbakova148a,148b, C.Y. Shehu151, Y. Shen115, P. Sherwood81, L. Shi153;an, S. Shimizu70, C.O. Shimmin179, M. Shimojima104, I.P.J. Shipsey122, S. Shirabe73, M. Shiyakova68;ao, J. Shlomi175, A. Shmeleva98, D. Shoaleh Saadi97, M.J. Shochet33, S. Shojaii94a, D.R. Shope115, S. Shrestha113, E. Shulga100, M.A. Shupe7, P. Sicho129, A.M. Sickles169, P.E. Sidebo149, E. Sideras Haddad147c, O. Sidiropoulou177, D. Sidorov116, A. Sidoti22a,22b, F. Siegert47, Dj. Sijacki14, J. Silva128a,128d, S.B. Silverstein148a, V. Simak130, Lj. Simic14, S. Simion119, E. Simioni86, B. Simmons81, M. Simon86, P. Sinervo161, N.B. Sinev118, M. Sioli22a,22b, G. Siragusa177, I. Siral92, S.Yu. Sivoklokov101, J. Sjolin148a,148b, M.B. Skinner75, P. Skubic115, M. Slater19, T. Slavicek130, M. Slawinska109, K. Sliwa165, R. Slovak131, V. Smakhtin175, B.H. Smart5, J. Smiesko146a, N. Smirnov100, S.Yu. Smirnov100, Y. Smirnov100, L.N. Smirnova101;ap, O. Smirnova84, J.W. Smith57, M.N.K. Smith38, R.W. Smith38, M. Smizanska75, K. Smolek130, A.A. Snesarev98, I.M. Snyder118, S. Snyder27, R. Sobie172;o, F. Socher47, A. So er155, D.A. Soh153, G. Sokhrannyi78, C.A. Solans Sanchez32, M. Solar130, E.Yu. Soldatov100, U. Soldevila170, A.A. Solodkov132, A. Soloshenko68, O.V. Solovyanov132, V. Solovyev125, P. Sommer51, H. Son165, H.Y. Song36a;aq, A. Sopczak130, D. Sosa60b, C.L. Sotiropoulou126a,126b, R. Soualah167a,167c, A.M. Soukharev111;c, D. South45, B.C. Sowden80, S. Spagnolo76a,76b, M. Spalla126a,126b, M. Spangenberg173, F. Spano80, D. Sperlich17, F. Spettel103, T.M. Spieker60a, R. Spighi22a, G. Spigo32, L.A. Spiller91, M. Spousta131, R.D. St. Denis56; , A. Stabile94a, R. Stamen60a, S. Stamm17, E. Stanecka42, R.W. Stanek6, C. Stanescu136a, M.M. Stanitzki45, S. Stapnes121, E.A. Starchenko132, G.H. Stark33, J. Stark58, S.H Stark39, P. Staroba129, P. Starovoitov60a, S. Starz32, R. Staszewski42, P. Steinberg27, B. Stelzer144, H.J. Stelzer32, O. Stelzer-Chilton163a, H. Stenzel55, G.A. Stewart56, M.C. Stockton118, M. Stoebe90, G. Stoicea28b, P. Stolte57, S. Stonjek103, A.R. Stradling8, A. Straessner47, M.E. Stramaglia18, J. Strandberg149, S. Strandberg148a,148b, A. Strandlie121, M. Strauss115, P. Strizenec146b, R. Strohmer177, D.M. Strom118, R. Stroynowski43, A. Strubig108, HJEP07(21) M. Suk130, V.V. Sulin98, S. Sultansoy4c, T. Sumida71, S. Sun59, X. Sun3, K. Suruliz151, C.J.E. Suster152, M.R. Sutton151, S. Suzuki69, M. Svatos129, M. Swiatlowski33, S.P. Swift2, I. Sykora146a, T. Sykora131, D. Ta51, K. Tackmann45, J. Taenzer155, A. Ta ard166, R. Ta rout163a, N. Taiblum155, H. Takai27, R. Takashima72, T. Takeshita142, Y. Takubo69, M. Talby88, A.A. Talyshev111;c, J. Tanaka157, M. Tanaka159, R. Tanaka119, S. Tanaka69, R. Tanioka70, B.B. Tannenwald113, S. Tapia Araya34b, S. Tapprogge86, S. Tarem154, G.F. Tartarelli94a, P. Tas131, M. Tasevsky129, T. Tashiro71, E. Tassi40a,40b, A. Tavares Delgado128a,128b, Y. Tayalati137e, A.C. Taylor107, G.N. Taylor91, P.T.E. Taylor91, W. Taylor163b, P. Teixeira-Dias80, D. Temple144, H. Ten Kate32, P.K. Teng153, J.J. Teoh120, F. Tepel178, S. Terada69, K. Terashi157, J. Terron85, S. Terzo13, M. Testa50, R.J. Teuscher161;o, T. Theveneaux-Pelzer88, J.P. Thomas19, J. Thomas-Wilsker80, P.D. Thompson19, A.S. Thompson56, L.A. Thomsen179, E. Thomson124, M.J. Tibbetts16, R.E. Ticse Torres88, V.O. Tikhomirov98;ar, Yu.A. Tikhonov111;c, S. Timoshenko100, P. Tipton179, S. Tisserant88, K. Todome159, S. Todorova-Nova5, J. Tojo73, S. Tokar146a, K. Tokushuku69, E. Tolley59, L. Tomlinson87, M. Tomoto105, L. Tompkins145;as, K. Toms107, B. Tong59, P. Tornambe51, E. Torrence118, H. Torres144, E. Torro Pastor140, J. Toth88;at, F. Touchard88, D.R. Tovey141, C.J. Treado112, T. Trefzger177, F. Tresoldi151, A. Tricoli27, I.M. Trigger163a, S. Trincaz-Duvoid83, M.F. Tripiana13, W. Trischuk161, B. Trocme58, A. Trofymov45, C. Troncon94a, M. Trottier-McDonald16, M. Trovatelli172, L. Truong167a,167c, M. Trzebinski42, A. Trzupek42, K.W. Tsang62a, J.C-L. Tseng122, P.V. Tsiareshka95, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze13, V. Tsiskaridze51, E.G. Tskhadadze54a, K.M. Tsui62a, I.I. Tsukerman99, V. Tsulaia16, S. Tsuno69, D. Tsybychev150, Y. Tu62b, A. Tudorache28b, V. Tudorache28b, T.T. Tulbure28a, A.N. Tuna59, S.A. Tupputi22a,22b, S. Turchikhin68, D. Turgeman175, I. Turk Cakir4b;au, R. Turra94a, P.M. Tuts38, G. Ucchielli22a,22b, I. Ueda69, M. Ughetto148a,148b, F. Ukegawa164, G. Unal32, A. Undrus27, G. Unel166, F.C. Ungaro91, Y. Unno69, C. Unverdorben102, J. Urban146b, P. Urquijo91, P. Urrejola86, G. Usai8, J. Usui69, L. Vacavant88, V. Vacek130, B. Vachon90, C. Valderanis102, E. Valdes Santurio148a,148b, S. Valentinetti22a,22b, A. Valero170, L. Valery13, S. Valkar131, A. Vallier5, J.A. Valls Ferrer170, W. Van Den Wollenberg109, H. van der Graaf109, N. van Eldik154, P. van Gemmeren6, J. Van Nieuwkoop144, I. van Vulpen109, M.C. van Woerden109, M. Vanadia135a,135b, W. Vandelli32, R. Vanguri124, A. Vaniachine160, P. Vankov109, G. Vardanyan180, R. Vari134a, E.W. Varnes7, C. Varni53a,53b, T. Varol43, D. Varouchas119, A. Vartapetian8, K.E. Varvell152, J.G. Vasquez179, G.A. Vasquez34b, F. Vazeille37, T. Vazquez Schroeder90, J. Veatch57, V. Veeraraghavan7, L.M. Veloce161, F. Veloso128a,128c, S. Veneziano134a, A. Ventura76a,76b, M. Venturi172, N. Venturi161, A. Venturini25, V. Vercesi123a, M. Verducci136a,136b, W. Verkerke109, J.C. Vermeulen109, M.C. Vetterli144;d, N. Viaux Maira34b, O. Viazlo84, I. Vichou169; , T. Vickey141, O.E. Vickey Boeriu141, G.H.A. Viehhauser122, S. Viel16, L. Vigani122, M. Villa22a,22b, M. Villaplana Perez94a,94b, E. Vilucchi50, M.G. Vincter31, V.B. Vinogradov68, A. Vishwakarma45, C. Vittori22a,22b, I. Vivarelli151, S. Vlachos10, M. Vlasak130, M. Vogel178, P. Vokac130, G. Volpi126a,126b, H. von der Schmitt103, E. von Toerne23, V. Vorobel131, K. Vorobev100, M. Vos170, R. Voss32, J.H. Vossebeld77, N. Vranjes14, M. Vranjes Milosavljevic14, V. Vrba130, M. Vreeswijk109, R. Vuillermet32, I. Vukotic33, P. Wagner23, W. Wagner178, J. Wagner-Kuhr102, H. Wahlberg74, S. Wahrmund47, J. Wakabayashi105, J. Walder75, R. Walker102, W. Walkowiak143, V. Wallangen148a,148b, C. Wang35b, C. Wang36b;av, F. Wang176, H. Wang16, H. Wang3, J. Wang45, J. Wang152, Q. Wang115, R. Wang6, S.M. Wang153, T. Wang38, W. Wang153;aw, W. Wang36a, Z. Wang36c, C. Wanotayaroj118, A. Warburton90, C.P. Ward30, D.R. Wardrope81, A. Washbrook49, HJEP07(21) A.F. Webb11, S. Webb86, M.S. Weber18, S.W. Weber177, S.A. Weber31, J.S. Webster6, A.R. Weidberg122, B. Weinert64, J. Weingarten57, C. Weiser51, H. Weits109, P.S. Wells32, T. Wenaus27, T. Wengler32, S. Wenig32, N. Wermes23, M.D. Werner67, P. Werner32, M. Wessels60a, K. Whalen118, N.L. Whallon140, A.M. Wharton75, A. White8, M.J. White1, R. White34b, D. Whiteson166, F.J. Wickens133, W. Wiedenmann176, M. Wielers133, C. Wiglesworth39, L.A.M. Wiik-Fuchs23, A. Wildauer103, F. Wilk87, H.G. Wilkens32, H.H. Williams124, S. Williams109, C. Willis93, S. Willocq89, J.A. Wilson19, I. Wingerter-Seez5, E. Winkels151, F. Winklmeier118, O.J. Winston151, B.T. Winter23, M. Wittgen145, M. Wobisch82;u, T.M.H. Wolf109, R. Wol 88, M.W. Wolter42, H. Wolters128a,128c, V.W.S. Wong171, S.D. Worm19, B.K. Wosiek42, J. Wotschack32, K.W. Wozniak42, M. Wu33, S.L. Wu176, X. Wu52, Y. Wu92, T.R. Wyatt87, B.M. Wynne49, S. Xella39, Z. Xi92, L. Xia35c, D. Xu35a, L. Xu27, B. Yabsley152, S. Yacoob147a, D. Yamaguchi159, Y. Yamaguchi120, A. Yamamoto69, S. Yamamoto157, T. Yamanaka157, K. Yamauchi105, Y. Yamazaki70, Z. Yan24, H. Yang36c, H. Yang16, Y. Yang153, Z. Yang15, W-M. Yao16, Y.C. Yap83, Y. Yasu69, E. Yatsenko5, K.H. Yau Wong23, J. Ye43, S. Ye27, I. Yeletskikh68, E. Yigitbasi24, E. Yildirim86, K. Yorita174, K. Yoshihara124, C. Young145, C.J.S. Young32, D.R. Yu16, J. Yu8, J. Yu67, S.P.Y. Yuen23, I. Yusu 30;ax, B. Zabinski42, G. Zacharis10, R. Zaidan13, A.M. Zaitsev132;ak, N. Zakharchuk45, J. Zalieckas15, A. Zaman150, S. Zambito59, D. Zanzi91, C. Zeitnitz178, M. Zeman130, A. Zemla41a, J.C. Zeng169, Q. Zeng145, O. Zenin132, T. Zenis146a, D. Zerwas119, D. Zhang92, F. Zhang176, G. Zhang36a;aq, H. Zhang35b, J. Zhang6, L. Zhang51, L. Zhang36a, M. Zhang169, R. Zhang23, R. Zhang36a;av, X. Zhang36b, Y. Zhang35a, Z. Zhang119, X. Zhao43, Y. Zhao36b;ay, Z. Zhao36a, A. Zhemchugov68, J. Zhong122, B. Zhou92, C. Zhou176, L. Zhou43, M. Zhou35a, M. Zhou150, N. Zhou35c, C.G. Zhu36b, H. Zhu35a, J. Zhu92, Y. Zhu36a, X. Zhuang35a, K. Zhukov98, A. Zibell177, D. Zieminska64, N.I. Zimine68, C. Zimmermann86, S. Zimmermann51, Z. Zinonos103, M. Zinser86, M. Ziolkowski143, L. Zivkovic14, G. Zobernig176, A. Zoccoli22a,22b, R. Zou33, M. zur Nedden17, L. Zwalinski32. Barcelona, Spain CA, U.S.A. 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany NY, U.S.A. 3 Department of Physics, University of Alberta, Edmonton AB, Canada 4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, CNRS/IN2P3 and Universite Savoie Mont Blanc, Annecy-le-Vieux, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, U.S.A. 7 Department of Physics, University of Arizona, Tucson AZ, U.S.A. 8 Department of Physics, The University of Texas at Arlington, Arlington TX, U.S.A. 9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 11 Department of Physics, The University of Texas at Austin, Austin TX, U.S.A. 12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 13 Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, 14 Institute of Physics, University of Belgrade, Belgrade, Serbia 15 Department for Physics and Technology, University of Bergen, Bergen, Norway 16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley 17 Department of Physics, Humboldt University, Berlin, Germany 18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland Istanbul, Turkey Bologna, Italy 20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, 21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia 22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Universita di Bologna, 23 Physikalisches Institut, University of Bonn, Bonn, Germany 24 Department of Physics, Boston University, Boston MA, U.S.A. 25 Department of Physics, Brandeis University, Waltham MA, U.S.A. 26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 27 Physics Department, Brookhaven National Laboratory, Upton NY, U.S.A. 28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania 29 Departamento de F sica, Universidad de Buenos Aires, Buenos Aires, Argentina 30 Cavendish Laboratory, University of Cambridge, Cambridge, U.K. 31 Department of Physics, Carleton University, Ottawa ON, Canada 32 CERN, Geneva, Switzerland 33 Enrico Fermi Institute, University of Chicago, Chicago IL, U.S.A. 34 (a) Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago; (b) Departamento de F sica, Universidad Tecnica Federico Santa Mar a, Valpara so, Chile 35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China 36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP);, China 37 Universite Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 38 Nevis Laboratory, Columbia University, Irvington NY, U.S.A. 39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita della Calabria, Rende, Italy 41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland 43 Physics Department, Southern Methodist University, Dallas TX, U.S.A. 44 Physics Department, University of Texas at Dallas, Richardson TX, U.S.A. 45 DESY, Hamburg and Zeuthen, Germany 46 Lehrstuhl fur Experimentelle Physik IV, Technische Universitat Dortmund, Dortmund, Germany 47 Institut fur Kern- und Teilchenphysik, Technische Universitat Dresden, Dresden, Germany 48 Department of Physics, Duke University, Durham NC, U.S.A. 49 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, U.K. 50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy 53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universita di Genova, Genova, Italy 54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 55 II Physikalisches Institut, Justus-Liebig-Universitat Giessen, Giessen, Germany 56 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, U.K. 57 II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany 58 Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble-Alpes, CNRS/IN2P3, Grenoble, France 59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, U.S.A. 60 (a) Kirchho -Institut fur Physik, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (c) ZITI Institut fur technische Informatik, Ruprecht-Karls-Universitat Heidelberg, Mannheim, Germany 61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 63 Department of Physics, National Tsing Hua University, Taiwan, Taiwan 64 Department of Physics, Indiana University, Bloomington IN, U.S.A. 65 Institut fur Astro- und Teilchenphysik, Leopold-Franzens-Universitat, Innsbruck, Austria 66 University of Iowa, Iowa City IA, U.S.A. 67 Department of Physics and Astronomy, Iowa State University, Ames IA, U.S.A. 68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 70 Graduate School of Science, Kobe University, Kobe, Japan 71 Faculty of Science, Kyoto University, Kyoto, Japan 72 Kyoto University of Education, Kyoto, Japan 73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan Italy 74 Instituto de F sica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 75 Physics Department, Lancaster University, Lancaster, U.K. 76 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Universita del Salento, Lecce, 77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, U.K. 78 Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia 79 School of Physics and Astronomy, Queen Mary University of London, London, U.K. 80 Department of Physics, Royal Holloway University of London, Surrey, U.K. 81 Department of Physics and Astronomy, University College London, London, U.K. 82 Louisiana Tech University, Ruston LA, U.S.A. 83 Laboratoire de Physique Nucleaire et de Hautes Energies, UPMC and Universite Paris-Diderot and CNRS/IN2P3, Paris, France 84 Fysiska institutionen, Lunds universitet, Lund, Sweden 85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain 86 Institut fur Physik, Universitat Mainz, Mainz, Germany 87 School of Physics and Astronomy, University of Manchester, Manchester, U.K. 88 CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France 89 Department of Physics, University of Massachusetts, Amherst MA, U.S.A. 90 Department of Physics, McGill University, Montreal QC, Canada 91 School of Physics, University of Melbourne, Victoria, Australia Belarus Belarus 93 Department of Physics and Astronomy, Michigan State University, East Lansing MI, U.S.A. 94 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Universita di Milano, Milano, Italy 96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of 97 Group of Particle Physics, University of Montreal, Montreal QC, Canada 98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia 99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia 100 National Research Nuclear University MEPhI, Moscow, Russia 101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Nijmegen/Nikhef, Nijmegen, Netherlands 102 Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany 103 Max-Planck-Institut fur Physik (Werner-Heisenberg-Institut), Munchen, Germany 104 Nagasaki Institute of Applied Science, Nagasaki, Japan 105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 106 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Universita di Napoli, Napoli, Italy 107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, U.S.A. 108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University 109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, 110 Department of Physics, Northern Illinois University, DeKalb IL, U.S.A. 111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 112 Department of Physics, New York University, New York NY, U.S.A. 113 Ohio State University, Columbus OH, U.S.A. 114 Faculty of Science, Okayama University, Okayama, Japan 115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, 116 Department of Physics, Oklahoma State University, Stillwater OK, U.S.A. 117 Palacky University, RCPTM, Olomouc, Czech Republic 118 Center for High Energy Physics, University of Oregon, Eugene OR, U.S.A. 119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France 120 Graduate School of Science, Osaka University, Osaka, Japan 121 Department of Physics, University of Oslo, Oslo, Norway 122 Department of Physics, Oxford University, Oxford, U.K. 123 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Universita di Pavia, Pavia, Italy 124 Department of Physics, University of Pennsylvania, Philadelphia PA, U.S.A. 125 National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia 126 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa, Italy 127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, U.S.A. 128 (a) Laboratorio de Instrumentaca~o e F sica Experimental de Part culas - LIP, Lisboa; (b) Faculdade de Ci^encias, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F sica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 130 Czech Technical University in Prague, Praha, Czech Republic 131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, U.K. 134 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita di Roma, Roma, Italy 135 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universita di Roma Tor Vergata, Roma, Italy Roma, Italy 136 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita Roma Tre, 137 (a) Faculte des Sciences Ain Chock, Reseau Universitaire de Physique des Hautes Energies Universite Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculte des Sciences Semlalia, Universite Cadi Ayyad, LPHEA-Marrakech; (d) Faculte des Sciences, Universite Mohamed Premier and LPTPM, Oujda; (e) Faculte des sciences, Universite Mohammed V, Rabat, Morocco 138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, 140 Department of Physics, University of Washington, Seattle WA, U.S.A. 141 Department of Physics and Astronomy, University of She eld, She eld, U.K. 142 Department of Physics, Shinshu University, Nagano, Japan 143 Department Physik, Universitat Siegen, Siegen, Germany 144 Department of Physics, Simon Fraser University, Burnaby BC, Canada 145 SLAC National Accelerator Laboratory, Stanford CA, U.S.A. 146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa 148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden 149 Physics Department, Royal Institute of Technology, Stockholm, Sweden 150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, 151 Department of Physics and Astronomy, University of Sussex, Brighton, U.K. 152 School of Physics, University of Sydney, Sydney, Australia 153 Institute of Physics, Academia Sinica, Taipei, Taiwan 154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 157 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan ON, Canada 158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 160 Tomsk State University, Tomsk, Russia 161 Department of Physics, University of Toronto, Toronto ON, Canada 162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy 163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto 164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan 165 Department of Physics and Astronomy, Tufts University, Medford MA, U.S.A. 166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, U.S.A. Dipartimento di Chimica, Fisica e Ambiente, Universita di Udine, Udine, Italy 168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 169 Department of Physics, University of Illinois, Urbana IL, U.S.A. 171 Department of Physics, University of British Columbia, Vancouver BC, Canada 172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada 173 Department of Physics, University of Warwick, Coventry, U.K. 174 Waseda University, Tokyo, Japan 175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 176 Department of Physics, University of Wisconsin, Madison WI, U.S.A. 177 Fakultat fur Physik und Astronomie, Julius-Maximilians-Universitat, Wurzburg, Germany 178 Fakultat fur Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universitat Wuppertal, Wuppertal, Germany 179 Department of Physics, Yale University, New Haven CT, U.S.A. 180 Yerevan Physics Institute, Yerevan, Armenia 181 CH-1211 Geneva 23, Switzerland 182 Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France a Also at Department of Physics, King's College London, London, U.K. b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at TRIUMF, Vancouver BC, Canada e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, U.S.A. f Also at Physics Department, An-Najah National University, Nablus, Palestine g Also at Department of Physics, California State University, Fresno CA, U.S.A. h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland i Also at II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany j Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain k Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, l Also at Tomsk State University, Tomsk, Russia n Also at Universita di Napoli Parthenope, Napoli, Italy o Also at Institute of Particle Physics (IPP), Canada m Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, r Also at Borough of Manhattan Community College, City University of New York, New York City, s Also at Department of Physics, The University of Michigan, Ann Arbor MI, U.S.A. t Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South u Also at Louisiana Tech University, Ruston LA, U.S.A. v Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain w Also at Graduate School of Science, Osaka University, Osaka, Japan x Also at Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany y Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University z Also at Department of Physics, The University of Texas at Austin, Austin TX, U.S.A. aa Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia ac Also at Georgian Technical University (GTU),Tbilisi, Georgia ae Also at Manhattan College, New York NY, U.S.A. af Also at Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago, Chile ah Also at School of Physics, Shandong University, Shandong, China ai Also at Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal aj Also at Department of Physics, California State University, Sacramento CA, U.S.A. ak Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia Switzerland Also at Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain an Also at School of Physics, Sun Yat-sen University, Guangzhou, China ao Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of ap Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia ar Also at National Research Nuclear University MEPhI, Moscow, Russia as Also at Department of Physics, Stanford University, Stanford CA, U.S.A. at Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary Deceased av Also at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France Also at Department of Physics, Nanjing University, Jiangsu, China ax Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia ay Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France [1] O.J.P. Eboli , M.C. Gonzalez-Garcia and S.M. Lietti , Bosonic quartic couplings at CERN [2] O.J.P. Eboli , M.C. Gonzalez-Garcia and J.K. Mizukoshi , pp ! jje [3] M. Baak et al., Study of Electroweak Interactions at the Energy Frontier , arXiv: 1310 .6708 [20] ATLAS collaboration , The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 ( 2010 ) [21] GEANT4 collaboration , S. Agostinelli et al., GEANT4: A Simulation toolkit , Nucl.

This is a preview of a remote PDF:

The ATLAS collaboration, M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos, S. H. Abidi, O. S. AbouZeid, N. L. Abraham, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, S. Adachi, L. Adamczyk, J. Adelman, M. Adersberger, T. Adye, A. A. Affolder, T. Agatonovic-Jovin, C. Agheorghiesei, J. A. Aguilar-Saavedra, S. P. Ahlen, F. Ahmadov, G. Aielli, S. Akatsuka, H. Akerstedt, T. P. A. Åkesson, A. V. Akimov, G. L. Alberghi, J. Albert, M. J. Alconada Verzini, M. Aleksa, I. N. Aleksandrov, C. Alexa, G. Alexander, T. Alexopoulos, M. Alhroob, B. Ali, M. Aliev, G. Alimonti, J. Alison, S. P. Alkire, B. M. M. Allbrooke, B. W. Allen, P. P. Allport, A. Aloisio, A. Alonso, F. Alonso, C. Alpigiani, A. A. Alshehri, M. Alstaty, B. Alvarez Gonzalez, D. Álvarez Piqueras, M. G. Alviggi, B. T. Amadio, Y. Amaral Coutinho, C. Amelung, D. Amidei, S. P. Amor Dos Santos, A. Amorim, S. Amoroso, G. Amundsen, C. Anastopoulos, L. S. Ancu, N. Andari, T. Andeen, C. F. Anders, J. K. Anders, K. J. Anderson, A. Andreazza, V. Andrei, S. Angelidakis, I. Angelozzi, A. Angerami, A. V. Anisenkov, N. Anjos, A. Annovi, C. Antel, M. Antonelli, A. Antonov, D. J. Antrim, F. Anulli, M. Aoki, L. Aperio Bella, G. Arabidze, Y. Arai, J. P. Araque, V. Araujo Ferraz, A. T. H. Arce, R. E. Ardell, F. A. Arduh, J-F. Arguin, S. Argyropoulos, M. Arik, A. J. Armbruster, L. J. Armitage, O. Arnaez, H. Arnold, M. Arratia, O. Arslan, A. Artamonov, G. Artoni, S. Artz, S. Asai, N. Asbah, A. Ashkenazi, L. Asquith, K. Assamagan, R. Astalos, M. Atkinson, N. B. Atlay, K. Augsten, G. Avolio, B. Axen, M. K. Ayoub, G. Azuelos, A. E. Baas, M. J. Baca, H. Bachacou, K. Bachas, M. Backes, M. Backhaus, P. Bagiacchi, P. Bagnaia, H. Bahrasemani, J. T. Baines, M. Bajic, O. K. Baker, E. M. Baldin, P. Balek, T. Balestri, F. Balli, W. K. Balunas, E. Banas, Sw. Banerjee, A. A. E. Bannoura, L. Barak, E. L. Barberio, D. Barberis, M. Barbero, T. Barillari, M-S Barisits, T. Barklow, N. Barlow, S. L. Barnes, B. M. Barnett, R. M. Barnett, Z. Barnovska-Blenessy, A. Baroncelli, G. Barone, A. J. Barr, L. Barranco Navarro, F. Barreiro, J. Barreiro Guimarães da Costa, R. Bartoldus, A. E. Barton, P. Bartos, A. Basalaev, A. Bassalat, R. L. Bates, S. J. Batista, J. R. Batley, M. Battaglia, M. Bauce, F. Bauer, H. S. Bawa, J. B. Beacham, M. D. Beattie, T. Beau, P. H. Beauchemin, P. Bechtle, H. P. Beck, K. Becker, M. Becker, M. Beckingham, C. Becot, A. J. Beddall, A. Beddall, V. A. Bednyakov, M. Bedognetti, C. P. Bee, T. A. Beermann, M. Begalli, M. Begel, J. K. Behr, A. S. Bell, G. Bella, L. Bellagamba, A. Bellerive, M. Bellomo, K. Belotskiy, O. Beltramello, N. L. Belyaev, O. Benary, D. Benchekroun, M. Bender, K. Bendtz, N. Benekos, Y. Benhammou, E. Benhar Noccioli, J. Benitez, D. P. Benjamin, M. Benoit, J. R. Bensinger, S. Bentvelsen, L. Beresford, M. Beretta, D. Berge, E. Bergeaas Kuutmann, N. Berger, J. Beringer, S. Berlendis, N. R. Bernard, G. Bernardi, C. Bernius, F. U. Bernlochner, T. Berry, P. Berta, C. Bertella, G. Bertoli, F. Bertolucci, I. A. Bertram, C. Bertsche, D. Bertsche, G. J. Besjes, O. Bessidskaia Bylund, M. Bessner, N. Besson, C. Betancourt, A. Bethani, S. Bethke, A. J. Bevan, R. M. Bianchi, O. Biebel, D. Biedermann, R. Bielski, N. V. Biesuz, M. Biglietti, J. Bilbao De Mendizabal, T. R. V. Billoud, H. Bilokon, M. Bindi, A. Bingul, C. Bini, S. Biondi, T. Bisanz, C. Bittrich, D. M. Bjergaard, C. W. Black, J. E. Black, K. M. Black, D. Blackburn, R. E. Blair, T. Blazek, I. Bloch, C. Blocker, A. Blue, W. Blum, U. Blumenschein, S. Blunier, G. J. Bobbink, V. S. Bobrovnikov, S. S. Bocchetta, A. Bocci, C. Bock, M. Boehler, D. Boerner, D. Bogavac, A. G. Bogdanchikov, C. Bohm, V. Boisvert, P. Bokan, T. Bold, A. S. Boldyrev, A. E. Bolz, M. Bomben, M. Bona, M. Boonekamp, A. Borisov, G. Borissov, J. Bortfeldt, D. Bortoletto, V. Bortolotto, D. Boscherini, M. Bosman, J. D. Bossio Sola, J. Boudreau, J. Bouffard, E. V. Bouhova-Thacker, D. Boumediene, C. Bourdarios, S. K. Boutle, A. Boveia, J. Boyd, I. R. Boyko, J. Bracinik, A. Brandt, G. Brandt, O. Brandt, U. Bratzler, B. Brau, J. E. Brau, W. D. Breaden Madden, K. Brendlinger, A. J. Brennan, L. Brenner, R. Brenner, S. Bressler, D. L. Briglin, T. M. Bristow, D. Britton, D. Britzger, F. M. Brochu, I. Brock, R. Brock, G. Brooijmans, T. Brooks, W. K. Brooks, J. Brosamer, E. Brost, J. H Broughton, P. A. Bruckman de Renstrom, D. Bruncko, A. Bruni, G. Bruni, L. S. Bruni, BH Brunt, M. Bruschi, N. Bruscino, P. Bryant, L. Bryngemark, T. Buanes, Q. Buat, P. Buchholz, A. G. Buckley, I. A. Budagov, F. Buehrer, M. K. Bugge, O. Bulekov, D. Bullock, H. Burckhart, S. Burdin, C. D. Burgard, A. M. Burger, B. Burghgrave, K. Burka, S. Burke, I. Burmeister, J. T. P. Burr, E. Busato, D. Büscher, V. Büscher, P. Bussey, J. M. Butler, C. M. Buttar, J. M. Butterworth, P. Butti, W. Buttinger, A. Buzatu, A. R. Buzykaev, S. Cabrera Urbán, D. Caforio, V. M. Cairo, O. Cakir, N. Calace, P. Calafiura, A. Calandri, G. Calderini, P. Calfayan, G. Callea. Studies of Zγ production in association with a high-mass dijet system in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Journal of High Energy Physics, 2017, 107, DOI: 10.1007/JHEP07(2017)107