Measurement of the \( \mathrm{t}\overline{\mathrm{t}} \) production cross section using events with one lepton and at least one jet in pp collisions at \( \sqrt{s}=13 \) TeV

Journal of High Energy Physics, Sep 2017

A measurement of the \( \mathrm{t}\overline{\mathrm{t}} \) production cross section at \( \sqrt{s}=13 \) TeV is presented using proton-proton collisions, corresponding to an integrated luminosity of 2.2 fb−1, collected with the CMS detector at the LHC. Final states with one isolated charged lepton (electron or muon) and at least one jet are selected and categorized according to the accompanying jet multiplicity. From a likelihood fit to the invariant mass distribution of the isolated lepton and a jet identified as coming from the hadronization of a bottom quark, the cross section is measured to be \( {\sigma}_{\mathrm{t}\overline{\mathrm{t}}}=888\pm 2,{\left(\mathrm{stat}\right)}_{-28}^{+26}\left(\mathrm{syst}\right)\pm 20\left(\mathrm{lumi}\right) \) pb, in agreement with the standard model prediction. Using the expected dependence of the cross section on the pole mass of the top quark (m t), the value of m t is found to be 170.6 ± 2.7 GeV.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP09%282017%29051.pdf

Measurement of the \( \mathrm{t}\overline{\mathrm{t}} \) production cross section using events with one lepton and at least one jet in pp collisions at \( \sqrt{s}=13 \) TeV

Received: July Measurement of the tt production cross section using A measurement of the tt production cross section at p using proton-proton collisions, corresponding to an integrated luminosity of 2.2 fb 1, collected with the CMS detector at the LHC. Final states with one isolated charged lepton (electron or muon) and at least one jet are selected and categorized according to the accompanying jet multiplicity. From a likelihood t to the invariant mass distribution of the isolated lepton and a jet identi ed as coming from the hadronization of a bottom quark, the cross section is measured to be tt = 888 with the standard model prediction. Using the expected dependence of the cross section on the pole mass of the top quark (mt), the value of mt is found to be 170:6 Hadron-Hadron scattering (experiments); Top physics - The CMS collaboration 1 Introduction 2 Observables and related uncertainties Fitting procedure and results Summary The CMS collaboration 13 TeV [24{26]. The latter has been determined experimentally with a 4.4% uncertainty. In addition, several analyses have explored the expected dependence of the tt production cross section ( tt) on the mass of the top quark (mt) to extract the latter. Recent examples of this can be found in ref. [23], where mt is determined with a total uncertainty of 1%. Alternatively, the strong coupling strength ( S) can be extracted from the tt cross section, assuming mt is known [27]. Knowledge of the parton distribution function (PDF) of the proton can be improved as well from a precise measurement of tt [28, 29]. In addition, the production of nal states via processes beyond the standard model that mimic the ones produced by tt decay can be revealed by a precise measurement of tt [30]. The above-mentioned interpretations of the measured tt provide a few examples, among others existing in the literature, that can bene t from such precision comparisons. In this paper, a measurement of tt using nal states with an isolated charged lepton ` (electron or muon) and at least one jet is presented. This selection is chosen in order to minimize the uncertainty in the extrapolation of the cross section to the fully inclusive phase space, and is expected to keep the impact of the dependence of the acceptance on the theoretical uncertainties in the PDFs and quantum chromodynamics (QCD) scale choice to a minimum. The selected events are split into categories according to the total number of jets in the event and the number of jets identi ed as coming from the hadronization of a b quark. Each category uses observables that can discriminate the main backgrounds (multijet and W+jets production) from the tt signal. A combined t to the distributions { 1 { in data of these observables is used to minimize the main systematic uncertainties, while measuring tt and mt. The paper is organized as follows: section 2 details the experimental setup, including the CMS detector, the data and simulation used in the analysis, the event selection, and the background estimations, section 3 describes the observables used in the analysis and the associated systematic uncertainties, while section 4 discusses the t procedure and results. A summary is given in section 5. eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity ( ) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel ux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [31]. 2.2 Data and simulation CERN LHC at p F = mT, where mT = p being the top quark transverse momentum. The analysis is complemented using simulated event samples that are used to estimate the main backgrounds and the signal distributions. The tt signal is modeled with the powheg v2 [33{36] generator, matched to pythia v8.205 [37, 38] for shower evolution and hadronization. The NNPDF3.0 next-to-leading-order (NLO) PDFs [39] and the CUETP8M1 [40, 41] underlying-event tune are used in the simulation. To evaluate the systematic uncertainties associated with the QCD renormalization ( R) and factorization ( F) scales at the matrix-element level, we make use of a weighting scheme implemented in powheg v2 to vary the scales by a factor of 2 or 1/2 relative to its nominal value mt2 + p2T;t is the transverse mass of the top quark, with pT;t Furthermore, additional simulations in which the QCD renormalization and factorization scales at the parton shower level are changed by a factor of 2 or 1/2 relative to their nominal value are used. In the CUETP8M1 tune, the nominal QCD scale choice at the parton shower level is determined by S ISR = 0:1365, the value of the strong coupling strength at mZ used for the initial-state shower. A di erent matrix-element generator is also used, for comparison: MG5 amc@nlo v5 2.2.2 [42] with Madspin [43], and is matched to either pythia 8 or herwig++ v2.7.1 [44]. { 2 { HJEP09(217)5 In this analysis, we measure the tt cross section in a ducial region of the phase space using as reference the theoretical cross section for mt = 172:5 GeV, computed at next-to-next-to-leading order (NNLO) with next-to-next-to-leading-log (NNLL) soft-gluon resummations, tt = 832 +2209 (scale) 35 (PDF + S) pb, from top++ v2.0 [45]. Single top quark processes are simulated with powheg v1 [46, 47] and normalized to the approximate NNLO prediction [48]. The W+jets process is simulated at NLO with MG5 amc@nlo. To reach higher statistical accuracy, a larger Born-level MadGraph v5.1.3.30 [42] simulated sample, including up to four extra partons in the matrix-element calculations, is used for the derivation of the W+jets background shape. The Drell-Yan (DY) contribution is simulated with MadGraph. Both W+jets and DY cross sections are normalized to their NNLO predictions, computed using fewz (v3.1.b2) [49]. Diboson production (WW, ZZ, WZ) is simulated either with pythia 8 (ZZ, WZ) or powheg v1 [50] (WW). Each diboson process is normalized to the NLO prediction for the cross section, computed with mcfm (v7.0) [51, 52]. The associated production of W or Z boson with tt (tt +V) is simulated All simulated events include an emulation of the response of the CMS detector using Geant4 v9.4p03 [53, 54]. The e ect due to multiple pp collisions in the same and neighboring beam crossings (pileup) is measured and added to the simulated tt interactions according to the pileup multiplicity observed in the data. 2.3 Event selection The data are recorded using single-lepton triggers with a minimum transverse momentum (pT) of 22 GeV and 20 GeV for electrons and muons, respectively. Identi cation and isolation criteria are applied at the trigger level, and the e ciency of these requirements is measured in a control data sample that is dominated by Z ! `` decays. The results obtained from the control data sample are compared with the simulated predictions using a tag-and-probe method [55], and data-to-simulation scale correction factors are derived as function of the pT and of the lepton. The scale factors are observed to be 5%. The events are reconstructed o ine using a particle- ow (PF) algorithm that optimally combines the information from subdetectors to reconstruct and identify all individual particles in the event [56]. In addition, reconstruction, identi cation, and calibration algorithms are employed for electrons and muons, as described in refs. [57, 58]. The lepton candidates are required to have pT > 30 GeV and j j < 2:1. Identi cation and isolation requirements are imposed to reject misidenti ed muons from punchthrough hadrons, photon conversion, and other objects misreconstructed as lepton candidates. These criteria are tighter than the ones imposed at trigger level. The tag-and-probe method measures the e ciency of these requirements, yielding typical e ciencies of 70% and 92% for electrons and muons, respectively. Nonprompt leptons that come from the decays of long-lived hadrons are rejected by requiring that the signi cance of the three-dimensional (3D) impact parameter of the lepton track, relative to the primary event vertex, is less than four standard deviations. This requirement e ectively reduces the contamination from multijet events, while keeping a high e ciency for the signal. The expected e ciency of this requirement is cross-checked using Z ! `` candidate events. The primary event vertex used as reference is required to { 3 { be reconstructed from at least four tracks, and have a longitudinal distance of less than 24 cm from the center of the detector. Among all the pp collision vertices in the event, the one with the largest scalar sum of associated particle transverse momenta is selected as the primary vertex. The event is rejected if an additional electron or muon is found within j j 10 GeV, respectively. 2:5, passing looser identi cation and isolation criteria, and with pT > 15 or Jets are reconstructed using all PF candidates as inputs to the anti-kT algorithm with a distance parameter of 0.4, utilizing the FastJet 3.1 software package [59, 60]. The jet momentum is de ned as the vectorial sum of all particle momenta inside the jet cone, and is found from the simulation to be within 5{10% of the generated jet momentum at particle level over the whole pT range and detector acceptance. Since pileup collisions result in unwanted calorimetric energy depositions and extra tracks, part of this contribution is reduced by performing a charged-hadron subtraction that removes tracks identi ed as originating from pileup vertices [61]. In addition, an o set correction is applied to remove the additional energy included in the jets that come from pileup [62, 63]. The energy scale corrections, derived from simulation, are cross-checked with in situ measurements of the energy balance in dijet and photon+jet events [61]. R = p ( We require at least one jet with pT > 30 GeV and j j 2:5 in the accepted events. The jets are required to not overlap with the isolated lepton within a cone of angular radius )2 + ( )2 < 0:4, where and , represent the di erence in pseudorapidity and azimuthal angle (in radians), between the directions of each jet and the lepton. Jets coming from the fragmentation and hadronization of b quarks (b jets) are identi ed by a combined secondary vertex (CSV) algorithm [64]. A b jet is identi ed with a CSV threshold e ciency >65% and a misidenti cation rate 1%. This b tagging e ciency is measured using a bb enriched data sample from a method similar to that described in ref. [64]. In the analysis, events with one, two, three, or four or more jets are considered as separate event categories. We expect the low-multiplicity categories to be dominated by W+jets processes, and the high jet multiplicities by tt events. An additional separation of the signal is achieved by counting the number of b-tagged jets in each category, since two b jets in the event are expected, given that each top quark decays to a Wb pair. Therefore, we further subdivide the four jet-multiplicity categories according to the number of reconstructed b-tagged jets, considering events with none, one, or at least two b-tagged jets, for a total of 11 orthogonal categories. Since the collision particles are protons, an asymmetric production of W bosons, with more W+ produced than W , is expected [65]. Given the charge-symmetric decays of the W bosons in tt decays, tt nal states are expected to have the same number of W+ and W bosons. We use this property to further categorize the events according to the lepton charge (+ ) and avor (electron or muon). Hence, our analysis makes use of a total of 2 2 11 = 44 categories. All backgrounds are estimated using simulation except for that from multijet events, which is di cult to model correctly from simulation in the tt phase-space region. The contribution from the multijet background is estimated using an independent data control sample where the prompt-lepton candidate passes the loose trigger-isolation requirements, but fails the tighter isolation required o ine. The expected residual contamination from { 4 { s t Data tt+V DY tt background processes other than multijets is estimated from simulation and subtracted from the control sample. The resulting distributions are used to model the multijet background contribution. The initial multijet normalization is obtained from events containing one isolated lepton and having the measured absolute value of the imbalance in the pT of all PF candidates in the event less than 20 GeV. The contributions from backgrounds other than multijets are subtracted in the referred to isolated-lepton region, and the ratio of events observed in data in this region with respect to the number of events found in the nonisolated-lepton control region is assigned as the renormalization scale factor. Given the tight requirements on leptons, we expect bb +jets events to dominate the multijet contamination. An isolated, prompt lepton coming from such a process is likely to arise from the decay of a bottom hadron. We can therefore expect a jet in the event to be b-tagged. This motivates the initial normalization for the multijet process through the one-b-tagged-jet category. However, for events with at least three jets, the tt contribution is expected to be nonnegligible, so the multijet process is estimated from events without any b-tagged jets. backgrounds from simulation in each category. For simplicity, the contributions from the electron and muon nal states, as well as from the two lepton charges, are summed. Within the uncertainties, we observe agreement between the data and the expectations. Although not shown explicitly, agreement is also found separately for each lepton avor and charge. { 5 { For each event category, we select a variable that discriminates the signal from the backgrounds. Categories without b-tagged jets are likely to be dominated by backgrounds and thus are counted without analyzing any distribution. For events with b-tagged jets, we exploit the distinct kinematic character of t ! Wb decays, and use the following mass variables: (i) for events with only one b-tagged jet, we use the invariant mass of the system formed by the lepton and the b-tagged jet (M (`; b)); and (ii) for events with at least two b-tagged jets, the invariant masses of all the lepton and b-tagged jet combinations in the event are calculated, and the minimum mass (min M (`; b)) is chosen as a discriminant. The M (`; b)-related variables are expected to be sensitive to tt production, as well as to mt, de ned by the endpoint in the invariant mass spectrum expected at leading order (LO). The endpoint is determined by the values of the top quark and W boson masses [66]. contributions from signal and backgrounds in the various event categories. When nor malized by the reference cross sections described in section 2.2 there is an overall good agreement between data and expectations. The most noticeable di erences are related to the initial multijet background normalization and the uncertainty in the W+jets normalization which is improved by the tting procedure (see section 4). In the signal region, the agreement is good for the simulation using the reference value mt = 172:5 GeV. next section. The expectations for the rates and distributions considered in the analysis are a ected by di erent sources of systematic uncertainties. For each source, an induced variation can be parametrized, and treated as a nuisance parameter in the t that is described in the Experimental uncertainties pertain mostly to the calibration of the detector and to our assessment of its performance in the simulation. The uncertainty in the e ciency of the trigger and the o ine selection is estimated by applying di erent scale factors as a function of the pT and of the isolated lepton. The scale factors and their uncertainties are obtained using Z ! `` data, based on a tag-and-probe method [55]. The one standard deviation changes applied to the parameters of the simulated events are typically on the order of 1{3%. those used in the p s = 8 TeV analyses [61, 67]. The energy scales of the objects used in the analysis (leptons and jets) are varied according to their estimated uncertainties. This can lead to a migration of events to di erent categories because of the thresholds applied in the preselection and the categorization of the events, as well as to changes in the expected distributions of the observables. When the energy scale of the leptons or jets changes, it a ects other variables (e.g., the missing momentum), which are recomputed to re ect the new scales. The uncertainty in the jet energy scale is subdivided into independent sources. A total of 29 nuisance parameters related to the jet energy scale are included in the t described in the next section. The parameters refer to the e ect of uncertainties related to pileup, relative ( -dependent) calibration, high- and low-pT extrapolation, absolute-scale determination, and avor-speci c di erences, amongst others. The categories used for the jet energy scale are similar to { 6 { 1tsn5000 CMS 1j,1t events CMS 2j,1t events leptons and charges combined. Panels on the left show the distributions in M (`; b), and on the right in min M (`; b), for events with one and two b-tagged jets, respectively. From top to bottom, the events correspond to those with 1, 2, 3, or at least 4 jets. The lower plot in each panel shows the ratio between the data and expectations. The relative uncertainty owing to the statistical uncertainty in the simulations, to the uncertainty in the normalization of the contribution from multijet events and to the systematic uncertainty in the total integrated luminosity is represented as a shaded band. The jet energy resolution is also a ected by an uncertainty that is estimated in our analysis by changing the simulated resolution by one standard deviation as a function of the of the jet. The corrections applied to the simulated b jet, c jet, and light- avor jet tagging e ciencies of the CSV algorithm are changed according to their uncertainties [64]. This also causes a migration of events across the di erent b tagging categories within the same jet multiplicity. The uncertainty from the model used for the average pileup in the simulation is estimated by implementing a 5% change to the assumed inelastic pp cross section [68]. Finally, a 2.3% uncertainty is assigned to the estimated integrated luminosity [32]. For the estimate of the contribution from QCD multijet events we determine an unHJEP09(217)5 certainty owing to the normalization method of the nonisolated-lepton sideband in data through an alternative scale factor obtained from events with MT < 50 GeV, where MT is the transverse mass computed from the lepton candidate and the missing momentum of the event. This yields an intrinsic uncertainty of 30{60%, depending on the category. Furthermore, uncertainties in the distributions of events caused by the normalizations of other than multijet contributions are obtained by changing the individual sources in the control regions by the analysis. 30%. These uncertainties are considered uncorrelated across all categories of Theoretical uncertainties a ect the predictions for the acceptance and the distributions in the signal and nonmultijet background processes. We consider independent changes in R or F in the tt, W+jets, and tW processes by factors of 2 and 1/2. For the signal, we estimate the parton shower uncertainty by using alternative powheg +pythia 8 samples, with the parton shower scale value changed by factors of 2 and 1/2. This a ects the fragmentation and hadronization of the jets initiated by the matrix-element calculation, as well as the emission of extra jets. The variation in the acceptance and distributions obtained by using herwig++ instead of pythia 8 to interface the powheg generator is included as a systematic uncertainty in the modeling of tt in the t. An additional uncertainty is assigned based on the di erence found between the powheg and MG5 amc@nlo simulations. For the signal, we also consider an uncertainty in the pT distribution of the top quark, based on the CMS measurements at p s = 8 [69] and 13 TeV [66]. The simulation is reweighted using a data-to-simulation scale factor that is veri ed to be consistent with the measurements performed in both data sets, and the di erence is used to assign the uncertainty in the modeling of the top quark pT. Uncertainties in the modeling of the single top quark background include changes of R= F for the t and t W channels. At NLO QCD, t W production is expected to interfere with tt production, owing to the similar initial and nal states of some diagrams [70{ Two schemes for de ning the t W signal that distinguish it from tt production have therefore been compared in this analysis: the \diagram removal" method [70], in which all doubly-resonant NLO t W diagrams are removed, and the \diagram subtraction" scheme [70, 73], where a gauge-invariant subtraction term modi es the NLO t W cross section to locally cancel the contribution from tt. In addition to the theoretical uncertainties described above, all background processes are assigned their corresponding theoretical uncertainties in their normalization. { 8 { The tt production cross section is measured by performing a maximum-likelihood t to the number of events counted in the di erent categories. The likelihood function takes into account the expectations for contributions from di erent background processes as well as signal. The expectations for signal and backgrounds depend on: (i) the simulationor data-based expectations (S^ or B^ for signal and background, respectively), and (ii) nuisance parameters ( i) that re ect the uninteresting variables used to control the e ect of the systematic variations described in the previous section. The e ect of each source of uncertainty is separated in a rate-changing and shape-changing nuisance parameter. In t, the nuisance parameters are assumed to be distributed according to log-normal probability distribution functions (pdfs) if a ecting the rate, or Gaussian pdfs if a ecting the shapes. We denote generally the pdfs associated with a nuisance parameter as ( i). The signal expectation is also modulated by a multiplicative factor, which is de ned by the ratio of the measured cross section to the reference theoretical value, i.e., the signal strength = = th for mt = 172:5 GeV. For each category (k), we write the total number of expected events as: (4.1) (4.2) (4.3) N^k( ; ) = ^ Sk Y(1 + iS i) + B^ k Y(1 + iB i) ; i where is the set of all nuisance parameters, the index k runs over the bins of the distributions (or the counts in di erent event categories for the cross-check analysis), and iS and iB are changes in yields induced through one-standard-deviation changes in the i th sources of uncertainty in the signal and backgrounds, respectively. The likelihood function is de ned as: test statistic: L( ; ) = Y P h NkjN^k( ; i) i Y i ( i); where P is a Poisson distribution and Nk is the number of events observed in the kth category. The cross section is measured by maximizing the pro le likelihood ratio (PLR) k i ( ) = L( ; ^ ) L(^; ^ ) ; ^ ^ where the quantities ^ correspond to the set of nuisance parameter values i that maximize the likelihood for the speci ed signal strength (also known as the conditional likelihood), and ^, ^ are respectively the values of and the set of i that maximize the likelihood. In the presence of nuisance parameters, the resulting PLR as a function of tends to be broader relative to the one obtained when the values are well known and xed. This re ects the loss of information in because of the presence of systematic uncertainties [74]. Although mt does not contribute an intrinsic uncertainty in the measurement of the cross section, since the M (`; b) distribution is used in the t, its shape has a direct dependence on mt that needs to be taken into account. We thus include in the t a parameterization of the e ect of varying mt by 3 GeV while measuring the cross section as the parameter of interest. This parameterization is performed for both the signal and { 9 { the single top quark simulations. With this procedure, the t accomodates for a possibly di erent value of mt than that assumed by default in the simulation but witout correlating this with the pole mass to be extracted from the inclusive tt production rate, as originally proposed in ref. [75]. from the data and the expected variation from the simulation. From the t, we measure 0:002 (stat) +00::003375 (syst). The tt cross section in the visible phase space is thus measured with a total uncertainty of 3.4%. As a check, the Monte Carlo simulated signal and background events corresponding to the same integrated luminosity as the data are used as pseudo-data with mt = 172:5 GeV in the t. The resulting value of the signal 0:002 (stat) +00::003354 (syst). This is the expected value of , and the agreement of the statistical and systematic uncertainties with those from the t to the data is a good check on the tting procedure. The default analysis using the shapes of the distributions (labeled \Distr.") is also compared with a simpler cross-check analysis (labeled \Count"). The cross-check analysis does not use kinematic information, but uses the number of events in the di erent jet and b-tagged jet categories, and the expected yields. The two results are in agreement with each other, with the cross-check analysis having a larger uncertainty: = 1:054 0:002 (stat) +00::004431 (syst). The post- t normalizations for the main backgrounds (W+jets and multijets) tend to be higher by 1{6% in the main analysis with respect to those from the cross-check analysis. This results in a di erent signal strength between the two analyses. Figure 3 (right) compares the inclusive result for both the default and crosscheck analyses (top set of points) with the corresponding values for the di erent lepton charges and avors. The results are found to be consistent with each other in the di erent combinations. The impact of the sources of uncertainty in the t is evaluated by making use of the set of post- t values of the nuisance parameters, and computing the shift induced in the signal strength as each nuisance parameter is xed at its 1 standard deviation post- t value, with all other parameters pro led as normal. By repeating the ts, the e ect of some nuisance parameters being xed may be reabsorbed by a variation of the ones being pro led, owing to correlations. Figure 4 summarizes the values obtained for the leading sources of uncertainty in the t. The dominant sources of uncertainty in both analyses are related to the integrated luminosity, trigger and selection e ciencies, and the model of the W+jets background. These are expected to impact the signal strength at the level of 1{2.5% The analysis of the distributions is e ectively able to mitigate most uncertainties related to the modeling of tt. The modeling of the top quark pT and the choice of the hadronizer are the dominant signal modeling uncertainties but their impact in the t is observed to be <1%. Uncertainties related to the modeling of the multijets background are observed to impact the t at the level of <0.5% None of the nuisance parameters used in the t is observed to be signi cantly pulled from its initial value and its behavior is similar to that expected by performing the t using simulated events with mt = 172:5 GeV. Nuisance parameters related to the integrated luminosity and the trigger and selection e ciencies are observed not to be constrained in the t procedure. CMS Distr. (obs.) Distr. (exp.) Count (obs.) Count (exp.) Δ 2 8 7 6 5 3 2 1 0 4 95% CL CMS l = e, μ e μ eμe μ + + l- = e-, μl+ = e+, μ+ Distr. Count for the distribution-based analysis. The expected curve is obtained by performing the t using simulated events with mt = 172:5 GeV. For comparison, the corresponding curves for the counting cross-check analysis are also shown. The two horizontal lines represent the values in the PLR that are used to determine the 68% and 95% con dence level (CL) intervals for the signal strength. (right) Comparison of the values of the signal strength extracted for di erent combinations of events for the distribution-based default analysis (solid circles) and the cross-check counting analysis (open circles). The horizontal bars represent the total uncertainties, except the beam energy uncertainty. The shaded bands represent the uncertainty in the nal combined signal strength obtained from the distribution-based and cross-check analyses. The signal strength is measured in a region of phase space where the lepton has pT > 30 GeV and j j < 2:1, and at least one jet has pT > 30 GeV and j j < 2:5. The resulting visible tt cross section in this phase-space region is determined to be tvtis = 208:2 0:4 (stat) +54::59 (syst) 4:8 (lumi) pb; where the last uncertainty is from the integrated luminosity. The extrapolation to the full phase space is performed by using the acceptance es0:2345 ing timated from the tt simulation. Using powheg, we determine the acceptance to be 0:0001 (stat) +00::00004443 (syst), where the systematic uncertainty comes from changR= F ( 0:0017), considering the CT14 PDF and S uncertainties (+00::00000097) [76], and changing the parton shower algorithm used to interface with the matrix-element generator, i.e., pythia 8 vs. herwig++, ( 0:0039). The total uncertainty associated with the extrapolation is estimated to be 1.6%. This uncertainty is added in quadrature to the systematic uncertainty obtained in the tted ducial region when extrapolating the measurement to the full phase space. Summing the statistical (0.2%), systematic (3.0%), and integrated luminosity (2.3%) uncertainties in quadrature, we obtain a total relative uncertainty in the tt cross section of 3.9%. The nal result is: Integrated luminosity W+jets normalization b identification efficiency μ selection efficiency e trigger efficiency DY normalization (μ 1j) μ trigger efficiency μ energy scale e selection efficiency Multijets normalization (μ- 3j,1b) Multijets normalization (μ- 4j,1b) top quark pT Hadronization JES PU p offset T DY normalization (e 1j) Multijets normalization (μ+ 4j,1b) Multijets normalization (μ+ 3j,1b) Multijets normalization (e- 3j,0b) CMS Observed Expected in the measured signal strength , coming from the listed experimental and theoretical sources of uncertainties in the main analysis. The open bars represent the values of the observed impact relative to the tted signal strength. The values are compared to the expectations (shaded bars) by performing the t using simulated events with mt = 172:5 GeV. The various contributions are shown from the largest to the smallest observed impact. in agreement with the NNLO+NNLL prediction [45] and the measurement derived from analyzing events in the electron + muon nal state from the same data set [26]. The result can be reinterpreted to extract the pole mass mt of the top quark by using the dependence of the cross section on this parameter. We make use of the top++ program [45] and the CT14 NNLO PDF [76] to parametrize the dependence of the cross section on the top quark mass. The parametrization used is: (mt) = (mref) mref mt 4 " 1 + a1 mt mref 1 + a2 mt mref 1 2# ; (4.4) +22::76%%, and energy at which the data have been collected [ 77 ]. where mref = 172:5 GeV is the reference mass value, and a1 and a2 are coe cients determined after performing the calculations with various mt hypotheses. The e ects induced by the choice of R= F, the uncertainty in the PDF+ S, and uncertainties in the beam energy, are evaluated by recomputing the cross section after changing these parameters within their uncertainties. The resulting typical uncertainties in (mt) amount to +23::57%%, 0.23%, respectively. The latter re ects a 0.1% uncertainty in the beam To measure the pole mass, the likelihood function (eq. (4.2)) is reparametrized, transforming into a functional form that depends on the top quark mass (mt) = (mt) th A A(mt) ; (4.5) Uncertainties from the t in the ducial region Extrapolation to the full phase space Beam energy R= F and PDF+ S Total where the last factor (A=A(mt)), is a mass-dependent correction to the acceptance. Using simulated tt samples with di erent mt, we nd that the acceptance changes by 0.08% per mt = 1 GeV. The uncertainty in the extrapolation, as well as the theoretical uncertainties that a ect the parameterization as a function of mt coming from the choices of R= F, PDF, S, and beam energy, are added as extra nuisance parameters in the t for the pole mass. With the exception of R= F, which is de ned through a log-uniform probability distribution consistent with the procedure adopted in ref. [27], the remaining uncertainties are assigned a log-normal function. After repeating the maximum-likelihood t, we obtain where the quoted uncertainty contains both statistical and systematic contributions. The result agrees with that obtained using the NNPDF3.0 NNLO PDF [28]: 170:3 +22::67 GeV. The latter is only used as a cross-check as the NNPDF3.0 PDF includes top-quark-related data in the determination of the proton PDFs. In both cases, the best- t mt = value is determined by xing the nuisance parameter associated with the choice of the R and F ratio to its post- t value, and repeating the scan of the likelihood. This procedure is adopted to resolve the almost degenerate behavior of the likelihood, induced through the use of a log-uniform pdf assigned to the choice of the R and F ratio. Figure 5 shows the variation of the likelihood as a function of the top quark pole mass. For comparison, the expected likelihood from the Asimov set of nuisance parameters at mt = 172:5 GeV is shown. The impact of each source of systematic uncertainty in the values corresponding to the t is estimated using a similar procedure to the one described above for the cross section measurement. Table 1 summarizes the estimated uncertainties in the determination of mt from the measured cross section. 5 Summary A measurement of the tt production cross section at p s = 13 TeV has been presented by CMS in in the nal states containing one isolated lepton and at least one jet. The acceptance ducial part of the phase space is estimated with an uncertainty of 1.6% and has a negligible dependence on mt. By performing a simultaneous t to event distributions in 44 independent categories, we measure the strength of the tt signal relative to the CMS observed expected )10 L ( 95% CL Acknowledgments dependence from the simulation, using the a priori set of nuisance parameters with their expected values at mt = 172:5 GeV, is shown for comparison as the dotted curve. The changes in the likelihood corresponding to the 68% and 95% con dence levels (CL) are shown by the dashed lines. NNLO+NNLL [45] computation with an uncertainty of 3.9%. We obtain an inclusive tt production cross section with the standard model prediction, competing in precision with it [45] and with similar measurements of this quantity at the same p s [24{26]. In addition, the top quark pole mass, mt, is extracted at NNLO using the same data and the CT14 PDF set and found to 2:7 GeV. This value is in good agreement with measurements using other We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programmes co nanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. HJEP09(217)5 collisions at p [arXiv:1108.3699] [INSPIRE]. ATLAS in pp collisions at p [1] ATLAS collaboration, Measurement of the cross section for top-quark pair production in pp collisions at p leptons, JHEP 05 (2012) 059 [arXiv:1202.4892] [INSPIRE]. s = 7 TeV with the ATLAS detector using nal states with two high-pT [2] ATLAS collaboration, Measurement of the top quark pair production cross section in pp nal states with ATLAS, Phys. Lett. B 707 (2012) 459 [3] ATLAS collaboration, Measurement of the top quark-pair production cross section with s = 7 TeV, Eur. Phys. J. C 71 (2011) 1577 [arXiv:1012.1792] [4] ATLAS collaboration, Measurement of the top quark pair cross section with ATLAS in pp s = 7 TeV using nal states with an electron or a muon and a hadronically decaying [5] CMS collaboration, First measurement of the cross section for top-quark pair production in s = 7 TeV, Phys. Lett. B 695 (2011) 424 [arXiv:1010.5994] [6] CMS collaboration, Measurement of the tt production cross section and the top quark mass s = 7 TeV, JHEP 07 (2011) 049 in the dilepton channel in pp collisions at p [7] CMS collaboration, Measurement of the top-antitop production cross section in pp collisions s = 7 TeV using the kinematic properties of events with leptons and jets, Eur. Phys. J. [8] CMS collaboration, Measurement of the t-channel single top quark production cross section in pp collisions at ps = 7 TeV, Phys. Rev. Lett. 107 (2011) 091802 [arXiv:1106.3052] [9] CMS collaboration, Measurement of the top quark pair production cross section in pp nal states containing a , Phys. Rev. D 85 (2012) 112007 [arXiv:1203.6810] [INSPIRE]. [10] CMS collaboration, Measurement of the tt production cross section in the dilepton channel in pp collisions at ps = 7 TeV, JHEP 11 (2012) 067 [arXiv:1208.2671] [INSPIRE]. [11] CMS collaboration, Measurement of the top-quark mass in tt events with lepton+jets nal s = 7 TeV, JHEP 12 (2012) 105 [arXiv:1209.2319] [INSPIRE]. [12] CMS collaboration, Measurement of the top-antitop production cross section in the tau+jets s = 7 TeV, Eur. Phys. J. C 73 (2013) 2386 [arXiv:1301.5755] [13] CMS collaboration, Measurement of the tt production cross section in pp collisions at s = 7 TeV with lepton + jets nal states, Phys. Lett. B 720 (2013) 83 [arXiv:1212.6682] [14] CMS collaboration, Measurement of the tt production cross section in the all-jet nal state in pp collisions at ps = 7 TeV, JHEP 05 (2013) 065 [arXiv:1302.0508] [INSPIRE]. [15] ATLAS collaboration, Measurement of the tt production cross-section using e events with b-tagged jets in pp collisions at p 74 (2014) 3109 [arXiv:1406.5375] [INSPIRE]. s = 7 and 8 TeV with the ATLAS detector, Eur. Phys. J. C [16] ATLAS collaboration, Measurement of the top pair production cross section in 8 TeV proton-proton collisions using kinematic information in the lepton+jets nal state with ATLAS, Phys. Rev. D 91 (2015) 112013 [arXiv:1504.04251] [INSPIRE]. [17] CMS collaboration, Measurement of the tt production cross section in the dilepton channel s = 8 TeV, JHEP 02 (2014) 024 [Erratum ibid. 02 (2014) 102] states in pp collisions at p channel in pp collisions at p in pp collisions at p [arXiv:1312.7582] [INSPIRE]. p [arXiv:1407.6643] [INSPIRE]. [18] CMS collaboration, Measurement of the tt production cross section in pp collisions at s = 8 TeV in dilepton nal states containing one lepton, Phys. Lett. B 739 (2014) 23 [19] CMS collaboration, Measurement of the tt production cross section in the all-jets nal state [20] CMS collaboration, Measurements of the tt production cross section in lepton+jets nal states in pp collisions at 8 TeV and ratio of 8 to 7 TeV cross sections, Eur. Phys. J. C 77 (2017) 15 [arXiv:1602.09024] [INSPIRE]. [21] LHCb collaboration, First observation of top quark production in the forward region, Phys. Rev. Lett. 115 (2015) 112001 [arXiv:1506.00903] [INSPIRE]. [22] LHCb collaboration, Measurement of forward tt, W + bb and W + cc production in pp [23] CMS collaboration, Measurement of the tt production cross section in the e channel in s = 7 and 8 TeV, JHEP 08 (2016) 029 [arXiv:1603.02303] s = 8 TeV, Phys. Lett. B 767 (2017) 110 [arXiv:1610.08142] [INSPIRE]. nal state in pp collisions at p [arXiv:1611.04040] [INSPIRE]. [24] CMS collaboration, Measurement of the top quark pair production cross section in s = 13 TeV, Phys. Rev. Lett. 116 (2016) 052002 [25] ATLAS collaboration, Measurement of the tt production cross-section using e events with s = 13 TeV with the ATLAS detector, Phys. Lett. B 761 [26] CMS collaboration, Measurement of the tt production cross section using events in the e s = 13 TeV, Eur. Phys. J. C 77 (2017) 172 [27] CMS collaboration, Determination of the top-quark pole mass and strong coupling constant from the tt production cross section in pp collisions at p s = 7 TeV, Phys. Lett. B 728 (2014) 496 [Erratum ibid. B 738 (2014) 526] [arXiv:1307.1907] [INSPIRE]. [28] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [29] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE]. [30] M. Czakon, A. Mitov, M. Papucci, J.T. Ruderman and A. Weiler, Closing the stop gap, Phys. Rev. Lett. 113 (2014) 201803 [arXiv:1407.1043] [INSPIRE]. [31] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 CMS-PAS-LUM-15-001 (2015). [32] CMS collaboration, CMS luminosity measurement for the 2015 data-taking period, [33] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. [34] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [35] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. heavy avour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. 159 [arXiv:1410.3012] [INSPIRE]. (2010) 014002 [arXiv:1004.0962] [INSPIRE]. [40] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [43] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] 011] [arXiv:0907.4076] [INSPIRE]. [47] E. Re, Single-top W t-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE]. [48] N. Kidonakis, Top quark production, in the proceedings of the Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons (HQ 2013), July 15{28, Dubna, Russia (2013), arXiv:1311.0283 [INSPIRE]. [49] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O( s2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE]. [50] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W +W , W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE]. [51] J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE]. [52] J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE]. [53] J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE]. p s = 7 TeV, JHEP 01 (2011) 080 [arXiv:1012.2466] [INSPIRE]. [55] CMS collaboration, Measurements of inclusive W and Z cross sections in pp collisions at [56] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, submitted to JINST, arXiv:1706.04965 [INSPIRE]. [57] CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at p at ps = 7 TeV at the LHC, 2013 JINST 8 P11002 [arXiv:1306.6905] [INSPIRE]. [58] CMS collaboration, The performance of the CMS muon detector in proton-proton collisions HJEP09(217)5 063 [arXiv:0802.1189] [INSPIRE]. [arXiv:1111.6097] [INSPIRE]. [arXiv:0802.1188] [INSPIRE]. [arXiv:0707.1378] [INSPIRE]. P04013 [arXiv:1211.4462] [INSPIRE]. [61] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE]. [64] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8 production in pp collisions at p [arXiv:1505.04480] [INSPIRE]. [65] J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE]. [66] CMS collaboration, Measurement of masses in the tt system by kinematic endpoints in pp collisions at p s = 7 TeV, Eur. Phys. J. C 73 (2013) 2494 [arXiv:1304.5783] [INSPIRE]. [67] CMS and ATLAS collaborations, Jet energy scale uncertainty correlations between ATLAS and CMS at 8 TeV, CMS-PAS-JME-15-001 (2015). [68] ATLAS collaboration, Measurement of the inelastic proton-proton cross section at ps = 13 TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 117 (2016) 182002 [arXiv:1606.02625] [INSPIRE]. [69] CMS collaboration, Measurement of the di erential cross section for top quark pair s = 8 TeV, Eur. Phys. J. C 75 (2015) 542 [70] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [71] A.S. Belyaev, E.E. Boos and L.V. Dudko, Single top quark at future hadron colliders: Complete signal and background study, Phys. Rev. D 59 (1999) 075001 [hep-ph/9806332] JHEP 11 (2009) 074 [arXiv:0908.0631] [INSPIRE]. [hep-ph/9909352] [INSPIRE]. [76] S. Dulat et al., New parton distribution functions from a global analysis of quantum HJEP09(217)5 CERN-ACC-2017-0007 (2017). Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, O. Dvornikov, Y. Dydyshka, I. Emeliantchik, A. Litomin, V. Makarenko, V. Mossolov, R. Stefanovitch, J. Suarez Gonzalez, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus N. Shumeiko Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, A. Vilela Pereira Brazil J.C. Ruiz Vargasa tova Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, S. Ahujaa, C.A. Bernardesa, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A.A. Abdelalim9;10, Y. Mohammed11, E. Salama12;13 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, CNRS-IN2P3 J.-L. Agram14, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14, D. Gele, U. Goerlach, A.-C. Le Bihan, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Gadrat Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov15, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Georgian Technical University, Tbilisi, Georgia A. Khvedelidze8 D. Lomidze Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl16 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras17, A. Campbell, P. Connor, C. ContrerasCampana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel19, H. Jung, A. Kalogeropoulos, O. Karacheban19, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann19, R. Mankel, I.A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo16, T. Pei er, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, Paraskevi, Greece I. Topsis-Giotis P. Goldenzweig, D. Haitz, F. Hartmann16, S.M. Heindl, U. Husemann, I. Katkov15, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary N. Filipovic Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, A.J. ZsigInstitute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi22, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen M. Bartok21, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury23, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhowmik25, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity25, G. Majumder, K. Mazumdar, T. Sarkar25, N. Wickramage26 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani27, E. Eskandari Tadavani, S.M. Etesami27, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi28, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;16, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;16 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania;b;16 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, L. Brianzaa;b;16, F. Brivioa;b, V. Ciriolo, M.E. Dinardoa;b, S. Fiorendia;b;16, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzinia;b, S. Ragazzia;b, T. Tabarelli de INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, HJEP09(217)5 Italy P. Paoluccia;16, C. Sciaccaa;b, F. Thyssena INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;16, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, S. Venturaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;30, P. Azzurria;16, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;30, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, A. Giassia, M.T. Grippoa;30, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. SavoyNavarroa;31, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;16, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;16, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, A. Lee Kwangju, Korea H. Kim E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali32, F. Mohamad Idris33, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz34, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda D. Krofcheck P.H. Butler University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev36;37, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsova39, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia A. Bylinkin37 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia E. Popova, E. Tarkovskii, E. Zhemchugov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin37, I. Dremin37, M. Kirakosyan, A. Leonidov37, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, V. Klyukhin, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Per lov, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov41, Y.Skovpen41, D. Shtol41 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain Cortabitarte I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, E. Curras, M. Fernandez, J. GarciaFerrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco43, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer16, M.J. Kortelainen, K. Kousouris, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic44, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi45, M. Rovere, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas46, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns47, G.I. Veres21, M. Verweij, N. Wardle, H.K. Wohri, A. Zagozdzinska35, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomtey, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov48, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler49, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University - Physics Department, Science and Art Faculty A. Adiguzel, M.N. Bakirci50, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos51, E.E. Kangal52, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut53, K. Ozdemir54, S. Ozturk50, A. Polatoz, D. Sunar Cerci55, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak56, G. Karapinar57, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya58, O. Kaya59, E.A. Yetkin60, T. Yetkin61 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen62 Institute for Scintillation Materials of National Academy of Science of Ukraine, National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold63, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev64, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas63, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko48, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta65, T. Virdee16, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou R. Syarif Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi University of California, Los Angeles, U.S.A. C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech66, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta bara, U.S.A. University of California, Santa Barbara - Department of Physics, Santa BarN. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J. Bunn, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Thom, J. Tucker, P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. D. Winn J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. SextonKennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Bein, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, I.D. Sandoval Gonzalez, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki67, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya68, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok69, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, L. Forthomme, R.P. Kenny III, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, V. Azzolini, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek70, K. Bloom, D.R. Claes, A. Dominguez70, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, A. Kumar, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko36, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, T. Medvedeva, K. Mei, J. Olsen, C. Palmer, P. Piroue, D. Stickland, A. Svyatkovskiy, C. Tully S. Malik University of Puerto Rico, Mayaguez, U.S.A. Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, F. Wang, W. Xie Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali71, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon72, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, N. Woods y: Deceased China University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, CNRS/IN2P3, Strasbourg, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Helwan University, Cairo, Egypt 10: Now at Zewail City of Science and Technology, Zewail, Egypt 11: Now at Fayoum University, El-Fayoum, Egypt 12: Also at British University in Egypt, Cairo, Egypt 13: Now at Ain Shams University, Cairo, Egypt 14: Also at Universite de Haute Alsace, Mulhouse, France Moscow, Russia 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 18: Also at University of Hamburg, Hamburg, Germany 19: Also at Brandenburg University of Technology, Cottbus, Germany 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 21: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 23: Also at Indian Institute of Science Education and Research, Bhopal, India 24: Also at Institute of Physics, Bhubaneswar, India 25: Also at University of Visva-Bharati, Santiniketan, India 26: Also at University of Ruhuna, Matara, Sri Lanka 27: Also at Isfahan University of Technology, Isfahan, Iran 28: Also at Yazd University, Yazd, Iran University, Tehran, Iran 30: Also at Universita degli Studi di Siena, Siena, Italy 31: Also at Purdue University, West Lafayette, U.S.A. 29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad 32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 34: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 36: Also at Institute for Nuclear Research, Moscow, Russia 37: Now at National Research Nuclear University 'Moscow 38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 39: Also at University of Florida, Gainesville, U.S.A. 40: Also at California Institute of Technology, Pasadena, U.S.A. 41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 43: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 45: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 46: Also at National and Kapodistrian University of Athens, Athens, Greece 47: Also at Riga Technical University, Riga, Latvia 48: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 49: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 50: Also at Gaziosmanpasa University, Tokat, Turkey 51: Also at Istanbul Aydin University, Istanbul, Turkey 52: Also at Mersin University, Mersin, Turkey 53: Also at Cag University, Mersin, Turkey 54: Also at Piri Reis University, Istanbul, Turkey 55: Also at Adiyaman University, Adiyaman, Turkey 56: Also at Ozyegin University, Istanbul, Turkey 57: Also at Izmir Institute of Technology, Izmir, Turkey 59: Also at Kafkas University, Kars, Turkey 60: Also at Istanbul Bilgi University, Istanbul, Turkey 61: Also at Yildiz Technical University, Istanbul, Turkey 62: Also at Hacettepe University, Ankara, Turkey 63: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 64: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 65: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 66: Also at Utah Valley University, Orem, U.S.A. 67: Also at Argonne National Laboratory, Argonne, U.S.A. 68: Also at Erzincan University, Erzincan, Turkey 69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 70: Now at The Catholic University of America, Washington, U.S.A. 71: Also at Texas A&M University at Qatar, Doha, Qatar 72: Also at Kyungpook National University, Daegu, Korea lepton , Phys. Lett. B 717 ( 2012 ) 89 [arXiv: 1205 . 2067 ] [INSPIRE]. [36] S. Frixione , P. Nason and G. Ridol , A positive-weight next-to-leading-order Monte Carlo for [37] T. Sj ostrand, S. Mrenna and P.Z. Skands , PYTHIA 6 . 4 physics and manual , JHEP 05 [38] T. Sj ostrand et al ., An introduction to PYTHIA 8.2, Comput . Phys. Commun . 191 ( 2015 ) [39] F. Demartin , S. Forte , E. Mariani , J. Rojo and A. Vicini , The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders , Phys. Rev. D 82 [41] P. Skands , S. Carrazza and J. Rojo , Tuning PYTHIA 8 . 1: the Monash 2013 Tune, Eur . Phys. J. C 74 ( 2014 ) 3024 [arXiv: 1404 .5630] [INSPIRE]. [42] J. Alwall et al., The automated computation of tree-level and next-to-leading order [44] M. Bahr et al., HERWIG++ physics and manual , Eur. Phys. J. C 58 ( 2008 ) 639 [45] M. Czakon and A. Mitov , Top++ : a program for the calculation of the top-pair cross-section at hadron colliders , Comput. Phys. Commun . 185 ( 2014 ) 2930 [arXiv: 1112 .5675]. [46] S. Alioli , P. Nason , C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions , JHEP 09 ( 2009 ) 111 [Erratum ibid . 02 ( 2010 ) Instrum . Meth. A 506 ( 2003 ) 250 [INSPIRE]. [59] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [60] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [62] M. Cacciari , G.P. Salam and G. Soyez, The catchment area of jets , JHEP 04 ( 2008 ) 005 [63] M. Cacciari and G.P. Salam , Pileup subtraction using jet areas , Phys. Lett. B 659 ( 2008 ) 119 [72] C.D. White , S. Frixione , E. Laenen and F. Maltoni , Isolating W t production at the LHC, [73] T.M.P. Tait , The tW mode of single top production , Phys. Rev. D 61 ( 1999 ) 034001 [74] G. Cowan , K. Cranmer , E. Gross and O. Vitells , Asymptotic formulae for likelihood-based tests of new physics , Eur. Phys. J. C 71 ( 2011 ) 1554 [Erratum ibid . C 73 ( 2013 ) 2501] [75] J. Kieseler , K. Lipka and S.-O. Moch , Calibration of the top-quark Monte Carlo mass , Phys. chromodynamics , Phys. Rev. D 93 ( 2016 ) 033006 [arXiv: 1506 .07443] [INSPIRE]. [77] J. Wenninger and E. Todesco , Large Hadron Collider momentum calibration and accuracy,


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP09%282017%29051.pdf

A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck, J. Strauss, W. Waltenberger, C.-E. Wulz, V. Chekhovsky, O. Dvornikov, Y. Dydyshka, I. Emeliantchik, A. Litomin, V. Makarenko, V. Mossolov, R. Stefanovitch, J. Suarez Gonzalez, V. Zykunov, N. Shumeiko, S. Alderweireldt, E. A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis, H. Bakhshiansohi, C. Beluffi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, S. Dogra, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, C. S. Moon, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, T. Cheng, C. H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, C. F. González Hernández, J. D. Ruiz Alvarez, J. C. Sanabria, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, S. Micanovic, L. Sudic, T. Susa, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, D. Tsiakkouri, M. Finger, M. Finger Jr., E. Carrera Jarrin, A. A. Abdelalim, Y. Mohammed, E. Salama, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi, J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le Bihan, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, A. Khvedelidze, D. Lomidze, C. Autermann, S. Beranek, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee. Measurement of the \( \mathrm{t}\overline{\mathrm{t}} \) production cross section using events with one lepton and at least one jet in pp collisions at \( \sqrt{s}=13 \) TeV, Journal of High Energy Physics, 2017, 51, DOI: 10.1007/JHEP09(2017)051