Search for new physics in the monophoton final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV

Journal of High Energy Physics, Oct 2017

A search is conducted for new physics in a final state containing a photon and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV. The data collected by the CMS experiment at the CERN LHC correspond to an integrated luminosity of 12.9 fb−1. No deviations are observed relative to the predictions of the standard model. The results are interpreted as exclusion limits on the dark matter production cross sections and parameters in models containing extra spatial dimensions. Improved limits are set with respect to previous searches using the monophoton final state. In particular, the limits on the extra dimension model parameters are the most stringent to date in this channel.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP10%282017%29073.pdf

Search for new physics in the monophoton final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV

Received: June 13 TeV 0 nal state. In particular, the limits on A search is conducted for new physics in a collected by the CMS experiment at the CERN LHC correspond to an integrated luminosity of 12.9 fb 1. No deviations are observed relative to the predictions of the standard model. The results are interpreted as exclusion limits on the dark matter production cross sections and parameters in models containing extra spatial dimensions. Improved limits are set with respect to previous searches using the monophoton the extra dimension model parameters are the most stringent to date in this channel. Beyond Standard Model; Dark matter; Hadron-Hadron scattering (experi- - HJEP10(27)3 https://doi.org/10.1007/JHEP10(2017)073 1 Introduction 2 3 4 5 4.1 4.2 5.1 5.2 5.3 6 Summary The CMS collaboration 1 Introduction Signal and background modeling Monte Carlo simulation for signal and background modeling Background estimation using recorded data Results and interpretation Limits on simpli ed dark matter models Limits on electroweak dark matter models Limits on the ADD model One of the most intriguing open questions in physics is the nature of dark matter (DM). While DM is thought to be the dominant nonbaryonic contribution to the matter density of the universe [1], its detection and identi cation in terrestrial and spaceborne experiments remains elusive. At the CERN LHC, the DM particles may be produced in high-energy proton-proton collisions, if the DM particles interact with the standard model (SM) quarks or gluons via new couplings at the electroweak scale [2, 3]. Although DM particles cannot be directly detected at the LHC, their production could be inferred from an observation of events with a large transverse momentum imbalance (missing transverse momentum, pTmiss, de ned in section 2). Another highly important issue is the hierarchy problem, which involves the large energy gap between the electroweak (MEW) and Planck (MPl) scales [4]. Proposed solutions to this problem include theories with large extra dimensions, such as the model of ArkaniHamed, Dimopoulos, Dvali (ADD) [5, 6]. The ADD model postulates that there exist n compacti ed extra dimensions in which gravitons can propagate freely and that the true scale (MD) of the gravitational interaction in this 4+n dimensional space-time is of the same order as MEW. The compacti cation scale R of the additional dimensions is related to the two gravitational scales by MP2l RnMDn+2. For MD MEW, the cases n = 1 and n = 2 are ruled out or strongly disfavored by various observations [6], while cases n 3 remain { 1 { q γ χ q¯ q χ¯ γ χ q¯ q γ interaction (center), and graviton (G) production in the ADD model (right), with a nal state of and large pmiss. T HJEP10(27)3 to be probed, for example, by collider experiments. The compacti cation scale R is much greater than 1=MEW for a wide range of n, leading to a near-continuous mass spectrum of Kaluza-Klein graviton states. Although the gravitons would not be observed directly at the LHC, their production would be manifest as events broadly distributed in pmiss. In generic models of DM and graviton production, various SM particles can recoil T against these undetected particles, producing a variety of nal states with signi cant pTmiss. The monophoton, or + pmiss, nal state has the advantage of being identi able with high e ciency and purity. In DM production through a vector or axial vector mediator, a photon can be radiated from incident quarks ( gure 1 left). Models of this process have been developed by the CMS-ATLAS Dark Matter Forum [7]. It is also possible that the DM sector couples preferentially to the electroweak sector, leading to an e ective interaction T qq ! Z= ! [8], where is the DM particle ( gure 1 center). In ADD graviton production, the graviton can couple directly to the photon ( gure 1 right) or to a quark. In this paper, we examine nal states containing large pmiss in the presence of a photon with large transverse momentum (pT), and search for an excess of events over the SM prediction. Data collected by the CMS experiment in 2016 with an integrated luminosity of 12.9 fb 1 are analyzed. Results are interpreted in the context of these three models. T The primary irreducible background for the + pTmiss signal is SM Z boson production Z(! ``) + , and noncollision sources, such as beam halo interactions and detector noise. T + pmiss nal state using pp collisions at p s = 8 TeV, corresponding to an integrated luminosity of 19.6 fb 1, was reported by the CMS experiment in ref. [9]. The ATLAS experiment has also reported a similar search in 36.1 fb 1 of pp 2 The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass { 2 { and scintillator hadron calorimeter (HCAL), each composed of a barrel (j j < 1:48) and two endcap (1:48 < j j < 3:00) sections, where is the pseudorapidity. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. An energy resolution of about 1% is reached within the barrel section of the ECAL for unconverted or late-converting photons with pT 60 GeV. The remaining barrel photons have a resolution of about 1.3% up to a pseudorapidity of j j = 1, rising to about 2.5% at j j = 1:4 [11]. The time resolution of photons at the ECAL is <200 ps for depositions >10 GeV. In the { plane, where is the azimuthal angle, and for j j < 1:48, the HCAL trackers and outer muon chambers. the missing transverse momentum, pTmiss. The PF candidates in each event are clustered into jets via the anti-kt algorithm [ 16 ] with a distance parameter of 0.4. Jet energies, computed from a simple sum of 4-momenta of the constituent PF candidates, are corrected to account for the contributions from particles associated with additional interactions within the same or nearby bunch crossings (pileup), as well as to compensate for the nonlinearities in the measured particle energies. Jet energy corrections are obtained from simulation, and are con rmed through in situ measurements of the energy momentum balance in dijet and photon + jet events. The uncorrected missing transverse momentum vector (p~Tmiss) is de ned as the negative vector sum of the transverse momenta of all PF candidates in an event. This quantity is adjusted with the di erence of uncorrected and corrected jets for a consistent and more accurate missing momentum measurement [17]. The magnitude of p~Tmiss is referred to as The reconstruction of photons and electrons begins with the identi cation of clusters of energy deposited in the ECAL with little or no observed energy in the corresponding HCAL region. For each candidate cluster, the reconstruction algorithm searches for hits in { 3 { the pixel and strip trackers that can be associated with the cluster. Such associated hits are called electron seeds, and are used to initiate a special track reconstruction based on a lter [18, 19], which is optimized for electron tracks. A \seed veto" removes photon candidates with an associated electron seed. Selections based on calorimetric information and isolation are applied to distinguish photons from electromagnetic (EM) showers caused by hadrons. The calorimetric requirements for photons comprise H=E < 0:05 and < 0:0102, where H=E is the ratio of hadronic to EM energy deposition. The variable , described in detail in ref. [11], represents the width of the electromagnetic shower in the direction, which is generally larger in within a cone of R = p ( showers from hadronic activity. For a photon candidate to be considered as isolated, scalar sums of the transverse momenta of PF charged hadrons, neutral hadrons, and photons )2 + ( )2 < 0:3 around the candidate photon must individually fall below the bounds de ned for 80% signal e ciency. Only the PF candidates that do not overlap with the EM shower of the candidate photon are included in the isolation sums. Each PF charged hadron is reconstructed from a track and can be associated with an interaction vertex it originates from. Therefore, the isolation sum over PF charged hadrons should be computed using only the candidates sharing an interaction vertex with the photon candidate. However, because photon candidates are not reconstructed from tracks, their vertex association is ambiguous. When an incorrect vertex is assigned, photon candidates that are not isolated can appear otherwise. To mitigate the rate for accepting nonisolated candidates as photon candidates, the maximum charged hadron isolation value over all vertex hypotheses (worst isolation) is used. Another consequence of calorimetry-driven reconstruction is that stray ECAL clusters produced by mechanisms other than pp collisions can be misidenti ed as photons. In particular, beam halo muons that accompany proton beams and penetrate the detector longitudinally, and the interaction of particles in the ECAL photodetectors (\ECAL spikes") have been found to produce spurious photon candidates at nonnegligible rates. To reject these backgrounds, the ECAL signal in the seed crystal of the photon cluster is required to be within 3 ns of the arrival time expected for particles originating from a collision. In addition, the candidate cluster must comprise more than a single ECAL crystal. Furthermore, the maximum of the total energy along all possible paths of beam halo particles passing through the cluster is calculated for each photon candidate. This quantity, referred to as the halo total energy, is required to be below a threshold de ned to retain 95% of the true photons, while rejecting 80% of the potential halo clusters. 3 Event selection The integrated luminosity of the analyzed data sample, derived from a preliminary measurement using the method described in [20], is (12:9 0:8) fb 1 . The data sample is collected with a single-photon trigger that requires at least one photon candidate with pT > 165 GeV. The photon candidate must have H=E < 0:1, to reject jets. The photon energy reconstructed in the trigger is less precise relative to that derived later in the ofine selection. Therefore, the thresholds in the trigger on both H=E and pT, where pT is { 4 { the photon pT, are less restrictive than their o ine counterparts. The trigger e ciency is measured to be about 98% for events passing the analysis selection with p T > 175 GeV. From the recorded data, events are selected by requiring pmiss > 170 GeV and at least one photon with p T > 175 GeV in the ducial region of the ECAL barrel (j j < 1:44). Events are rejected if the minimum opening angle between p~miss and any of the four high (p~Tmiss; p~Tjet), is less than 0.5. This requirement signi cantly suppresses spurious pTmiss backgrounds from mismeasured jets. Only jets with pT > 30 GeV and j j < 5 are considered in the (p~Tmiss; p~Tjet) calculation. The candidate photon transverse momentum vector and p~miss must be separated by more than 2 radians. Finally, to reduce the contribution from the W(! ` ) + process, events are vetoed if they contain an electron or a muon with pT > 10 GeV that is separated from the photon by Signal and background modeling The SM backgrounds and signal are modeled using both simulated events and recorded data. The two methods are described in the following sections. 4.1 Monte Carlo simulation for signal and background modeling Monte Carlo (MC) simulation is used to model the signal and some classes of SM background events. For the SM backgrounds, the primary hard interaction is simulated using the MadGraph5 amc@nlo version 2.2.2 [21] or pythia8.212 [22] generators employing the NNPDF 3.0 [23] leading-order (LO) parton distribution function (PDF) set at the strong coupling value S = 0:130. Parton showering and hadronization are provided in pythia8.212 through the underlying-event tune CUETP8M1 [24]. Multiple minimum-bias events are overlaid on the primary interaction to model the distribution of pileup in data. Generated particles are processed through the full Geant4-based simulation of the CMS detector [25, 26]. For the DM signal hypothesis, MC simulation samples are produced with Mad T > 130 GeV and j j < 2:5. A large number of DM simpli ed model samples are generated, varying the masses of the mediator and DM particles. Similarly, electroweak-DM e ective interaction samples are generated with a range of dark matter masses. For the ADD hypothesis, events are generated using pythia8.212, requiring p T > 130 GeV, with no restriction on the photon pseudorapidity. Samples are prepared in a grid of number of extra dimensions and MD. The e ciency of the full event selection on these signal models ranges between 0.12 and 0.27 for the DM simpli ed models, 0.42 and 0.45 for electroweak DM production, and 0.22 and 0.28 for the ADD model, depending on the parameters of the models. Predictions for signal and background MC yields are rescaled by an overall correction factor ( ) that accounts for the di erences in event selection e ciency between data and simulation. The value of = 0:94 0:06 re ects the product of three correction factors: 0:94 1:00 0:01 for photon identi cation and isolation, 1:00 0:01 for the electron seed veto, and 0:06 for the combination of the worst isolation, the halo total energy requirement, { 5 { and the lepton veto. The selection e ciencies are measured in data using the tag-andprobe technique [27]. Events with Z ! ee decays are employed for measuring the photon identi cation and isolation e ciencies, while a Z ! other e ciency factors [28]. sample is utilized to extract the The most signi cant SM backgrounds in this search are from the associated production of a Z or W boson with a high-energy photon, denoted as Z(! ) + and W(! ` ) + . When the Z boson decays into a neutrino-antineutrino pair, the nal state exhibits a highpT photon and large pTmiss. Similarly, if the W boson decays into a lepton-neutrino pair and the lepton escapes detection, the event appears to be T + pmiss. Together, these processes account for approximately 70% of the SM background, with 50% from Z(! ) + alone. The estimation of Z(! )+ and W(! ` )+ backgrounds is based on MadGraph5 amc@nlo simulations at LO in QCD and with up to two additional partons in the nal state. In addition to the selection e ciency correction factor , these samples are weighted event-by-event with the product of two factors. The rst factor matches the distribution of the generator-level p T to that calculated at next-to-next-to-leading order (NNLO) in QCD using the DYRes program [29]. The second factor, taken from refs. [30, 31], further corrects the backgrounds to account for next-to-leading order (NLO) electroweak e ects. The estimated contributions from the Z(! ) + and W(! ` ) + processes after applying the selections in section 3 are given in table 1, and amount to 215 32 and 57:2 8:0 events, respectively. Statistical and systematic uncertainties are combined in quadrature. The statistical uncertainty is subdominant and is due to the nite size of the simulation sample. Systematic uncertainties in the estimated Z(! )+ and W(! ` )+ yields have four contributions and are summarized in table 2. The rst is associated with the PDF and the choice of renormalization and factorization scales ( R and F ) used in generating the events. The relative uncertainty from these sources are 5.4% and 8.9% in the Z(! ) + and W(! ` ) + yields, respectively. Uncertainty from the PDF is evaluated by varying the weight of each event based on the standard deviation of the event weight distribution as given by the NNPDF set. Uncertainties from the choice of R and F are evaluated by setting the scales to twice or half the nominal values and taking the minima and maxima of the resulting event weights. Second, the uncertainty due to missing higher-order electroweak corrections is taken as the magnitude of the NLO correction. The uncertainty from this source is 11% for the Z(! ) + process and 7% for W(! ` ) + . The third uncertainty is on the selection e ciency correction factor , with the main contribution from the statistical uncertainties in individual e ciency measurements. A fourth uncertainty is assigned to cover the uncertainties in the jet energy scale [32], photon energy scale [33], pileup, and the scale and resolution in pmiss. The combined relative uncertainties from the third and fourth categories in the Z(! ) + T and W(! ` ) + yields are 6% and 6.2%, respectively. To validate the predictions from simulation, observed and MC simulated data are compared in two control regions. One region consists of events with two same- avor leptons of opposite-charge and a photon, which is dominated by the Z(! ``) + process. The photon is selected by criteria identical to those used in the signal candidate event selection, while the leptons are required to have pT > 10 GeV and the dilepton invariant mass must { 6 { to predict the Z(! be greater than 170 GeV to emulate the pmiss in Z(! T lie between 60 and 120 GeV. Furthermore, the recoil U `` = jp~Tmiss + p~T` + p~T` j [27] must ) + events. In addition to simulated Z(! ``) + events, MC samples of tt , Z(! ``) + jets, and multiboson events are also considered. In total, 68:1 3:8 events are predicted in the dilepton control region, and 64 events are observed. The dominant uncertainty is theoretical. Using the ratio of acceptances between the Z(! ) + and Z(! ``) + simulations, this validation is used ) + contribution to the candidate sample of 242 35, which is in agreement with the purely simulation-based prediction given previously. The uncertainty in this prediction is mainly due to the limited event yields in the control samples. The second region is de ned by requirements of exactly one electron or muon with pT > 30 GeV, one photon with pT > 175 GeV, pTmiss > 50 GeV, and U ` = jp~Tmiss + p~T` j > 170 GeV [17]. This region is dominated by W(! ` ) + production. A total of 108 events are observed in this region, where 10:6 1:3 non-W + background events are expected. The ratio of the acceptance for W + events where the lepton is missed, compared to the acceptance for events where it is identi ed is estimated from simulation, and is multiplied with the background-subtracted observed yield of this control region. The product, 69:2 7:6, gives a prediction of W(! ` ) + contribution in the signal region that is in agreement with the simulation-based estimate. As with the Z(! ``) + estimate, the dominant uncertainty is theoretical. The SM tt , VV , Z(! ``) + , W ! ` , and backgrounds in the signal region. Although Z(! ``) + + jets processes are minor ( 10%) and + jets do not involve high-pT invisible particles, the former can exhibit large pTmiss when the leptons are not reconstructed, and the latter when jet energy is severely mismeasured. The estimates for all ve processes are taken from MadGraph5 amc@nlo simulations at leading order in QCD. 4.2 Background estimation using recorded data An important background consists of W ! e events in which the electron is misidenti ed as a photon. The misidenti cation occurs because of an ine ciency in seeding electron tracks. A seeding e ciency of = 0:977 0:002 for electrons with pT > 160 GeV is measured in data using a tag-and-probe technique in Z ! ee events, and is veri ed with MC simulation. Misidenti ed electron events are modeled by a proxy sample of electron events, de ned in data by requiring an ECAL cluster with a pixel seed. The proxy events must otherwise pass the same criteria used to select signal candidate events. The number of electron proxy events is then scaled by (1 )= to yield an estimated contribution of 52:7 4:2 events from electron misidenti cation. The dominant uncertainty in this estimate is the statistical uncertainty in the measurement of . Electromagnetic showers from hadronic activity can also mimic a photon signature. T This process is estimated by counting the numbers of events in two di erent subsets of a lowpmiss multijet data sample. The rst subset consists of events with a photon candidate that satis es the signal selection criteria. These events contain both true photons and jets that are misidenti ed as photons. The second subset comprises events with a candidate photon that meets less stringent shower-shape requirements and inverted isolation criteria with respect to the signal candidates. Nearly all of the candidate photons in these events arise from { 7 { jet misidenti cation. The hadron misidenti cation ratio is de ned as the ratio between the number of the misidenti ed events in the rst subset to the total number of events in the second subset. The numerator is estimated by tting the shower shape distribution of the photon candidate in the rst subset with template distributions. For true photons, a template for the shower width is formed using simulated +jets events. For jets misidenti ed as photons, the template is obtained from a sample selected by inverting the charged-hadron isolation and removing the shower-shape requirement entirely. Once the hadron misidentication ratio is computed, it is multiplied by the number of events in the high-pTmiss control sample with a photon candidate that satis es the conditions used to select the second subset of the low-pTmiss control sample. The product, 5:9 1:7 events, is the estimate of the contri bution of jet misidenti cation background in the signal region. The dominant uncertanty is systematic, and accounts for the e ects of the tting procedure, sample purity, photon candidate de nition of the control samples, and the sample bias in the jet composition. Finally, backgrounds from beam halo and spikes in the ECAL are estimated from ts of the angular and timing distributions of the calorimeter clusters. Energy clusters in the ECAL due to beam halo muons are observed to concentrate around 0 and , while all other processes (collision-related processes and ECAL spikes) produce photon candidates that are uniformly distributed in . The distribution of the cluster seed time provides a cross-check on this background estimate and an independent means to estimate the ECAL spikes contribution. Exploiting these features, a two-component t of the distribution with beam halo and uniform templates, and a three-component t of the cluster seed time using the halo, spike, and prompt-photon templates are performed. In both ts, the halo template is obtained by requiring high halo total energy for candidate-like photon candidates. The timing distribution of the spike background is obtained by inverting the shower shape requirement in the candidate photon selection. The results of the two ts are combined into an uncertainty-weighted average. Beam halo and spike backgrounds of 6:7 events, respectively, are predicted, where the dominant uncertainty is 5 Results and interpretation The estimated number of events and the associated uncertainty for each background process are given in table 1. A total of 400 events are observed in data, which is in agreement with the total expected SM background of 386 36 events. Distributions of pT and pmiss for the selected candidate events are shown in gure 2 to T gether with their respective estimated background distributions. A summary of the systematic uncertainties for the background estimates is given in table 2. The quoted systematic uncertainties in table 2 follow the signal and background modeling discussion in section 4. No excess of data with respect to the SM prediction is observed and limits are set on the aforementioned DM and ADD models. The evaluation of systematic uncertainties for the simulated signal follows the same procedures used for simulated backgrounds (section 4). For each signal model, a 95% con dence level (CL) cross section upper bound is obtained utilizing the asymptotic CLs criterion [34{37]. In this method, a Poisson likelihood for { 8 { Electron misidenti cation Process Z(! W(! ` ) + ) + ties for the background estimates are obtained by adding the systematic and statistical uncertainties in quadrature. HJEP10(27)3 V 1e03 G / s t 1en02 v E 10 1 10-1 10-2 10-3 /aSM 2324 00 Zγ→ ννγ Electron→ γ MisID Beam-halo Others Bkg. uncertainty DM AV (Mmed,mDM)=(200,50) GeV + jets, W ! ` , Z(! ``) + , and tt backgrounds. The background uncertainties include statistical and systematic components. The last bin includes the over ow. The lower panel shows the ratio of data and SM background predictions, where the hatched band shows the systematic uncertainty. { 9 { Integrated luminosity [20] Jet and energy scale, pTmiss resolution Data/simulation factor PDF, R and F Electroweak higher-order corrections Hadronic misidenti cation ratio Electron seeding ECAL spikes template shape Beam halo template shape + jets yield Background component All simulation-based All simulation-based All simulation-based Z(! Z(! ) + , W(! ` ) + ) + , W(! ` ) + Jet misid. Electron misid. ECAL spikes Beam halo the observed number of events is maximized under di erent signal strength hypotheses, taking the systematic uncertainties as nuisance parameters that modify the signal and background predictions. Each nuisance parameter is assigned a log-normal probability distribution, using the systematic uncertainty value as the width. The best t background predictions di er from the original by at most 4%. Con dence intervals are drawn by comparing these maximum likelihood values to those computed from background-only and signal-plus-background pseudo-data. 5.1 Limits on simpli ed dark matter models The simpli ed DM models proposed by the LHC Dark Matter Forum [7] are designed to facilitate the comparison and translation of various DM search results. In the models considered in this analysis, Dirac DM particles couple to a vector or axial-vector mediator, which in turn couples to the SM quarks. Model points are identi ed by a set of four parameters: the DM mass mDM, the mediator mass Mmed, the universal mediator coupling to quarks gq, and the mediator coupling to DM particles gDM. In this analysis, we x the values of gq and gDM to 0.25 and 1.0, respectively, and scan the Mmed{mDM plane [38]. The search is not yet sensitive to the spin-0 mediator models de ned in ref. [7]. theoretical cross section ( 95 = 95%= theory) for the vector and axial-vector mediator scenarios, in the Mmed{mDM plane. The solid red (lighter) and black (darker) curves are the expected and observed contours of 95 = 1 (exclusion contour). The region with 95 < 1 is excluded under nominal theory hypotheses. The uncertainty in the expected upper limit includes the experimental uncertainties. The uncertainty in the theoretical cross section is translated to the uncertainty in the observed exclusion contour. While there is little di erence in kinematic properties between the two scenarios, the production cross section HJEP10(27)3 V V DM simpli ed models with vector (left) and axial-vector (right) mediators, assuming gq = 0:25 and gDM = 1. Expected and observed 95 = 1 contours are overlaid. The region below the observed contour is excluded. for heavier dark matter in the vector mediator scenario tends to be higher [7], and therefore the exclusion region broader. For the simpli ed DM models considered, mediator masses of up to 700 GeV are excluded for small mDM values. The exclusion contours in gure 3 are also translated into the SI/SD{mDM plane, where SI/SD are the spin-independent/dependent DM-nucleon scattering cross sections. The translation and presentation of the result follows the prescription given in ref. [38]. In particular, to enable a direct comparison with results from direct detection experiments, these limits are calculated at 90% CL [7]. When compared to the direct detection experiments, the limits obtained from this search provide stronger constraints for dark matter masses less than 2 GeV, assuming spin-independent scattering, or less than 200 GeV, for spin-dependent scattering. 5.2 Limits on electroweak dark matter models The DM e ective eld theory (EFT) model contains a dimension-7 contact interaction of type [8]. The interaction is described by four parameters: the coupling to photons (parametrized in terms of coupling strengths k1 and k2), the DM mass mDM, and the suppression scale . Since the interaction cross section is directly proportional to 6 cross section upper limits are translated into lower limits on , assuming k1 = k2 = 1. The expected and observed lower limits on as a function of mDM are shown in gure 5. Values of up to 600 GeV are excluded at 95% CL. 5.3 Limits on the ADD model cross section for n = 3 extra dimensions, as a function of MD. Lower limits on MD for various values of n extra dimensions are summarized in table 3, and in gure 7 are compared 2 ]10−33 m10−34 CMS CCDREMSSSLTite-II2015 PandaX-II LUX 2016 Vector,ODbisraecrv,egdq 9=00%.25C,LgDM = 1 Median expected 90% CL 10 102 mDM [GeV] 2 ]m10−36 CMS c [ ) PICASSO PICO-60 IceCube(tt) Super-K(bb) Axial vector, Dirac, gq = 0.25, gDM = 1 Observed 90% CL Median expected 90% CL 10 102 mDM [GeV] dependent (right) scattering cross sections involving vector and axial-vector operators, respectively, as a function of the mDM. Simpli ed model DM parameters of gq = 0:25 and gDM = 1 are assumed. The region to the upper left of the contour is excluded. On the plots, the median expected 90% CL curve overlaps the observed 90% CL curve. Also shown are corresponding exclusion contours, where regions above the curves are excluded, from the recent results by CDMSLite [39], LUX [40], PandaX [41], CRESST-II [42], PICO-60 [43], IceCube [ 44 ], PICASSO [45] and Super-Kamiokande [46] Collaborations. HJEP10(27)3 Λ ]1000 V e900 G [ 800 n700 CMS 12.9 fb-1 (13 TeV) Observed Median expected as a function of mDM, for a dimension-7 operator EFT model assuming k1 = k2 = 1. of MD for n = 3 extra dimensions. Observed [T3.2 D M3 on2.8 1.8 1.6 3 s = 8 TeV [9]. Because the graviton production cross section scales collision, and is 2 TeV for p s = 8 TeV and 3 TeV for p as En=MDn+2 [47], where E is the typical energy of the hard scattering, MD can be an increasing or decreasing function of n for a xed cross section value, approaching E as n ! 1. Note that the value of E is dependent on the center-of-mass energy of the pp s = 13 TeV. Values of MD up to 2.49 TeV for n = 6 are excluded by the current analysis. n 3 4 5 6 Proton-proton collisions producing large missing transverse momentum and a high transdata set corresponding to 12.9 fb 1 of integrated luminosity recorded at p verse momentum photon have been investigated to search for new phenomena, using a s = 13 TeV at the CERN LHC. No deviations from the standard model predictions are observed. Constraints are set on the production cross sections for dark matter and large extra dimension gravitons at 95% con dence level, which are then translated to limits on the parameters of the individual models. For the simpli ed dark matter production models considered, the search excludes mediator masses of up to 700 GeV for low-mass dark matter. For an e ective dimension-7 photon-dark matter contact interaction, values of up to 600 GeV are excluded. For the ADD model with extra spatial dimensions, values of the fundamental Planck scale up to 2:31{2:49 TeV, depending on the number of extra dimensions, are excluded. These are the most stringent limits in the ADD model to date using the monophoton nal state. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Thalis and Aristeia programmes co nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. [INSPIRE]. [2] P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE]. [3] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE]. [4] L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE]. [5] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE]. [6] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE]. [7] D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE]. [INSPIRE]. [8] A. Nelson, L.M. Carpenter, R. Cotta, A. Johnstone and D. Whiteson, Confronting the Fermi line with LHC data: an e ective theory of dark matter interaction with photons, Phys. Rev. D 89 (2014) 056011 [arXiv:1307.5064] [INSPIRE]. [9] CMS collaboration, Search for new phenomena in monophoton nal states in proton-proton s = 8 TeV, Phys. Lett. B 755 (2016) 102 [arXiv:1410.8812] [INSPIRE]. [10] ATLAS collaboration, Search for dark matter at p s = 13 TeV in nal states containing an energetic photon and large missing transverse momentum with the ATLAS detector, Eur. Phys. J. C 77 (2017) 393 [arXiv:1704.03848] [INSPIRE]. [11] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS detector in proton-proton collisions at p [12] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [13] CMS collaboration, The CMS trigger system, 2017 JINST 12 P01020 [arXiv:1609.02366] [14] CMS collaboration, Particle- ow event reconstruction in CMS and performance for jets, taus and MET, CMS-PAS-PFT-09-001, CERN, Geneva Switzerland, (2009). [15] CMS collaboration, Commissioning of the particle- ow reconstruction in minimum-bias and jet events from pp collisions at 7 TeV, CMS-PAS-PFT-10-002, CERN, Geneva Switzerland, 063 [arXiv:0802.1189] [INSPIRE]. in pp data at p s = 8 TeV, 2015 JINST 10 P02006 [arXiv:1411.0511] [INSPIRE]. [17] CMS collaboration, Performance of the CMS missing transverse momentum reconstruction [18] W. Adam, R. Fruhwirth, A. Strandlie and T. Todorov, Reconstruction of electrons with the Gaussian sum lter in the CMS tracker at LHC, eConf C 0303241 (2003) TULT009 [J. Phys. G 31 (2005) N9] [physics/0306087] [INSPIRE]. [19] CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. s = 8 TeV, 2015 JINST 10 P06005 [20] CMS collaboration, CMS luminosity calibration for the pp reference run at ps = 5:02 TeV, CMS-PAS-LUM-16-001, CERN, Geneva Switzerland, (2016). [21] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [24] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. Meth. A 506 (2003) 250 [INSPIRE]. 270 [INSPIRE]. p HJEP10(27)3 colliders: transverse-momentum resummation and leptonic decay, JHEP 12 (2015) 047 [arXiv:1507.06937] [INSPIRE]. [30] A. Denner, S. Dittmaier, M. Hecht and C. Pasold, NLO QCD and electroweak corrections to W + production with leptonic W -boson decays, JHEP 04 (2015) 018 [arXiv:1412.7421] [31] A. Denner, S. Dittmaier, M. Hecht and C. Pasold, NLO QCD and electroweak corrections to Z + production with leptonic Z-boson decays, JHEP 02 (2016) 057 [arXiv:1510.08742] CERN, Geneva Switzerland, (2016). [32] CMS collaboration, Jet algorithms performance in 13 TeV data, CMS-PAS-JME-16-003, [33] CMS collaboration, Isolated photon reconstruction and identi cation at ps = 7 TeV, CMS-PAS-EGM-10-006, CERN, Geneva Switzerland, (2010). Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. [34] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. [36] ATLAS and CMS collaborations, Procedure for the LHC Higgs boson search combination in Summer 2011, CMS-NOTE-2011-005, CERN, Geneva Switzerland, (2011). [37] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. [38] G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simpli ed s-channel models of dark matter, arXiv:1603.04156 [INSPIRE]. [39] SuperCDMS collaboration, R. Agnese et al., New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE]. [40] LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE]. [41] PandaX-II collaboration, A. Tan et al., Dark matter results from rst 98:7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [42] CRESST collaboration, G. Angloher et al., Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25 [arXiv:1509.01515] [INSPIRE]. [43] PICO collaboration, C. Amole et al., Dark matter search results from the PICO-60 C3F8 the Sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 04 (2016) 022 [arXiv:1601.00653] [INSPIRE]. [45] E. Behnke et al., Final results of the PICASSO dark matter search experiment, Astropart. Phys. 90 (2017) 85 [arXiv:1611.01499] [INSPIRE]. [46] Super-Kamiokande collaboration, K. Choi et al., Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, Phys. Rev. Lett. 114 (2015) 141301 [arXiv:1503.04858] [INSPIRE]. [47] G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus N. Shumeiko Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, M. Tytgat, W. Van Driessche, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz N. Beliy P. Rebello Teles Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, Brazil tova J.C. Ruiz Vargasa Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, F. Torres Da Silva De Araujo, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang5, X. Gao5 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez6, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger7, M. Finger Jr.7 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt E. El-khateeb8, S. Elgammal9, A. Mohamed10 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche France P. Van Hove S. Gadrat Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, J.-L. Agram11, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte11, X. Coubez, J.-C. Fontaine11, D. Gele, U. Goerlach, A.-C. Le Bihan, Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov12, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Georgian Technical University, Tbilisi, Georgia A. Khvedelidze7 Z. Tsamalaidze7 Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl13 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras14, A. Campbell, P. Connor, C. ContrerasCampana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo15, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel16, H. Jung, A. Kalogeropoulos, O. Karacheban16, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann16, R. Mankel, I.A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo13, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann13, S.M. Heindl, U. Husemann, F. Kassel13, I. Katkov12, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi National Technical University of Athens, Athens, Greece K. Kousouris University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary N. Filipovic, G. Pasztor Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath17, F. Sikler, V. Veszpremi, G. Vesztergombi18, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi19, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok18, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati20, S. Bhowmik21, S. Choudhury22, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo20, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, U. Bhawandeep, R. Chawla, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty13, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar B. Sutar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity21, G. Majumder, K. Mazumdar, T. Sarkar21, N. Wickramage24 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani25, E. Eskandari Tadavani, S.M. Etesami25, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi26, F. Rezaei Hosseinabadi, B. Safarzadeh27, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;13, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;13 Italy Fatisa;b Italy INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;28, G. Sguazzonia, D. Stroma, L. Viliania;b;13 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera13 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, L. Brianzaa;b;13, F. Brivioa;b, V. Ciriolo, M.E. Dinardoa;b, S. Fiorendia;b;13, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzinia;b, S. Ragazzia;b, T. Tabarelli de INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardoa;b, S. Di Guidaa;d;13, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, L. Listaa, S. Meolaa;d;13, P. Paoluccia;13, C. Sciaccaa;b, F. Thyssena Trento c, Trento, Italy INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di P. Azzia;13, N. Bacchettaa, L. Benatoa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, U. Gasparinia;b, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, F. Montecassianoa, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, M. Sgaravattoa, F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, F. Fallavollitaa;b, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegotti, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;13, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, A. Giassia, M.T. Grippoa;28, F. Ligabuea;c, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;13, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, Meridiania, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;13, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang A. Lee Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea H. Kim Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus HJEP10(27)3 National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali30, F. Mohamad Idris31, W.A.T. Wan Abdullah, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz32, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda D. Krofcheck P.H. Butler University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk33, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev34;35, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim36, E. Kuznetsova37, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin HJEP10(27)3 Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin35 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva38, E. Popova, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin35, I. Dremin35, M. Kirakosyan, A. Leonidov35, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Snigirev A. Baskakov, A. Belyaev, E. Boos, M. Dubinin39, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov40, Y.Skovpen40, D. Shtol40 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic41, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, P. Vischia, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. RuizJimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, A. Cimmino, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco42, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer13, M.J. Kortelainen, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic43, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi44, M. Rovere, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas45, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns46, G.I. Veres18, M. Verweij, N. Wardle, H.K. Wohri, A. Zagozdzinska33, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov47, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler48, L. Caminada, M.F. Canelli, A. De Cosa, S. Donato, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Physics Department, Science and Art Faculty, Adana, A. Adiguzel, F. Boran, S. Cerci49, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos50, E.E. Kangal51, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut52, K. Ozdemir53, D. Sunar Cerci49, B. Tali49, H. Topakli54, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, B. Isildak55, G. Karapinar56, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya57, O. Kaya58, E.A. Yetkin59, T. Yetkin60 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen61 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold62, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko47, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta64, T. Virdee13, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika Catholic University of America, Washington, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou R. Syarif Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech65, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta bara, U.S.A. University of California, Santa Barbara - Department of Physics, Santa BarN. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J. Bunn, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. D. Winn J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, J. Duarte, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. SextonKennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Bein, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, T. Perry, H. Prosper, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki66, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya67, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok68, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, L. Forthomme, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, V. Azzolini, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, HJEP10(27)3 S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko34, M. Planer, A. Reinsvold, R. Ruchti, N. Rupprecht, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, T. Medvedeva, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, A. Svyatkovskiy, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali69, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon70, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, N. Woods y: Deceased China 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Universidade Federal de Pelotas, Pelotas, Brazil 5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 6: Also at Universidad de Antioquia, Medellin, Colombia 8: Now at Ain Shams University, Cairo, Egypt 9: Now at British University in Egypt, Cairo, Egypt 10: Also at Zewail City of Science and Technology, Zewail, Egypt 11: Also at Universite de Haute Alsace, Mulhouse, France Moscow, Russia 12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 13: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 14: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 15: Also at University of Hamburg, Hamburg, Germany 16: Also at Brandenburg University of Technology, Cottbus, Germany 17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 18: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 19: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 20: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 21: Also at University of Visva-Bharati, Santiniketan, India 22: Also at Indian Institute of Science Education and Research, Bhopal, India 23: Also at Institute of Physics, Bhubaneswar, India 24: Also at University of Ruhuna, Matara, Sri Lanka 25: Also at Isfahan University of Technology, Isfahan, Iran 26: Also at Yazd University, Yazd, Iran 27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 28: Also at Universita degli Studi di Siena, Siena, Italy 29: Also at Purdue University, West Lafayette, U.S.A. 30: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 31: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 32: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 33: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 34: Also at Institute for Nuclear Research, Moscow, Russia 35: Now at National Research Nuclear University 'Moscow 36: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 37: Also at University of Florida, Gainesville, U.S.A. 38: Also at P.N. Lebedev Physical Institute, Moscow, Russia 39: Also at California Institute of Technology, Pasadena, U.S.A. 40: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 42: Also at INFN Sezione di Roma; Sapienza Universita di Roma, Rome, Italy Belgrade, Serbia 44: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 45: Also at National and Kapodistrian University of Athens, Athens, Greece 46: Also at Riga Technical University, Riga, Latvia 47: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 48: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 49: Also at Adiyaman University, Adiyaman, Turkey 43: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 51: Also at Mersin University, Mersin, Turkey 52: Also at Cag University, Mersin, Turkey 53: Also at Piri Reis University, Istanbul, Turkey 54: Also at Gaziosmanpasa University, Tokat, Turkey 55: Also at Ozyegin University, Istanbul, Turkey 56: Also at Izmir Institute of Technology, Izmir, Turkey 57: Also at Marmara University, Istanbul, Turkey 58: Also at Kafkas University, Kars, Turkey 59: Also at Istanbul Bilgi University, Istanbul, Turkey 60: Also at Yildiz Technical University, Istanbul, Turkey 61: Also at Hacettepe University, Ankara, Turkey 62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 65: Also at Utah Valley University, Orem, U.S.A. 66: Also at BEYKENT UNIVERSITY, Istanbul, Turkey 67: Also at Erzincan University, Erzincan, Turkey 68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 69: Also at Texas A&M University at Qatar, Doha, Qatar 70: Also at Kyungpook National University, Daegu, Korea [16] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [22] T. Sj ostrand et al ., An introduction to PYTHIA 8:2, Comput . Phys. Commun . 191 ( 2015 ) [23] NNPDF collaboration , R.D. Ball et al., Parton distributions for the LHC run II , JHEP 04 [25] GEANT4 collaboration , S. Agostinelli et al., GEANT4: a simulation toolkit , Nucl. Instrum. [26] J. Allison et al., GEANT4 developments and applications , IEEE Trans. Nucl. Sci . 53 ( 2006 ) [29] S. Catani , D. de Florian, G. Ferrera and M. Grazzini , Vector boson production at hadron [35] A.L. Read , Presentation of search results: the CLs technique , J. Phys. G 28 ( 2002 ) 2693 bubble chamber , Phys. Rev. Lett . 118 ( 2017 ) 251301 [arXiv: 1702 .07666] [INSPIRE]. [44] IceCube collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP10%282017%29073.pdf

A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck, J. Strauss, W. Waltenberger, C.-E. Wulz, O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov, N. Shumeiko, S. Alderweireldt, E. A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, S. Dogra, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, C. S. Moon, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, T. Cheng, C. H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, C. F. González Hernández, J. D. Ruiz Alvarez, J. C. Sanabria, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger Jr., E. Carrera Jarrin, E. El-khateeb, S. Elgammal, A. Mohamed, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le Bihan, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, A. Khvedelidze, Z. Tsamalaidze, C. Autermann, S. Beranek, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch. Search for new physics in the monophoton final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Journal of High Energy Physics, 2017, 73, DOI: 10.1007/JHEP10(2017)073