Measurements of the pp → Wγγ and pp → Zγγ cross sections and limits on anomalous quartic gauge couplings at \( \sqrt{s}=8 \) TeV

Journal of High Energy Physics, Oct 2017

Measurements are presented of Wγγ and Zγγ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb−1 collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the W → ℓν and Z → ℓℓ decay modes, where ℓ is a muon or an electron. The production of Wγγ and Zγγ, measured with significances of 2.6 and 5.9 standard deviations, respectively, is consistent with standard model predictions. In addition, limits on anomalous quartic gauge couplings in Wγγ production are determined in the context of a dimension-8 effective field theory.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP10%282017%29072.pdf

Measurements of the pp → Wγγ and pp → Zγγ cross sections and limits on anomalous quartic gauge couplings at \( \sqrt{s}=8 \) TeV

Revised: July Measurements of the pp Measurements are presented of W Hadron-Hadron scattering (experiments) - couplings at = 8 TeV ! W and pp ! HJEP10(27) The CMS collaboration and Z production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb 1 collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identi ed through the W ! ` and Z ! `` decay modes, where ` is a muon or an electron. The production of W and Z , measured with signi cances of 2.6 and 5.9 standard deviations, respectively, is consistent with standard model predictions. In addition, limits on anomalous quartic gauge couplings in W production are determined in the context of a dimension-8 e ective eld theory. 1 Introduction 2 3 4 5 6 7 8 Limits on aQGCs Summary The CMS collaboration 1 Introduction The CMS detector and particle reconstruction Event selection Signal and background simulation Background estimation Cross section measurements nal states in proton-proton collisions is predicted by the SU(2) U(1) gauge structure of the standard model (SM). Cross sections for these processes include contributions from quartic gauge couplings (QGCs), which are sensitive to new phenomena that modify those couplings. In this paper, we present cross section measurements for the pp ! W and pp ! Z processes and a search for anomalous QGCs (aQGCs). The W ! ` and Z ! `` decay modes are selected for analysis, where ` is a muon or an electron. The cross sections are measured in ducial regions that are de ned by selection criteria similar to those used to select signal events. In particular, to avoid infrared divergences, minimum photon transverse momenta pT of 25 and 15 GeV are required in the W and Z measurements, respectively. A dimension-8 e ective eld theory is used to model aQGCs, which would enhance W production at high momentum scales. The W and Z processes were recently observed by the ATLAS Collaboration [1, 2] using 20.3 fb 1 of integrated luminosity at p s = 8 TeV. Cross sections for W and Z production have also been computed with QCD corrections up to next-to-leading order (NLO) in refs. [ 3, 4 ]. 2 The CMS detector and particle reconstruction The data used in these measurements amount to 19:4 fb 1 collected in 2012 with the CMS detector at the CERN LHC in proton-proton collisions at a center-of-mass energy of 8 TeV. A detailed description of the CMS detector, together with de nitions of the coordinate system and relevant kinematic variables, can be found in ref. [5]. The central feature of { 1 { the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T. Within the eld volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and plastic scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Extensive forward calorimetry utilizing a steel absorber with embedded quartz bers complements the coverage provided by the barrel and endcap detectors. Muons are measured in gasionization detectors embedded in the steel ux-return yoke outside the solenoid. The particle- ow (PF) algorithm [6] reconstructs and identi es ve types of particles with an optimized combination of information from the various elements of the CMS detector. Particle ow candidates provide the basis for the selection and measurement of muons, electrons, photons, jets, and the transverse momentum imbalance. In addition, the isolation characteristics of identi ed leptons and photons are measured using the pT of PF charged hadrons, neutral hadrons, and photons. Muons are identi ed as tracks in the muon spectrometer that are matched to tracks in the inner detector. Quality requirements are placed on tracks measured in the inner detector and muon spectrometer, as well as on the matching between them. Muons must also be isolated from nearby PF candidates. Selected muons in the momentum range 20 < pT < 100 GeV have a relative pT resolution of 1.3{2.0% in the barrel (j j < 1:2) and less than 6% in the endcaps (1:2 < j j < 2:4) [7]. Photons and electrons are identi ed as clusters of energy deposits in the ECAL. The energy of photons is directly obtained from the ECAL measurement. Electrons are further identi ed by matching the ECAL cluster to a track reconstructed in the inner detector. The momenta of electrons are determined from a combination of the track momentum at the primary interaction vertex, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. To take into account electron bremsstrahlung in the inner-detector material, a Gaussian sum lter algorithm [8] is used to measure the track momentum. The momentum resolution for electrons from Z ! e+e decays ranges from 1.7% for electrons in the barrel region to 4.5% for electrons that begin to shower before the calorimeter in the endcaps [9]. Electrons are selected in the W analysis using a multivariate classi er based on the spatial distribution of the electron shower, the energy deposited in the HCAL region matched to the ECAL shower, and the quality of the inner-detector track. Electrons are selected in the Z analysis by imposing looser requirements on the same variables, yielding improved signal acceptance. In both cases, electrons passing the selection must also be isolated from nearby PF candidates. Photons are identi ed using a selection that requires a narrow shower in the ECAL, minimal energy deposited in the HCAL region matched to the ECAL shower, and isolation from nearby PF candidates. Separate isolation requirements are placed on the energies of PF charged hadrons, neutral hadrons, and photons. Photons that convert to an electronpositron pair are included and the same selection criteria are applied. The energy resolution is about 1% in the barrel section of the ECAL for unconverted or late converting photons in the tens of GeV energy range. The remaining barrel photons have a resolution of about { 2 { which cover a pseudorapidity of 1:5 < j j < 2:5, the resolution of unconverted photons is about 2.5%, while converted photons have a resolution between 3 and 4% [10]. The transverse momentum imbalance vector p~miss is de ned as the projection on the plane perpendicular to the beams of the negative vector sum of the p~T of all reconstructed PF candidates in the event. Its magnitude is referred to as pTmiss. Corrections to the energy scale and resolution of jets, described in [11], are propagated to the calculation of pTmiss. T 3 Event selection Events are recorded using single-lepton triggers for the W selection and dilepton triggers selection [12]. The single-lepton triggers have pT thresholds of 24 and 27 GeV for muons and electrons, respectively. The dimuon and dielectron triggers both have pT thresholds of 17 and 8 GeV on the leading and subleading leptons, respectively. To ensure uniform trigger e ciency, reconstructed leptons are required to have pT above the trigger thresholds. The pT requirement is determined by measuring the e ciency of the trigger as a function of pT and selecting the value at which the e ciency becomes approximately independent of pT. For the W (Z ) analysis the muons and electrons must have minimum pT of 25 (10) and 30 (20) GeV, respectively. Events selected for the W analysis must have one muon or electron and two photons. Each photon is required to have pT greater than 25 GeV. Events are removed if a second lepton is present having pT above 10 GeV. All reconstructed leptons and photons must be separated from each other by R > 0:4, where R = p ( )2 + ( )2 and is the azimuthal angle. To identify leptonic W boson decays and remove backgrounds not having T genuine pmiss, the transverse mass, de ned as mT = q 2p`TpTmiss(1 cos[ (p~`T) (p~Tmiss)]); is required to be greater than 40 GeV; p`T denotes the pT of the lepton. In the electron channel, additional criteria are imposed to reject background events arising from Z boson decays to electrons in which only one electron is correctly identi ed, the other is misidenti ed as a photon, and an additional prompt photon is present in the event. Both photons are required to pass an electron veto that rejects photons that match to tracks in the pixel detector. This requirement decreases the signal e ciency by removing converted photons, which are commonly matched to tracks in the pixel detector. However, the background contamination from electrons is further decreased by a factor of two. Events are also removed if the invariant mass of any combination of the electron and one or both photons is near the Z boson mass. In particular, events are removed if they have 86 < me < 96 GeV for either combination of a photon with the electron, or if 86 < me < 96 GeV, in which case one photon is likely to be from nal-state radiation (FSR). Events selected for the Z analysis must have two electrons or muons of opposite charge and two photons. Each photon is required to have a minimum pT of 15 GeV. Photons are required to pass an electron veto that has a higher signal e ciency than that { 3 { HJEP10(27) used in the electron channel of the W analysis. All reconstructed leptons and photons must be separated from each other by R > 0:4. The dilepton invariant mass must be greater than 40 GeV to remove backgrounds that have low dilepton invariant masses. In both analyses, photons reconstructed in the barrel and endcaps are treated separately. The geometry of the ECAL di ers between the barrel and endcaps and therefore di erent selection criteria are imposed for each case. Photons that are reconstructed in the endcaps are more likely to originate from misidenti ed jets. Events in which both reconstructed photons are in the endcaps are not considered in the analysis because of the unfavorable signal-to-background ratio. 4 Signal and background simulation Simulated events are generated at NLO for the W and Z signals. These samples are generated with MadGraph5 amc@nlo (v5 2.2.2) [13] using the NNPDF-NLO (v.3.0) [14] parton distribution functions (PDFs), and showered with pythia (v.8.1) [15] using the Monash tune [16]. Events are generated that model the aQGC signals and the diboson and triboson backgrounds at leading order (LO) using MadGraph (v5 2.2.2) using the CTEQ6L1 [17] PDF set, and then showered with pythia (v.6.4) [18] Z2* tune [19]. Simulated aQGC events are assigned a set of weights, each of which reproduces the e ect of an anomalous QGC. The weights are obtained by loading models of e ective theories, provided in the Universal FeynRules Output format [20], into the event generator. The diboson and triboson predictions are normalized to the NLO cross section predictions obtained with mcfm (v.6.6) [21] and MadGraph5 amc@nlo (v5 2.2.2), respectively. All leptons included in samples showered with pythia are decayed with tauola (v.1.1.1a) [ 22 ]. The in uence of additional proton-proton collisions in data events (pileup) is corrected by adding minimum-bias collisions to the simulated events. The number of added pileup collisions follows a distribution that is similar to the distribution observed in data and an additional weight is applied such that the simulated pileup distribution accurately represents the data. Finally, all simulated samples are passed through a detailed Geant4 simulation [23] of the CMS detector. Corrections for di erences between the simulation and the data in the selection efciencies of muons, electrons, and photons and in the trigger e ciencies are determined using the tag-and-probe method and applied to the simulated events. Di erences in the momentum scale of muons, electrons, and photons are determined from the Z boson line shape, and the simulation is corrected to agree with the data. 5 Background estimation The main background contribution in both analyses consists of events in which one or two jets are misidenti ed as photons. In fact, while the photon shower and isolation requirements are designed to reject misidenti ed jets, the relatively large production rate of electroweak bosons with jets leads to a large contribution of jets misidenti ed as photons. { 4 { HJEP10(27) A jet is commonly misidenti ed as a photon when it contains a neutral meson that decays to overlapping photons. If the photons carry a large fraction of the jet energy such that the other hadronization products have low momentum, the reconstructed photon can pass the isolation requirements. The probability for a jet to be misidenti ed as a photon is sensitive to how jets interact with the detector and is therefore di cult to predict with simulation. Moreover, the generation of a su ciently large simulated sample is impractical because of the large rejection factor obtained through the photon identi cation criteria. A data-based method is therefore used to estimate the contamination from this source. The background estimate is based on an analysis of the two-dimensional distribution of the charged hadron isolation variables Ich;1 and Ich;2 of the leading and subleading photon candidates, respectively. The isolation Ich is de ned as the scalar pT sum of charged hadron PF candidates having R < 0:3 with respect to the photon candidate. Charged hadron PF candidates are required to have energy deposits in the HCAL and originate from the primary vertex, de ned as the vertex with the highest sum of squared transverse momenta of its associated tracks [24]. Prompt photons have low values of Ich while jets that are misidenti ed as photons tend to have larger values. The distribution of Ich;1 versus Ich;2 (a \template") is determined for each of the four sources of diphoton candidates: prompt-prompt (PP), prompt-jet (PJ), jet-prompt (JP), and jet-jet (JJ). The PP template represents the signal, while the PJ and JP templates represent background events having one prompt photon, and the JJ template represents background events having no prompt photons. Each template consists of four bins. The distribution of Ich is divided into a \tight" region and a \loose" control region for each of the two photons. The tight region contains photon candidates that satisfy the nominal Ich criterion, while the loose region contains photon candidates that fail the nominal, but pass a less stringent requirement. The value of the less stringent requirement is chosen such that candidates in the loose region are enriched in photon-like jets that are independent of, but su ciently similar to those that contaminate the signal region. The four-bin structure of the templates provides discrimination between prompt photons and jets and allows for a straightforward matrix equation solution, taking account of correlations between Ich;1 and Ich;2. The contribution of each source is determined from control data samples. Three control data samples are formed from the combinations of the tight and loose regions: tight-loose (TL) and loosetight (LT), where one photon passes the requirement and the other fails, and loose-loose (LL), where both photons fail the requirement. The signal region is labeled tight-tight (TT). The TL and LT regions are treated separately to take into account di erences in photon pT and di erences between photons that are reconstructed in the barrel and endcaps. The normalizations of the four sources of photon candidates are determined through the matrix equation HJEP10(27) (5.1) 0 NTT 1 BBBB NNTLTL CCCC = BBB PP C B TL B LT B PP NLL PP PJ 0 TT TT TT TT 1 0 LL PP PJ JP JJ JP TL JP LT JP LL JJ JTJL CC BB C B JLJT CC BB PP C ; where NXY is the observed number of events in region XY , AXBY is the probability for an event from source AB to appear in region XY , as determined from the templates, and AB is the normalization of source AB. Each column in the matrix corresponds to the four bins from one template, and the entries in the column sum to unity by construction. The predicted number of events from source AB reconstructed in region XY is given by the product AB AXBY . The nal background estimate is the sum of the contributions from the sources involving at least one jet: PJ PTJT + JP JTPT + JJ JTJT: Templates are constructed from both Monte Carlo (MC) simulation and data control samples. This procedure is applied separately for di erent ranges of photon pT and . The templates for the PP, PJ, and JP sources are determined from prompt and jet Ich distributions obtained from single-photon events. The single-photon Ich distributions are binned in the same manner as the templates to create two-bin distributions representing the leading and subleading photon. Products of the two-bin distributions corresponding to the leading and subleading photons are used to determine the four-bin templates, the entries of which appear in eq. (5.1). The Ich distribution for prompt photons is taken from simulated W events. Simulated events are required to contain one reconstructed photon that matches a photon in the generator record within R = 0:2 and passes all selection criteria except the Ich requirement. The distributions obtained from simulation are validated with data events in which an FSR photon is identi ed in a Z boson decay to + . To ensure that the photon results from FSR, the three-body invariant mass is required to be consistent with the Z boson mass and the photon must be within R = 1 of a muon. The available data sample is adequate to make this comparison for photons with pT up to 40 GeV, and good agreement is observed between data and simulation. An uncertainty of 10{20% is applied, depending on the photon pT and , to take into account the observed di erences and for the extrapolation to higher photon pT. The Ich distribution for jets is taken from data. For this purpose, events are selected that contain two reconstructed muons with invariant mass consistent with the Z boson mass and a reconstructed photon that passes all selection criteria except the Ich requirement. To exclude genuine photons from FSR, the photon is required to be separated from each muon by R > 1. The remaining contribution from prompt photons is subtracted using the prediction from a sample of simulated Z events normalized to its production cross section calculated at next-to-next-to-leading order [25]. This normalization is checked with a control data sample similar to that used to validate the Ich distribution for prompt photons. Based on this comparison, a systematic uncertainty of 20%, dominated by the statistical uncertainty in the control sample, is assessed to the Z normalization. Events that have two jets misidenti ed as photons represent approximately 30% and 10% of the total misidenti ed jet background in the W and Z analyses, respectively. In such events, nonnegligible correlations exist between the leading and subleading photons. These correlations originate from the event activity that a ects the measured isolation energies of both photons. The JJ templates are therefore determined from a sample of { 6 { candidate diphoton events in data that is independent of the signal region. For this selection, the requirement on the ECAL transverse shower shape is inverted and the PF photon isolation requirement is relaxed. This procedure can result in a bias through correlations between the ECAL shower shape and the isolation. The systematic uncertainties are estimated by varying the maximum value of the relaxed requirements on the PF photon isolation. The largest deviation is taken as an estimate of the systematic uncertainty, which is approximately 10%. Using this method, rather than treating the photons as uncorrelated, increases the contribution from jet-jet events, which increases the estimated background by as much as 30%. The total uncertainties in the estimated background contamination from misidenti ed jets are 19% and 28% for the muon and electron W channels, respectively, and 14% for the muon and electron Z channels. These uncertainties take into account systematic e ects in the derivation of the probabilities for prompt photons and jets described above, and statistical uncertainties in the observed data. The larger uncertainty in the electron channel of the W analysis results from the smaller amount of data as well as larger systematic variations in the JJ template determination. In the electron channel of the W analysis, a nonnegligible contamination is present from Z(!ee) events in which an electron is misidenti ed as a photon. An electron veto based on pixel tracks is used as a discriminating variable to determine a misidenti cation ratio. This ratio relates the number of events that fail the electron veto to the number that pass. The misidenti cation ratio is determined as a function of pT and in a control sample of data enriched in single Z boson events that have one reconstructed electron and one photon. The contamination in the signal region is obtained by multiplying the observed number of events outside the Z boson mass window where one photon fails the electron veto by the misidenti cation ratio. The number of electrons resulting from Z boson decays is extracted from a t to the e invariant mass distribution using a Z boson line shape determined from simulation and a background function that models the contribution from events without a Z boson. The misidenti cation ratio is 0.01{0.03, depending on the pT and of the photon. A systematic uncertainty of 10% in the misidenti cation ratio is determined from a closure test in simulation. The contamination from misidenti ed jets in the control samples is determined using the method described above and subtracted from the data. This contamination is approximately 10% for events in which both photons are in the barrel and 20% for the remaining events. Additional background contributions involving prompt photons are determined using MC simulations. The simulated events are corrected for observed di erences in the selection e ciencies between data and simulation of electrons, muons, and photons and in the trigger e ciencies. In the W analysis, the contamination from Z is estimated using the Z MC sample described in section 4. The Z contamination constitutes about 90% of the background that contains two prompt photons. The simulated sample is normalized to the NLO cross section with an uncertainty of 12.5%, based on the uncertainty in the theoretical prediction and di erences in identi cation and reconstruction e ciencies between data and simulation. Contributions of less than an event per channel from top quark production and other multiboson processes, including tt , tW , and VV , where V is a W or Z boson, { 7 { Jet ! Electron ! sum of these contributions to take into account higher-order corrections and di erences in identi cation and reconstruction e ciencies between data and simulation. which are consistent with the presence of signal. Figure 1 shows the diphoton pT distribution with the predicted background, signal, and observed data for the W and Z analyses, separately in the electron and muon channels. Figure 2 shows the same distributions with the electron and muon channels combined. The W and Z signals are observed with signi cances of 2:6 and 5:9 standard deviations, respectively. The signi cances of the signals are calculated using a pro le likelihood that considers the observed data and predicted backgrounds in each of the muon and electron channels. In this calculation, separate categories are de ned for events having both photons in the barrel and only one photon in the barrel, to take advantage of the higher signal-to-background ratio in the rst category as compared to the second. 6 Cross section measurements The W and Z cross sections are measured within ducial regions identi ed by the selection criteria listed in table 2. The acceptances of the ducial regions for the signal processes as well as their reconstruction and selection e ciencies are determined using the signal MC samples described in section 4. In the MC simulation, photons are required to satisfy a Frixione isolation requirement with a distance parameter of 0.05 [26]. The ducial selection criteria are applied to the generated lepton four-momenta after a correction for FSR, which is obtained by adding to the generated four-momentum of each lepton the { 8 { W(→eν)γγ e e W(→μν)γγ e e G s t Data Wγγ Wγγ are calculated using Poisson statistics. The hatched area displays the total uncertainty in the sum of these predictions. The predictions for electrons and jets misidenti ed as photons are obtained with data-based methods. The remaining background and signal predictions are derived from MC simulation. The last bin includes all events in which the diphoton pT exceeds 80 GeV. generated four-momenta of all photons within R < 0:1. The ducial cross sections are de ned for W and Z boson decays to a single lepton family (`). Leptonic decays of leptons resulting from W and Z decays also contribute to signal events. Based on simulation the lepton contamination in the W ducial region is approximately 2.5%, while in the Z ducial region it is less than 1%. The combined acceptances and e ciencies, after subtracting the lepton contribution, are 17.3 and 26.7% for the electron and muon channels of the W analysis, respectively, and 22.5 and 29.1% for the Z analysis. Uncertainties in the acceptances result from uncertainties in the PDFs of the proton, the perturbative QCD renormalization and factorization scales, the number of additional pileup interactions, and the selection e ciencies of leptons, photons, and pmiss. The PDF uncertainties are evaluated by comparing the acceptances obtained with the NNPDF-NLO error sets and between the nominal NNPDF-NLO set and the MSTW-NLO 2008 [27] and T { 9 { Data Zγγ eG60 W(→lν)γγ V 0 Data Wγγ eV120 Z(→ll)γγ G s t electron and muon channels summed. The points display the observed data and the histograms give the predictions for the background and signal. The indicated uncertainties in the data points are calculated using Poisson statistics. The hatched area displays the total uncertainty in the sum of these predictions. The predictions for electrons and jets misidenti ed as photons are obtained with data-based methods. The remaining background and signal predictions are derived from MC simulation. The last bin includes all events in which the diphoton pT exceeds 80 GeV. CT10-NLO [28] PDF sets. The maximum deviation from the nominal acceptance is taken as a systematic uncertainty. The uncertainties related to the renormalization and factorization scales are evaluated by varying them independently by factors of 0.5 and 2. The largest variation is applied as a systematic uncertainty. The uncertainty in the pileup distribution is evaluated by varying the assumed minimum-bias cross section by 5%. Uncertainties in the selection e ciencies of electrons, muons, and photons and in the trigger requirements are derived from uncertainties in the tag-and-probe analyses. Estimates of the energy scale uncertainty for the electron, photon, and muon are made from comparisons of the Z boson line shape between data and simulation. Uncertainties in the pmiss energy scale are estimated by propagating the energy scale uncertainty for each object used in the pmiss T calculation. The total uncertainties in the combined acceptances and e ciencies are 1{2%. The integrated luminosity used for these measurements is 19.4 fb 1 with an uncertainty of 2.6% [29]. A summary of the systematic uncertainties a ecting the W and Z ducial T cross section measurements is reported in table 3. The cross sections measured in the electron and muon channels of each analysis are combined, assuming lepton universality, using the method of best linear unbiased estimates [30{32], thereby decreasing the statistical uncertainties. We measure ducial cross sections of 4:9 are in agreement with the NLO theoretical predictions of 4:8 nal states, respectively. The predicted cross sections are calculated within the ducial phase space given in table 2 using MadGraph5 amc@nlo. Table 4 summarizes these results. De nition of the W ducial region p T > 25 GeV, j j < 2:5 p `T > 25 GeV, j `j < 2:4 One candidate lepton and two candidate photons mT > 40 GeV R( ; ) > 0:4 and R( ; `) > 0:4 De nition of the Z ducial region p T > 15 GeV, j j < 2:5 p `T > 10 GeV, j `j < 2:4 Two oppositely charged candidate leptons and two candidate photons leading p`T > 20 GeV m`` > 40 GeV R( ; ) > 0:4, R( ; `) > 0:4, and R(`; `) > 0:4 transverse mass mT is de ned as in the event selection, but with pmiss replaced by the neutrino T transverse momentum. and Z ducial cross section measurements, presented as percentages of the measured cross section. Channel Measured ducial cross section W W W Z Z Z W Z Channel ! e ! ! ` ! e+e + ! ! `+` ! ` ! `+` 4:2 6:0 4:9 12:5 12:8 12:7 analyses. The combined cross sections assume lepton universality and are given for the decay to a single lepton family (`). The predictions are reported as well. 7 Limits on aQGCs Anomalous QGCs are modeled using a dimension-8 e ective eld theory parametrization [33]. The e ective eld theory extends the SM Lagrangian to terms of dimension larger than four. Each additional dimension is suppressed by a power of the energy scale at which the new phenomena appear. The terms in the extended Lagrangian having odd-numbered dimensionality lead to baryon and lepton number violation and are therefore not considered here. The dimension-8 term is then the lowest-dimension term that produces aQGCs. Fourteen dimension-8 operators contribute to the WW vertex [34, 35]. We focus our study on the couplings that contain products of electroweak eld strength tensors, in particular those that are constrained by this analysis: fM;2, fM;3, fT;0, fT;1, and fT;2 [36]. Anomalous QGCs enhance the production of signal events at high momentum scales. To increase sensitivity to these enhancements, limits on aQGCs are obtained using only events in which the leading-photon pT exceeds 70 GeV. Figure 3 shows the predicted yield from an aQGC with fT;0= 4 = 50 TeV 4, compared to the signal and background predictions for the sum of the electron and muon channels. A pro le likelihood is used to establish 95% con dence level (CL) intervals for the aQGC parameters. Each coupling is pro led individually, with the other couplings set to their SM values. Since all couplings predict an excess of the data at large photon pT, the observed limits are larger than the expected limits for all couplings. The resulting limits are reported in table 5. 8 p Summary Cross sections have been measured for W and Z production in pp collisions at s = 8 TeV using data corresponding to an integrated luminosity of 19.4 fb 1 collected with the CMS experiment. The cross sections were measured in ducial regions that are de ned by criteria similar to those used to select signal events. The ducial cross sections HJEP10(27) in160 b W(→lν)γγ Data Wγγ channels summed. The points display the observed data and the histograms give the predictions for the background and signal. The indicated uncertainties in the data points are calculated using Poisson statistics. The hatched area displays the total uncertainty in the sum of these predictions. The expected distribution with the inclusion of an aQGC with fT;0= 4 = 50 TeV 4 is shown as the dashed line. The last bin includes all events in which the leading photon pT exceeds 70 GeV. W fM;2= 4 fM;3= 4 fT;0= 4 fT;1= 4 fT;2= 4 Expected (TeV 4 ) Observed (TeV 4 ) events in which the leading photon pT exceeds 70 GeV. are de ned for W and Z boson decays to a single lepton family. The measured ducial cross sections for these nal states are, respectively, 4:9 2:1 fb and 12:7 2:3 fb, consistent with the NLO theoretical predictions of 4:8 respond to signi cances for observing the signal of 2:6 and 5:9 standard deviations for the and Z nal states, respectively. In comparison, the ATLAS experiment measured and Z nal states with signi cances of greater than three standard deviations and equal to 6.3 standard deviations, respectively [1, 2]. The W nal state is used to place limits at 95% CL on anomalous quartic gauge couplings using a dimension-8 e ective eld theory. In particular, stringent limits are placed on the fT;0 coupling parameter of 33:5 < fT;0= 4 < 34:0 TeV 4 . Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonatabis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Thalis and Aristeia programs co nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. p production in pp collisions at p s = 8 TeV and limits on anomalous quartic gauge couplings with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 031802 [arXiv:1503.03243] [INSPIRE]. [2] ATLAS collaboration, Measurements of Z and Z production with leptonic decays at NLO QCD, Phys. Rev. D 83 (2011) 114035 [arXiv:1103.4613] [INSPIRE]. production with leptonic decays and triple photon production at next-to-leading order QCD, Phys. Rev. D 84 (2011) 074028 HJEP10(27) [arXiv:1107.3149] [INSPIRE]. [5] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 detector, arXiv:1706.04965 [INSPIRE]. [6] CMS collaboration, Particle- ow reconstruction and global event description with the CMS [7] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [8] W. Adam, R. Fruhwirth, A. Strandlie and T. Todorov, Reconstruction of electrons with the Gaussian sum lter in the CMS tracker at LHC, eConf C 0303241 (2003) TULT009 [9] CMS collaboration, Performance of electron reconstruction and selection with the CMS [physics/0306087] [INSPIRE]. detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. detector in proton-proton collisions at p [arXiv:1502.02702] [INSPIRE]. s = 8 TeV, 2015 JINST 10 P06005 s = 8 TeV, 2015 JINST 10 P08010 [10] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS [11] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE]. [12] CMS collaboration, The CMS trigger system, 2017 JINST 12 P01020 [arXiv:1609.02366] [13] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [14] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [15] T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [16] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE]. [17] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. p Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE]. HJEP10(27) TAUOLA: Technical and physics documentation, Comput. Phys. Commun. 183 (2012) 821 [arXiv:1002.0543] [INSPIRE]. [24] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST 9 P10009 [arXiv:1405.6569] [INSPIRE]. [25] M. Grazzini, S. Kallweit and D. Rathlev, W and Z production at the LHC in NNLO QCD, JHEP 07 (2015) 085 [arXiv:1504.01330] [INSPIRE]. [hep-ph/9801442] [INSPIRE]. [arXiv:1007.2241] [INSPIRE]. [27] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. [28] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [29] CMS collaboration, CMS luminosity based on pixel cluster counting | Summer 2013 update, CMS Physics Analysis Summary, CMS-PAS-LUM-13-001 (2013). quantity, Nucl. Instrum. Meth. A 270 (1988) 110 [INSPIRE]. [30] L. Lyons, D. Gibaut and P. Cli ord, How to combine correlated estimates of a single physical [31] A. Valassi, Combining correlated measurements of several di erent physical quantities, Nucl. Instrum. Meth. A 500 (2003) 391 [INSPIRE]. C 74 (2014) 3004 [arXiv:1402.4016] [INSPIRE]. Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE]. [32] R. Nisius, On the combination of correlated estimates of a physics observable, Eur. Phys. J. [33] C. Degrande et al., E ective eld theory: A modern approach to anomalous couplings, Annals [34] G. Belanger, F. Boudjema, Y. Kurihara, D. Perret-Gallix and A. Semenov, Bosonic quartic couplings at LEP-2, Eur. Phys. J. C 13 (2000) 283 [hep-ph/9908254] [INSPIRE]. [35] O.J.P. Eboli, M.C. Gonzalez-Garcia and J.K. Mizukoshi, pp ! jje and jje at o( e6m) and o( e4m s2) for the study of the quartic electroweak gauge boson vertex at CERN LHC, Phys. Rev. D 74 (2006) 073005 [hep-ph/0606118] [INSPIRE]. [36] M. Baak et al., Study of electroweak interactions at the energy frontier, arXiv:1310.6708 Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus N. Shumeiko Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, M. Tytgat, W. Van Driessche, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz N. Beliy P. Rebello Teles Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, Brazil J.C. Ruiz Vargasa M. Vutova Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, F. Torres Da Silva De Araujo, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, University of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang5, X. Gao5 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez6, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger7, M. Finger Jr.7 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt E. El-khateeb8, S. Elgammal9, A. Mohamed10 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche France P. Van Hove S. Gadrat Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, J.-L. Agram11, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte11, X. Coubez, J.-C. Fontaine11, D. Gele, U. Goerlach, A.-C. Le Bihan, Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov12, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Georgian Technical University, Tbilisi, Georgia A. Khvedelidze7 Z. Tsamalaidze7 Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl13 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras14, A. Campbell, P. Connor, C. ContrerasCampana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo15, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel16, H. Jung, A. Kalogeropoulos, O. Karacheban16, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann16, R. Mankel, I.A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo13, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Paraskevi, Greece I. Topsis-Giotis Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, I. Katkov12, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi National Technical University of Athens, Athens, Greece K. Kousouris University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary N. Filipovic, G. Pasztor Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath17, F. Sikler, V. Veszpremi, G. Vesztergombi18, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi19, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen M. Bartok18, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc) S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati20, S. Bhowmik21, P. Mal, K. Mandal, A. Nayak22, D.K. Sahoo20, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty13, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar B. Sutar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity21, G. Majumder, K. Mazumdar, T. Sarkar21, N. Wickramage23 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani24, E. Eskandari Tadavani, S.M. Etesami24, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi25, F. Rezaei Hosseinabadi, B. Safarzadeh26, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;13, R. Vendittia, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;13 Italy Fatisa;b Italy INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;27, G. Sguazzonia, D. Stroma, L. Viliania;b;13 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera13 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, HJEP10(27) L. Brianzaa;b;13, F. Brivioa;b, V. Ciriolo, M.E. Dinardoa;b, S. Fiorendia;b;13, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzinia;b, S. Ragazzia;b, T. Tabarelli de INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardoa;b, S. Di Guidaa;d;13, M. Espositoa;b, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;13, P. Paoluccia;13, C. Sciaccaa;b, F. Thyssena INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;13, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, Michelottoa, J. Pazzinia;b, N. Pozzobona;b, Ronchesea;b, R. Rossina;b, F. Simonettoa;b, E. Torassaa, S. Venturaa, M. Zanettia;b, P. Zottoa;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, F. Fallavollitaa;b, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegotti, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;13, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, A. Giassia, M.T. Grippoa;27, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;28, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;13, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, Organtinia;b, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;13, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang A. Lee Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea H. Kim Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus HJEP10(27) National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali29, F. Mohamad Idris30, W.A.T. Wan Abdullah, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz31, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda D. Krofcheck P.H. Butler University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk32, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev33;34, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim35, E. Kuznetsova36, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin HJEP10(27) Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin34 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva37, V. Rusinov, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin34, I. Dremin34, M. Kirakosyan, A. Leonidov34, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Snigirev A. Baskakov, A. Belyaev, E. Boos, M. Dubinin38, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov39, Y.Skovpen39, D. Shtol39 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic40, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, P. Vischia, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. RuizJimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, A. Cimmino, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco41, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer13, M.J. Kortelainen, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic42, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi43, M. Rovere, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas44, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns45, G.I. Veres18, M. Verweij, N. Wardle, H.K. Wohri, A. Zagozdzinska32, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov46, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler47, L. Caminada, M.F. Canelli, A. De Cosa, S. Donato, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University - Physics Department, Science and Art Faculty A. Adiguzel, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos48, E.E. Kangal49, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut50, K. Ozdemir51, S. Ozturk52, A. Polatoz, B. Tali53, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, B. Isildak54, G. Karapinar55, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya56, O. Kaya57, E.A. Yetkin58, T. Yetkin59 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen60 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold61, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev62, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko46, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta63, T. Virdee13, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. Catholic University of America R. Bartek, A. Dominguez A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika HJEP10(27) The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou R. Syarif Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech64, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J. Bunn, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. D. Winn J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, J. Duarte, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. SextonKennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Bein, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, T. Perry, H. Prosper, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki65, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya66, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok67, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, L. Forthomme, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, V. Azzolini, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko33, M. Planer, A. Reinsvold, R. Ruchti, N. Rupprecht, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, T. Medvedeva, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, A. Svyatkovskiy, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali68, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon69, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. sith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. SinthupraN. Woods y: Deceased China University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Universidade Federal de Pelotas, Pelotas, Brazil 5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 6: Also at Universidad de Antioquia, Medellin, Colombia 7: Also at Joint Institute for Nuclear Research, Dubna, Russia 8: Now at Ain Shams University, Cairo, Egypt 9: Now at British University in Egypt, Cairo, Egypt Moscow, Russia 11: Also at Universite de Haute Alsace, Mulhouse, France 12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 13: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 14: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 15: Also at University of Hamburg, Hamburg, Germany 16: Also at Brandenburg University of Technology, Cottbus, Germany 17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 18: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 19: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 20: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 21: Also at University of Visva-Bharati, Santiniketan, India 22: Also at Institute of Physics, Bhubaneswar, India 23: Also at University of Ruhuna, Matara, Sri Lanka 24: Also at Isfahan University of Technology, Isfahan, Iran 25: Also at Yazd University, Yazd, Iran University, Tehran, Iran 27: Also at Universita degli Studi di Siena, Siena, Italy 28: Also at Purdue University, West Lafayette, U.S.A. 26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad 29: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 30: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 31: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 32: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 33: Also at Institute for Nuclear Research, Moscow, Russia 34: Now at National Research Nuclear University 'Moscow 35: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 36: Also at University of Florida, Gainesville, U.S.A. 37: Also at P.N. Lebedev Physical Institute, Moscow, Russia 38: Also at California Institute of Technology, Pasadena, U.S.A. 39: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 40: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 41: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy Belgrade, Serbia 43: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 44: Also at National and Kapodistrian University of Athens, Athens, Greece 45: Also at Riga Technical University, Riga, Latvia 46: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 47: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 42: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 48: Also at Istanbul Aydin University, Istanbul, Turkey 49: Also at Mersin University, Mersin, Turkey 50: Also at Cag University, Mersin, Turkey 51: Also at Piri Reis University, Istanbul, Turkey 52: Also at Gaziosmanpasa University, Tokat, Turkey 54: Also at Ozyegin University, Istanbul, Turkey 55: Also at Izmir Institute of Technology, Izmir, Turkey 56: Also at Marmara University, Istanbul, Turkey 57: Also at Kafkas University, Kars, Turkey 58: Also at Istanbul Bilgi University, Istanbul, Turkey 59: Also at Yildiz Technical University, Istanbul, Turkey 60: Also at Hacettepe University, Ankara, Turkey 61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 62: Also at School of Physics and Astronomy, University of Southampton, Southampton, 64: Also at Utah Valley University, Orem, U.S.A. 65: Also at BEYKENT UNIVERSITY, Istanbul, Turkey 66: Also at Erzincan University, Erzincan, Turkey 67: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 68: Also at Texas A&M University at Qatar, Doha, Qatar 69: Also at Kyungpook National University, Daegu, Korea [3] G. Bozzi , F. Campanario , M. Rauch and D. Zeppenfeld , W [4] G. Bozzi , F. Campanario , M. Rauch and D. Zeppenfeld , Z [18] T. Sj ostrand, S. Mrenna and P.Z. Skands , PYTHIA 6 . 4 physics and manual , JHEP 05 [20] C. Degrande , C. Duhr , B. Fuks , D. Grellscheid , O. Mattelaer and T. Reiter , UFO | The Universal FeynRules Output, Comput. Phys. Commun . 183 ( 2012 ) 1201 [arXiv: 1108 . 2040 ] [21] J.M. Campbell and R.K. Ellis , MCFM for the Tevatron and the LHC, Nucl . Phys. Proc. [22] N. Davidson , G. Nanava, T. Przedzinski , E. Richter-Was and Z. Was , Universal interface of [23] GEANT4 collaboration , S. Agostinelli et al., GEANT4 | a simulation toolkit , Nucl. Instrum. Meth. A 506 ( 2003 ) 250 [INSPIRE]. [26] S. Frixione , Isolated photons in perturbative QCD, Phys . Lett. B 429 ( 1998 ) 369 63: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP10%282017%29072.pdf

A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck, J. Strauss, W. Waltenberger, C.-E. Wulz, O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov, N. Shumeiko, S. Alderweireldt, E. A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, S. Dogra, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, C. S. Moon, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, T. Cheng, C. H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, C. F. González Hernández, J. D. Ruiz Alvarez, J. C. Sanabria, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger Jr., E. Carrera Jarrin, E. El-khateeb, S. Elgammal, A. Mohamed, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le Bihan, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, A. Khvedelidze, Z. Tsamalaidze, C. Autermann, S. Beranek, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch. Measurements of the pp → Wγγ and pp → Zγγ cross sections and limits on anomalous quartic gauge couplings at \( \sqrt{s}=8 \) TeV, Journal of High Energy Physics, 2017, 72, DOI: 10.1007/JHEP10(2017)072