Measurements of jet charge with dijet events in pp collisions at \( \sqrt{s}=8 \) TeV

Journal of High Energy Physics, Oct 2017

Jet charge is an estimator of the electric charge of a quark, antiquark, or gluon initiating a jet. It is based on the momentum-weighted sum of the electric charges of the jet constituents. Measurements of three charge observables of the leading jet in transverse momentum p T are performed with dijet events. The analysis is carried out with ata collected by the CMS experiment at the CERN LHC in proton-proton collisions at \( \sqrt{s}=8 \) TeV corresponding to an integrated luminosity of 19.7fb−1. The results are presented as a function of the p T of the leading jet and compared to predictions from leading- and next-to-leading-order event generators combined with parton showers. Measured jet charge distributions, unfolded for detector effects, are reported, which expand on previous measurements of the jet charge average and standard deviation in pp collisions.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP10%282017%29131.pdf

Measurements of jet charge with dijet events in pp collisions at \( \sqrt{s}=8 \) TeV

Received: June 8 TeV p Measurements of jet charge with dijet events in pp Jet charge is an estimator of the electric charge of a quark, antiquark, or gluon initiating a jet. It is based on the momentum-weighted sum of the electric charges of the jet constituents. Measurements of three charge observables of the leading jet in p transverse momentum pT are performed with dijet events. The analysis is carried out with data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s = 8 TeV corresponding to an integrated luminosity of 19.7 fb 1 sented as a function of the pT of the leading jet and compared to predictions from leadingand next-to-leading-order event generators combined with parton showers. Measured jet charge distributions, unfolded for detector e ects, are reported, which expand on previous measurements of the jet charge average and standard deviation in pp collisions. Hadron-Hadron scattering (experiments); Jets; Jet substructure; Jet physics - with dijet events in pp The CMS collaboration https://doi.org/10.1007/JHEP10(2017)131 1 Introduction 2 The CMS detector 3 Data and simulated samples 4 Event reconstruction and event selection 5 Jet charge observables 6 Unfolding of detector e ects 7 Systematic uncertainties 8 Results 9 Summary The CMS collaboration large experimental uncertainty in fragmentation functions, certain jet charge properties can be calculated independently of Monte Carlo (MC) fragmentation models. Therefore, a jet charge measurement helps to further understand hadronization models and parton showers. Studies of the performance and discrimination power of jet charge as well as comparisons of dijet, W+jets, and tt data with simulated pp collisions have been reported by the ATLAS [26] and CMS [27] Collaborations. A measurement of the average and standard deviation of the jet charge distribution as a function of the transverse momentum pT of jets was recently published by the ATLAS [28] Collaboration. This paper presents a measurement of the jet charge distribution, unfolded for detector e ects, with dijet events in pp collisions. This result expands upon a previous work [28] that reported the average and standard deviation of the jet charge distribution. The measurement, performed in various ranges of pT, is carried out for di erent de nitions of jet charge to gain a better understanding of the underlying models that can be used to improve the predictions of MC event generators. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T. A lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections, reside within the solenoid volume. A preshower detector consisting of two planes of silicon sensors interleaved with lead is located in front of the ECAL at pseudorapidities 1:653 < j j < 2:6. An iron and quartz- ber Cherenkov hadron calorimeter covers 3:0 < j j < 5:0. Muons are measured in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. Charged particle trajectories are measured with the silicon tracker within j j < 2:5. The tracker has 1440 silicon pixel and 15 148 silicon strip detector modules. For nonisolated particles with 1 < pT < 10 GeV and j j < 1:4, the track resolutions are typically 1.5% in pT and, respectively, 25{90 and 45{150 m in the transverse and longitudinal impact parameters [29]. The ECAL and HCAL provide coverage up to j j = 3:0. In the region j j < 1:74, the HCAL cells have widths of 0.087 in and 0.087 radians in azimuth ( ). In the plane, and for j j < 1:48, the HCAL cells map on to 5 5 ECAL crystals arrays to form calorimeter towers projecting radially outwards from the nominal interaction point. At larger values of j j, the size of the towers increases and the matching ECAL arrays contain fewer crystals. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons in the tens of GeV energy range. The remaining barrel photons have a resolution of about 1.3% up to j j = 1, rising to about 2.5% at j j = 1:4. In the endcaps, the resolution of unconverted or late-converting photons is about 2.5%, while the remaining endcap photons have a resolution between 3 and 4% [30]. When combining information from the entire detector, the jet energy resolution amounts { 2 { 40%, 12%, and 5% obtained when the ECAL and HCAL alone are used. The rst level (L1) of the CMS trigger system [31], composed of special hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events within a xed time interval of 3.2 s. The high-level trigger (HLT) processor farm further decreases the event rate from 100 kHz to less than 1 kHz before data storage. A more detailed description of the CMS detector, together with a de nition of the coordinate system and kinematic variables, can be found in ref. [32]. 3 Data and simulated samples The data used in this analysis were recorded with the CMS detector in 2012 at the CERN LHC at a center-of-mass energy p s = 8 TeV and corresponds to an integrated luminosity of 19.7 fb 1. Events were collected with loose jet requirements, based on ECAL and HCAL information, at the L1 trigger. An HLT requirement of at least one jet with transverse momentum pT > 320 GeV is imposed, based on information from all detector components, as described in detail in the following section. This trigger is 99% e cient for events with at least one jet reconstructed o ine with pT > 400 GeV. The MC event generators pythia6.4.26 [33], pythia8.205 [34], powheg v2 [35{37], and herwig++ 2.5.0 [38] are used. pythia6, pythia8, and herwig++ are based on the LO matrix-elements combined with parton showers (PSs), while powheg provides both LO and next-to-leading-order (NLO) matrix-element predictions [39], which are combined with pythia8 (powheg + pythia8) or herwig++ (powheg + herwig++) PSs. These PS models, used to simulate higher-order processes, follow an ordering principle motivated by QCD. Successive radiation of gluons from a highly energetic parton is ordered using some speci c variable, e.g., pT or the angle of radiated partons with respect to the parent one. The two generators di er in the choice of jet-ordering technique, as well as in the treatment of beam remnants, multiple interactions, and the hadronization model. pythia6 uses a pT-ordered PS model. It provides a good description of parton emission when the emitted partons are close in - space. The Z2 tune [40, 41] is used for the underlying event description. It resembles the Z2 tune [42] except for the energy extrapolation parameter that is dependent on the choice of parton distribution function (PDF) set. Partons are hadronized using the Lund string model [43, 44]. pythia8 is used with the CUETP8M1 [41] tune, which employs the LO NNPDF2.3 [45, 46] parametrization of the PDFs. pythia8 is based on the same parton showering and hadronization models as pythia6. The herwig++ program with the EE3C tune [47] is based on a PS model that uses a coherent branching algorithm with angular ordering of the showers [47]. The partons are hadronized using a cluster model [48], and the multiple-parton interaction is simulated using an eikonal multiple parton scattering model [47]. The generated events from pythia6 and herwig++ are passed through the CMS detector simulation based on Geant4 [49]. powheg is used to generate QCD multijet predictions at LO with the CTEQ6L1 [ 50 ] PDF set, at NLO with the CT10 [51] NLO PDF set, and at NLO with the HERA{ 3 { HJEP10(27)3 PDF 1.5 [52] NLO PDF set combined with the pythia8 PSs. In addition, the powheg calculation at NLO with CT10 NLO PDF set is combined with the herwig++ PSs. 4 Event reconstruction and event selection Jets are reconstructed from particle- ow (PF) candidates [53] using the anti-kT clustering algorithm [54, 55] with a distance parameter R = 0:5. The PF algorithm identi es electrons, muons, photons, charged hadrons and neutral hadrons through an optimized combination of information from all subdetectors. Jets are clustered from the PF objects and the total momenta of the jets are calculated by summing their four-momenta. To reduce the contamination from additional pp interactions (pileup), charged particles emanating from other pp collision vertices are removed before clustering. Because of the nonuniform and nonlinear response of the CMS calorimeters, the reconstructed jets require additional energy corrections that are based on high-pT jet events generated with pythia6 [33]. Corrections using in situ measurements of dijet, +jet, and Z+jet events [56] are applied to measured jets to account for discrepancies with the MC simulated jets. Events are selected by requiring at least two jets that pass the following selection criteria: the jets with leading and subleading pT must lie within j j < 1:5 and have pT > 400 GeV and pT > 100 GeV, respectively. Events with spurious jets from noise and noncollision backgrounds are rejected by applying a set of jet identi cation criteria [57]. Additional selection criteria are also applied to reduce beam backgrounds and electronic noise. At least one reconstructed primary vertex within a 24 cm window along the beam axis is required. In the presence of more than one vertex that passes these requirements, the primary interaction vertex is chosen to be the one with the highest total p2 , summed over all the associated tracks. The missing transverse momentum in the event pmiss is de ned as the magnitude of the vector sum of the pT of all PF candidates, and we require that pmiss/P pT < 0.3 T where P pT is the scalar sum of all PF candidates After the event selection the data sample T T contains mainly QCD multijet events, while backgrounds are negligible. The agreement between data and MC simulations based on pythia6 and herwig++ is veri ed at the reconstructed level using the kinematic properties of the leading jets: jet pT, , , and dijet invariant mass, as well as jet properties, such as track multiplicity and jet charge. Agreement at the 10% level is found for each variable. Figure 1 provides a comparison of pythia6 with the data as a function of the pT of the leading jet. For each pythia6 event, the type of parton initiating the leading jet is identi ed with a geometrical matching procedure based on the distance R in the plane between the generatorlevel hard partons and the reconstructed-level jet, where R = showering and radiation, the parton with the smallest R with respect to the jet axis passing the matching criterion R < Rmax, where Rmax = 0.3, is chosen as the parton initiating the jet. Jets that cannot be matched to any generator-level hard parton with R < Rmax are categorized as unmatched. The matching e ciency is better than 96% throughout the jet pT range studied. The \others" category in gure 1 represents those jets that are initiated by up antiquark (u), down antiquark (d), charm, strange, and bottom (anti-)quarks (respectively, c, c, s, s, b, b), and any unmatched jets. p ( )2 + ( )2. Before { 4 { 106 ts105 n e v E104 103 taaD 01CM..821 Data PYTHIA6 Gluon jets. The data points are shown in the center of each jet pT bin. 5 Jet charge observables Jet charge refers to the pT-weighted sum of the electric charges of the particles in a jet. Three de nitions of jet charge are studied in this paper: Q = QL = QT = 1 (pjTet) X Qi p X Qi p i i i i k i ? X Qi(piT) ; , X X i i p i k p i ? ; : (5.1) (5.2) (5.3) The rst (\default") de nition follows refs. [24, 25]. The sums above are over all colorneutral (electrically charged and neutral) particles i in the jet that have pT > 1 GeV. The variable pjTet is the transverse momentum of the jet, Qi is the charge of the particle, and pi T is the magnitude of the transverse momentum of the particle relative to the beam axis. In the QL (\longitudinal") and Q and pi? = jp~ i p~jetj=jp~jetj refer to the components of the transverse momentum of particle i T (\transverse") de nitions, the notations pi = p~i p~jet=jp~jetj k { 5 { HJEP10(27)3 along and transverse to the jet axis, respectively. The parameter in the exponent of the particle momenta controls the relative weight given to low and high momentum particles contributing to the jet charge. Values of between 0.2 and 1.0 were used in previous experimental studies [3, 12]. Here three values of are investigated: 0.3, 0.6, and 1.0. The particle pT cuto of 1 GeV ensures that the dependence of the jet charge distributions on the number of pileup interactions in each event is negligible relative to the other sources of experimental uncertainty. Compared to Q , the quantity QL is more directly related to the fragmentation function and Q T to elucidate the fragmentation of partons into hadrons. F (z) of a quark or a gluon, which re ects the probability to nd particle i with momentum fraction z = pik=jpjetj in a quark jet or a gluon jet [ 1 ]. We study all three variables Q , QL, At the generator level, the jet charge observables are computed in a similar way as above, using the generator-level stable particles (lifetime > 10 12 s) with pT > 1 GeV. = 0:6, initiated by either an up quark (u), down quark (d), or a gluon (g) in pythia6. The charge distribution for jets initiated by quarks with positive electric charge peaks at positive values, with a mean of 0:166e, as opposed to that for jets initiated by negatively charged quarks, with a mean of 0:088e and gluons, with a mean of 0:013e, where e is the proton charge. This suggests that the jet charge can be used to di erentiate statistically jets from quarks of di erent electric charge, or to distinguish jets initiated by a gluon or a quark. According to the simulated jet charge distribution shown in gure 2 (upper left), 55% of the down quark jets and 45% of the gluon jets can be rejected at a selection e ciency of 70% for up quark jets. with multijet predictions from pythia6 and herwig++, which are normalized to match the data. Good agreement is observed between the data and the predictions from pythia6 and herwig++. For pythia6, the prediction is broken down into contributions from di erent parton types. As shown in gure 1, the jet parton type composition of the selected dijet sample depends on the leading-jet pT. Gluon jets dominate the lower part of the pT spectrum, while up quarks become progressively more relevant at high pT. As a consequence, the average jet charge with = 0:6 increases as a function of the leading-jet pT, as can be observed in gure 3. pythia6 and herwig++ simulations reproduce this trend. It is therefore interesting to divide the dijet sample into di erent ranges of leading-jet pT and measure the jet charge distribution separately in each subsample, thereby gaining information on the sensitivity of jet charge de nitions to mixtures of parton types and the quality of the description o ered by di erent generators. 6 Unfolding of detector e ects To compare with other measurements or theoretical predictions, the measured jet charge distributions must be unfolded from the resolution at the detector level to the nal-state particle level. The jet charges in the MC simulation at the detector level are not identical { 6 { 6 . Data Gluon (top row), QL (lower left), and QT (lower right). The top left panel compares the data with the u, d, and g distributions from simulation based on pythia6 where each distribution is normalized to unity. The top right and lower panels compare the sum of the contributions in pythia6 and herwig++ with data where each distribution is normalized to the observed number of data events. The parton assignment is determined from pythia6. Only data statistical uncertainties are shown. to those constructed using the generator-level information, de ned through some given theoretical input, because of detector resolution and acceptance e ects. In particular, gure 4 shows that the di erence between jet charge distributions at the generator level and the reconstructed level in pythia6 increases with decreasing values, because the de nition of jet charge for small values of gives more weight to low-pT particles, which have a track reconstruction e ciency of about 90%. The unfolding is based on the D'Agostini iteration method with early stopping [58{60], where the unfolding utilizes a response matrix that maps the true onto the measured distribution. The response matrix is taken from the pythia6 simulation and is used to unfold the data. The D'Agostini iteration method follows an iterative response-matrix inversion, in which the regularization is achieved by stopping the iteration just before the appearance of large uctuations in the inverse matrix [58]. Another frequently used regularized unfolding algorithm, known as the singular value decomposition (SVD) method [61], is utilized to cross-check the results. These two approaches agree roughly within about 0.7%, and both are implemented in the RooUnfold software package [62]. { 7 { CMS 0=κ 0.07 Q t e j -g0.06 n i 0.04300 leading jet before unfolding and a comparison with simulations based on pythia6 and herwig++. Only statistical uncertainties are shown. The error bars for the simulation indicate the uncertainty from statistical uctuations in the MC events. The data points are shown in the center of each jet pT bin. The bin boundaries are at 400, 450, 500, 550, 600, 650, 750, 850, 1000 and 1450 GeV. 7 Systematic uncertainties The experimental uncertainties that a ect the measured results are summarized in this section. The uncertainties in jet energy scale and jet energy resolution are estimated by considering the corresponding e ects in the computation of jet charge and then propagating the changes through the analysis. The uncertainty in the jet energy scale is estimated to be 1{2.5% [56], depending on the jet pT and . To map this uncertainty onto the jet charge variable, the reconstructed jet transverse momenta are systematically shifted by their respective uncertainty and the new values for the jet charge variables are calculated and compared. The uncertainty in the momentum scale of the charged particles in a jet is negligible compared to the uncertainty in the jet energy scale and thus not varied. The jet energy resolution is measured by comparing the asymmetry in the momenta of the two jets in dijet events [56]. The simulated jet energy resolution is smeared to match the measured resolutions and is changed by its uncertainty. The jet charge is measured from the particles reconstructed from the charged tracks and calorimeter energy by the PF algorithm. For each track, the corresponding reconstruction e ciency varies with track pT and . The track reconstruction e ciency for charged pions is estimated in ref. [29] and is used as the weight factor for the PF objects. For each track, the corresponding track reconstruction e ciency is estimated, as a function of and pT, from a simulated MC dijet event sample. The resulting e ciency is varied by one standard deviation around its original value, and the jet charge variable is recalculated for each variation in the track weight factor. The track pT resolution depends on the track pT { 8 { HJEP10(27)3 Generated level Reconstructed level Generated level Reconstructed level 0.8 0.7 .0 [11.5 1 d / and . For example, the relative pT resolution varies from 0.011 to 0.015 for a track pT of about 1 GeV as j j changes from 0.5 to 1.0 [29]. For each track, the corresponding pT resolution is estimated as a function of and pT from a simulated MC dijet event sample. The resulting resolution is then varied by one standard deviation of its original value, and the jet charge is computed for each change in track-pT smearing. The jet energy scale and jet energy resolution have negligible correlations with track pT resolution and track reconstruction e ciency. To study the systematic e ect arising from the choice of the pythia6 generator to produce the response matrix used in the unfolding procedure, a response matrix is formed using herwig++, and both of these matrices are used to unfold the data. The corresponding di erence is taken as the uncertainty in the modeling of the response matrix. Another systematic e ect taken into account in the unfolding procedure is the statistical uncertainty in the MC simulation of the matrix elements in the response matrix. They are propagated using the RooUnfold software package. The systematic uncertainty related to the modeling of pileup is estimated by comparing the jet charge distributions with varied pileup reweighting applied to the simulated samples within the uncertainty of the pileup distribution. Table 1 summarizes the sizes of the various systematic e ects. The impact of systematic e ects on the jet charge distribution { 9 { Sources of uncertainty Jet energy scale Jet energy resolution Track reconstruction Track pT resolution Pileup Response matrix modeling Response matrix statistics Q 0.7 0.1 in the fractional deviation as de ned in eq. (7.1) in percent (%). can be summarized by the quantity X i 2 Ni Ni2 jNiupward Ni N downwardj , i X i N 2 2i ; Ni (7.1) where the sums are over the bins i = 1; : : : ; nbins in the jet charge distribution, N up and i N down are the respective one-standard-deviation upward and downward systematic changes i in the nominal jet charge distribution Ni, and Ni is the statistical uncertainty in bin i of the jet charge distribution. The dominant uncertainties arise from the track pT resolution and the modeling of the response matrix. The remaining systematic uncertainties have small e ects (less than a percent) and include the jet energy scale and jet energy resolution. The jet charge computations for all three values show comparable systematic uncertainties. 8 Results Figure 5 presents the unfolded leading-pT jet charge distributions for the three jet charge de nitions introduced in section 5 with = 0:6 compared to the generator level powheg + pythia8 predictions for the CT10 NLO PDF set. Each plot also displays the ratio of data to the MC prediction and a band representing the uncertainty determined by adding in quadrature the statistical uncertainties in the data and those arising from all systematic e ects in the data. The distributions are normalized to unity. The NLO powheg predictions with the NLO CT10 PDF set are compared with predictions where initial-state radiation, nal-state radiation, or multiple-parton interactions are disabled in pythia8. They are also compared to a LO powheg prediction that uses the LO CTEQ6L1 PDF set. For all three jet charge de nitions, the data is slightly broader than the prediction from powheg + pythia8. The prediction for the jet charge distribution of the leading jet in the event is found to be rather insensitive to NLO QCD e ects in the matrix-element calculation using powheg since the jet charge distribution is changed by signi cantly less than the experimental uncertainty. Similarly, simulations of initial-state radiation and multipleparton interactions do not change the jet charge distribution. Disabling the simulation of nal-state radiation in pythia8, however, leads to a signi cantly broader jet charge distribution, from which it can be concluded that the jet charge distribution is mainly sensitive to the modeling of this e ect. ] 1.2 Q 0.8 Data PH + P8 PH + P8 (No ISR) PH + P8 (No FSR) PH + P8 (No MPI) PH (LO) + P8 1 1 1 T the LO CTEQ6L1 PDF set (\LO") is also shown. The default jet charge de nition (Q ), the longitudinal jet charge de nition (QL), and the transverse jet charge de nition (QT ) are shown for = 0:6. Hashed uncertainty bands include both statistical and systematic contributions in data, added in quadrature. The ratio of data to simulation is displayed twice below each plot with two di erent vertical scales. level powheg + pythia8 and powheg + herwig++ predictions using the CT10 and HERAPDF 1.5 NLO PDF sets with powheg + pythia8. The e ect of the PS and fragmentation model on the jet charge distribution can be seen by comparing the predictions from powheg + pythia8 with powheg + herwig++ simulations, which make predictions based on di erent models of parton showering and fragmentation. The e ect of the PDF set on the jet charge distribution can be seen by comparing predictions with CT10 and HERAPDF 1.5. For this comparison, CT10 is chosen as a widely used general PDF set, while HERAPDF 1.5 represents an alternative that shows di erences of order 10% in the predicted inclusive jet cross section [63] that are still compatible with the measurements in the region of interest, pT > 400 GeV. The dependence of the default and the longitudinal jet charge on di erent values is demonstrated in gure 6, while that for the transverse de nition is given in gure 7. The di erences between powheg + pythia8 and powheg + herwig++ in each jet charge can be quanti ed by the measure de ned in eq. (7.1). While for Q0:6 and Q0L:6 it is found to T be 2.5 and 2.6% respectively, it is only 1.2% for Q0:6, showing a di erent sensitivity of the variables to the showering and fragmentation models. The di erence between predictions using CT10 and HERAPDF 1.5 PDF sets is found to be signi cantly smaller. Thus, the knowledge of the quark and gluon composition of the dijet sample de ned by the PDF set is somewhat better than the knowledge of the parton shower and fragmentation modeling for the jet charge. In general, the predictions from the powheg + pythia8 and powheg + herwig++ generators show only mild discrepancies with data, although certain systematic di erences are apparent. Experimental uncertainties are generally larger for small values of as well as for Q T because of the larger weights given to soft particles. For the Q and QL shown in gure 6, powheg + pythia8 and powheg + herwig++ show similar levels of agreement. For the Q T given in gure 7, both generators diverge signi cantly from data in most of the range. The two generators di er systematically for the three de nitions of jet charge, and we conclude that this measurement can constrain such modeling predictions. It should also be recognized that a smaller fraction of the di erences between data and the simulation may arise from the choice of the PDF set, while a larger fraction of the di erences may arise from assumptions about hadronization and parton showering. Figure 8 gives the dependence of the default and longitudinal jet charge on jet pT. The dependence of the transverse charge is shown in gure 9. In the pT range considered, the gluon fraction is expected to decrease with pT from about 35% in top panels to 15% in the lower panels. In general for all jet charge de nitions, the level of agreement between the two generators increases as a function of jet pT. This suggests that the description of gluon jets di ers more between powheg + pythia8 and powheg + herwig++ than the description of quark jets. The level of agreement between simulation and data remains similar as a function of jet pT, while the powheg + pythia8 and powheg + herwig++ predictions approach each other at large pT. In gure 10, we vary the S parameter for the nal-state radiation in pythia8, to which the jet charge distribution was found to be most sensitive, from its default value of 0.138. This helps us to understand whether the underlying physics model in pythia8 is in principle capable of simultaneously describing the e ect observed in the various jet charge distributions. All jet charge distributions, except Q0:3, favor smaller values of S between 0.018 and 0.126 for the nal-state radiation, while for Q0:3 a larger value of S of around 0.158 is favored. Therefore, we conclude that by varying the S parameter for the nal-state radiation, the powheg + pythia8 prediction can give an excellent description for most distributions, but not all of them with the same S parameter. Thus speci c jet charge distributions test aspects of the model that cannot be accommodated by a single parameter. N N d d 6CMS T 1.5 Data and QL distributions with powheg + pythia8 (\PH+P8") and powheg + herwig++ (\PH+HPP") generators. In addition to the powheg + pythia8 predictions with the NLO CT10 PDF set (\CT10"), the distributions are also compared with the NLO HERAPDF 1.5 set (\HERAPDF"). The left column shows the distributions for the default jet charge de nition (Q ) with all three di erent values, while the right column shows for the longitudinal jet charge de nition (QL) with all three di erent values of . Hashed uncertainty bands include both statistical and systematic contributions in data, added in quadrature. The ratio of data to simulation is displayed twice below each plot with two di erent vertical scales. /e1 2.5 [ Q Data /dN 2 1 1 1.1 (\PH+P8") and powheg + herwig++ (\PH+HPP") generators for transverse jet charge de nition (QT ) with all di erent values. In addition to the powheg + pythia8 predictions with the NLO CT10 PDF set (\CT10"), the distributions are also compared with the NLO HERAPDF 1.5 set (\HERAPDF"). Hashed uncertainty bands include both statistical and systematic contributions in data, added in quadrature. The ratio of data to simulation is displayed twice below each plot with two di erent vertical scales. 9 Summary This paper presents measurements of jet charge distributions, unfolded for detector e ects, with dijet events collected in proton-proton collisions at p s = 8 TeV corresponding to an integrated luminosity of 19.7 fb 1 . Distributions of the leading-jet charge are obtained for three ranges of leading-jet pT and for three de nitions of jet charge. These three de nitions of jet charge provide di erent sensitivities to parton fragmentation. Three choices for the parameter are considered, which provide di erent sensitivities to the softer and harder particles in the jet. The variation of the jet charge with leading-jet pT is sensitive to the quark and gluon jet content in the dijet sample. In general, the predictions from powheg + pythia8 and powheg + herwig++ generators show only mild discrepancies with the data distributions. Nevertheless, the di erences between the predictions from powheg + pythia8 and powheg + herwig++ can be reduced with the help of these measurements. 6 . 0 e / Data /dQ 3 dN 2 N / 1 1 1.1 1.5 + pythia8 (\PH+P8") and powheg + herwig++ (\PH+HPP") generators in 3 ranges of leadingjet pT. In addition to the powheg + pythia8 predictions with the NLO CT10 PDF set (\CT10"), the distributions are also compared with the NLO HERAPDF 1.5 set (\HERAPDF"). The left column shows the jet pT dependence for the default jet charge de nition (Q ) with = 0.6. The right column shows the jet pT dependence for the longitudinal jet charge de nition (QL) with = 0.6. Hashed uncertainty bands include both statistical and systematic contributions in data, added in quadrature. The ratio of data to simulation is displayed twice below each plot with two di erent vertical scales. The average jet charge value is quoted on each panel only with statistical uncertainties. |η| < 1.5 /dQ 3 /dQ 3 dN 2 N / 1 1 1.1 /dQ 3 dN 2 N /1 1 1.1 Data (\PH+P8") and powheg + herwig++ (\PH+HPP") generators in 3 ranges of leading-jet pT for the transverse jet charge de nition (QT ) with = 0.6. In addition to the powheg + pythia8 predictions with the NLO CT10 PDF set (\CT10"), the distributions are also compared with the NLO HERAPDF 1.5 set (\HERAPDF"). Hashed uncertainty bands include both statistical and systematic contributions in data, added in quadrature. The ratio of data to simulation is displayed twice below each plot with two di erent vertical scales. The average jet charge value is quoted on each panel only with statistical uncertainties. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COL1 [ 1 T Data αS=0.118 αS=0.126 αS=0.138 αS=0.152 1 1 1 T /dQ 3 6CMS /dQ 3 N d T αS=0.118 αS=0.126 αS=0.138 αS=0.152 + pythia8. The NLO powheg prediction with the NLO CT10 PDF set is compared with predictions where the S parameter for nal-state radiation in pythia8 is varied from its default value of 0.138. The default jet charge de nition (Q ) for = 0:3, 0.6, 1.0, the longitudinal jet charge de nition (QL), and the transverse jet charge de nition (QT ) are shown. Hashed uncertainty bands include both statistical and systematic contributions in data, added in quadrature. The ratio of data to simulation is displayed twice below each plot with two di erent vertical scales. CIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Thalis and Aristeia programmes co nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. B 136 (1978) 1 [INSPIRE]. [2] Fermilab-Serpukhov-Moscow-Michigan collaboration, J.P. Berge et al., Net charge in deep inelastic antineutrino-nucleon scattering, Phys. Lett. B 91 (1980) 311 [INSPIRE]. [3] J.P. Berge et al., Quark jets from anti-neutrino interactions. 1. Net charge and factorization in the quark jets, Nucl. Phys. B 184 (1981) 13 [INSPIRE]. [4] Aachen-Bonn-CERN-Munich-Oxford collaboration, P. Allen et al., Multiplicity distributions in neutrino-hydrogen interactions, Nucl. Phys. B 181 (1981) 385 [INSPIRE]. Charged hadron multiplicities in high-energy n and p interactions, Z. Phys. C 11 (1982) 283 [Erratum ibid. C 14 (1982) 281] [INSPIRE]. (1979) 822 [Erratum ibid. 42 (1979) 1246] [INSPIRE]. [9] SLD collaboration, K. Abe et al., Measurement of the parity-violation parameter Ab from the left-right forward-backward asymmetry of b quark production in Z0 decays using a momentum-weighted track-charge technique, Phys. Rev. Lett. 74 (1995) 2890 [INSPIRE]. [10] TASSO collaboration, W. Braunschweig et al., Measurement of the asymmetry of b quark production in e+e annihilation of p s = 35 GeV, Z. Phys. C 48 (1990) 433 [INSPIRE]. [11] DELPHI collaboration, P. Abreu et al., A measurement of sin2 W from the charge asymmetry of hadronic events at the Z0 peak, Phys. Lett. B 277 (1992) 371 [INSPIRE]. [12] ALEPH collaboration, D. Decamp et al., Measurement of charge asymmetry in hadronic Z decays, Phys. Lett. B 259 (1991) 377 [INSPIRE]. [13] OPAL collaboration, P.D. Acton et al., A measurement of the forward-backward charge asymmetry in hadronic decays of the Z0, Phys. Lett. B 294 (1992) 436 [INSPIRE]. mixing using a jet charge technique, Phys. Lett. B 327 (1994) 411 [INSPIRE]. [15] DELPHI collaboration, P. Abreu et al., Measurement of the Bd0 oscillation frequency using kaons, leptons and jet charge, Z. Phys. C 72 (1996) 17 [INSPIRE]. [16] CDF collaboration, F. Abe et al., Measurement of B0, B0 avor oscillations using jet-charge s = 1:8 TeV, Phys. Rev. D 60 (1999) 072003 HJEP10(27)3 [18] DELPHI collaboration, P. Abreu et al., Measurement of trilinear gauge boson couplings W W V , (V Z; ) in e+e [hep-ex/0102041] [INSPIRE]. collisions at 189 GeV, Phys. Lett. B 502 (2001) 9 [19] L3 collaboration, M. Acciarri et al., Measurement of triple gauge boson couplings of the W boson at LEP, Phys. Lett. B 467 (1999) 171 [hep-ex/9910008] [INSPIRE]. [20] OPAL collaboration, G. Abbiendi et al., Measurement of triple gauge boson couplings from production at LEP energies up to 189 GeV, Eur. Phys. J. C 19 (2001) 1 W +W [hep-ex/0009022] [INSPIRE]. [hep-ex/0608044] [INSPIRE]. [21] D0 collaboration, V.M. Abazov et al., Experimental discrimination between charge 2e=3 top quark and charge 4e=3 exotic quark production scenarios, Phys. Rev. Lett. 98 (2007) 041801 and lepton avor tagging in pp collisions at p [hep-ex/9903011] [INSPIRE]. 172 GeV, Phys. Lett. B 422 (1998) 369 [INSPIRE]. [17] ALEPH collaboration, R. Barate et al., Measurement of triple gauge boson couplings at [22] CDF collaboration, T. Aaltonen et al., Exclusion of exotic top-like quarks with 4=3 electric charge using jet-charge tagging in single-lepton tt events at CDF, Phys. Rev. D 88 (2013) 032003 [arXiv:1304.4141] [INSPIRE]. [23] ATLAS collaboration, Measurement of the top quark charge in pp collisions at ps = 7 TeV with the ATLAS detector, JHEP 11 (2013) 031 [arXiv:1307.4568] [INSPIRE]. [arXiv:1209.3019] [INSPIRE]. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE]. HJEP10(27)3 [26] ATLAS collaboration, Jet charge studies with the ATLAS detector using ps = 8 TeV proton-proton collision data, ATLAS-CONF-2013-086 (2013). hadrons, JHEP 12 (2014) 017 [arXiv:1410.4227] [INSPIRE]. [27] CMS collaboration, Identi cation techniques for highly boosted W bosons that decay into [28] ATLAS collaboration, Measurement of jet charge in dijet events from p s = 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052003 [arXiv:1509.05190] [29] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST 9 P10009 [arXiv:1405.6569] [INSPIRE]. [30] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS detector in proton-proton collisions at p [arXiv:1502.02702] [INSPIRE]. s = 8 TeV, 2015 JINST 10 P08010 [31] CMS collaboration, The CMS trigger system, 2017 JINST 12 P01020 [arXiv:1609.02366] [32] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [33] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. [34] T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [35] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [36] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. [37] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. [38] M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE]. [39] S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE]. [40] CMS collaboration, Study of the underlying event at forward rapidity in pp collisions at s = 0:9, 2:76 and 7 TeV, JHEP 04 (2013) 072 [arXiv:1302.2394] [INSPIRE]. [41] CMS collaboration, Event generator tunes obtained from underlying event and multiparton Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE]. [46] NNPDF collaboration, R.D. Ball et al., Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B 855 (2012) 153 [arXiv:1107.2652] [INSPIRE]. [47] S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP 12 (2003) 045 [hep-ph/0310083] [INSPIRE]. Phys. B 238 (1984) 492 [INSPIRE]. Meth. A 506 (2003) 250 [INSPIRE]. [48] B.R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl. [49] GEANT4 collaboration, S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl. Instrum. 063 [arXiv:0802.1189] [INSPIRE]. [arXiv:1111.6097] [INSPIRE]. generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. [51] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE]. [52] ZEUS and H1 collaborations, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive e p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE]. [53] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE]. [54] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) [56] CMS collaboration, Determination of Jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [57] CMS collaboration, Jet Performance in pp Collisions at 7 TeV, CMS-PAS-JME-10-003 (2010). Instrum. Meth. A 362 (1995) 487 [INSPIRE]. [58] G. D'Agostini, A multidimensional unfolding method based on Bayes' theorem, Nucl. 372 (1996) 469 [hep-ph/9509307] [INSPIRE]. [62] T. Adye, Unfolding algorithms and tests using RooUnfold, in Proceedings of the PHYSTAT 2011 Workshop, CERN, Geneva, Switzerland, January 2011, CERN-2011-006, p. 313, sections in pp collisions at p (2017) 156 [arXiv:1609.05331] [INSPIRE]. [63] CMS collaboration, Measurement and QCD analysis of double-di erential inclusive jet cross s = 8 TeV and cross section ratios to 2:76 and 7 TeV, JHEP 03 HJEP10(27)3 Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus N. Shumeiko Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Brazil tova J.C. Ruiz Vargasa Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, F. Torres Da Silva De Araujo, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez8, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger9, M. Finger Jr.9 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran10;11, T. Elkafrawy12, A. Mahrous13 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Gadrat J.-L. Agram14, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14, D. Gele, U. Goerlach, A.-C. Le Bihan, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov15, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Georgian Technical University, Tbilisi, Georgia A. Khvedelidze9 Z. Tsamalaidze9 Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl16 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras17, A. Campbell, P. Connor, C. ContrerasCampana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel19, H. Jung, A. Kalogeropoulos, O. Karacheban19, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. SchoernerSadenius, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo16, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann16, S.M. Heindl, U. Husemann, F. Kassel16, I. Katkov15, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary N. Filipovic, G. Pasztor Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, A.J. ZsigInstitute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi22, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok21, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati23, S. Bhowmik24, S. Choudhury25, P. Mal, K. Mandal, A. Nayak26, D.K. Sahoo23, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, U. Bhawandeep, R. Chawla, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity24, G. Majumder, K. Mazumdar, T. Sarkar24, N. Wickramage27 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;16, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;16 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;31, G. Sguazzonia, D. Stroma, L. Viliania;b;16 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, L. Brianzaa;b;16, F. Brivioa;b, V. Ciriolo, M.E. Dinardoa;b, S. Fiorendia;b;16, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzinia;b, S. Ragazzia;b, T. Tabarelli de INFN Sezione di Napoli a, Universita di Napoli `Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, A.O.M. Iorioa;b, L. Listaa, S. Meolaa;d;16, P. Paoluccia;16, C. Sciaccaa;b, F. Thyssena INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;16, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, F. Fallavollitaa;b, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;31, P. Azzurria;16, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;31, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, A. Giassia, M.T. Grippoa;31, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. SavoyNavarroa;32, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;16, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;16, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea G.B. Yu University of Seoul, Seoul, Korea Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda D. Krofcheck P.H. Butler University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev37;38, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim39, E. Kuznetsova40, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin38 National Research Nuclear University `Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva41, V. Rusinov, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin38, I. Dremin38, M. Kirakosyan, A. Leonidov38, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov43, Y.Skovpen43, D. Shtol43 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, P. Vischia, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I.J. Cabrillo, A. Calderon, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. RuizJimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco45, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer16, M.J. Kortelainen, K. Kousouris, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic46, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi47, M. Rovere, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas48, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns49, G.I. Veres21, M. Verweij, N. Wardle, H.K. Wohri, A. Zagozdzinska36, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov50, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler51, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee HJEP10(27)3 Turkey A. Adiguzel, S. Cerci52, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos53, E.E. Kangal54, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut55, K. Ozdemir56, D. Sunar Cerci52, H. Topakli57, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak58, G. Karapinar59, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya60, O. Kaya61, E.A. Yetkin62, T. Yetkin63 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen64 Institute for Scintillation Materials of National Academy of Science of Ukraine, National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold65, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev66, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas65, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko50, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta67, T. Virdee16, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika Catholic University of America, Washington, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou R. Syarif Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech68, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J. Bunn, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Thom, J. Tucker, P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. D. Winn J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. SextonKennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Bein, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, H. Prosper, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, I.D. Sandoval Gonzalez, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki69, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya70, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok71, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, L. Forthomme, R.P. Kenny III, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, V. Azzolini, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, A. Kumar, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko37, M. Planer, A. Reinsvold, R. Ruchti, N. Rupprecht, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, T. Medvedeva, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, A. Svyatkovskiy, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali72, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon73, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods y: Deceased China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, CNRS/IN2P3, Strasbourg, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany 8: Also at Universidad de Antioquia, Medellin, Colombia 9: Also at Joint Institute for Nuclear Research, Dubna, Russia 10: Also at Suez University, Suez, Egypt 11: Now at British University in Egypt, Cairo, Egypt 12: Also at Ain Shams University, Cairo, Egypt 13: Now at Helwan University, Cairo, Egypt 14: Also at Universite de Haute Alsace, Mulhouse, France 15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 18: Also at University of Hamburg, Hamburg, Germany 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 21: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 24: Also at University of Visva-Bharati, Santiniketan, India 25: Also at Indian Institute of Science Education and Research, Bhopal, India 26: Also at Institute of Physics, Bhubaneswar, India 27: Also at University of Ruhuna, Matara, Sri Lanka 28: Also at Isfahan University of Technology, Isfahan, Iran 29: Also at Yazd University, Yazd, Iran 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 31: Also at Universita degli Studi di Siena, Siena, Italy 32: Also at Purdue University, West Lafayette, U.S.A. 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 35: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 37: Also at Institute for Nuclear Research, Moscow, Russia 38: Now at National Research Nuclear University `Moscow 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 40: Also at University of Florida, Gainesville, U.S.A. 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia 42: Also at California Institute of Technology, Pasadena, U.S.A. 43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 45: Also at INFN Sezione di Roma; Sapienza Universita di Roma, Rome, Italy 46: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 47: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 48: Also at National and Kapodistrian University of Athens, Athens, Greece 49: Also at Riga Technical University, Riga, Latvia 50: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 51: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 52: Also at Adiyaman University, Adiyaman, Turkey 53: Also at Istanbul Aydin University, Istanbul, Turkey 54: Also at Mersin University, Mersin, Turkey 55: Also at Cag University, Mersin, Turkey 56: Also at Piri Reis University, Istanbul, Turkey 57: Also at Gaziosmanpasa University, Tokat, Turkey 58: Also at Ozyegin University, Istanbul, Turkey 59: Also at Izmir Institute of Technology, Izmir, Turkey 60: Also at Marmara University, Istanbul, Turkey 61: Also at Kafkas University, Kars, Turkey 62: Also at Istanbul Bilgi University, Istanbul, Turkey 64: Also at Hacettepe University, Ankara, Turkey 65: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 66: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 67: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 68: Also at Utah Valley University, Orem, U.S.A. 69: Also at Argonne National Laboratory, Argonne, U.S.A. 70: Also at Erzincan University, Erzincan, Turkey 71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 72: Also at Texas A&M University at Qatar, Doha, Qatar 73: Also at Kyungpook National University, Daegu, Korea [1] R.D. Field and R.P. Feynman , A parametrization of the properties of quark jets, Nucl . Phys. [5] Aachen-Bonn-CERN- Munich-Oxford collaboration, P. Allen et al., Charge properties of the hadronic system in p and p interactions , Phys. Lett. B 112 ( 1982 ) 88 [INSPIRE]. [6] European Muon collaboration , J.P. Albanese et al., Quark charge retention in nal state hadrons from deep inelastic muon scattering , Phys. Lett. B 144 ( 1984 ) 302 [INSPIRE]. [7] Amsterdam-Bologna-Padua- Pisa-Saclay-Turin collaboration , S. Barlag et al., [8] R. Erickson et al., Charge retention in deep inelastic electroproduction , Phys. Rev. Lett . 42 [24] W.J. Waalewijn , Calculating the charge of a jet , Phys. Rev. D 86 ( 2012 ) 094030 [25] D. Krohn , M.D. Schwartz , T. Lin and W.J. Waalewijn , Jet charge at the LHC, Phys . Rev. scattering measurements , Eur. Phys. J. C 76 ( 2016 ) 155 [arXiv: 1512 .00815] [INSPIRE]. [42] R. Field , Min-bias and the underlying event at the LHC , arXiv: 1202 .0901 [INSPIRE]. [43] B. Andersson , G. Gustafson, G. Ingelman and T. Sj ostrand, Parton fragmentation and string dynamics , Phys. Rept . 97 ( 1983 ) 31 [INSPIRE]. [44] T. Sj ostrand, The merging of jets , Phys. Lett. B 142 ( 1984 ) 420 [INSPIRE]. [45] NNPDF collaboration , R.D. Ball et al., Parton distributions with QED corrections , Nucl. [50] J. Pumplin , D.R. Stump , J. Huston , H.L. Lai , P.M. Nadolsky and W.K. Tung , New [55] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [59] W.H. Richardson , Bayesian-based iterative method of image restoration , Opt. Soc. Am . 62 [60] L.B. Lucy , An iterative technique for the recti cation of observed distributions, Astron . J. 79 [61] A. H ocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl . Instrum. Meth. A


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP10%282017%29131.pdf

A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck, J. Strauss, W. Waltenberger, C.-E. Wulz, O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov, N. Shumeiko, S. Alderweireldt, E. A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis, H. Bakhshiansohi, C. Beluffi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, S. Dogra, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, C. S. Moon, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, T. Cheng, C. H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, C. F. González Hernández, J. D. Ruiz Alvarez, J. C. Sanabria, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger Jr., E. Carrera Jarrin, Y. Assran, T. Elkafrawy, A. Mahrous, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le Bihan, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, A. Khvedelidze, Z. Tsamalaidze, C. Autermann, S. Beranek, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch. Measurements of jet charge with dijet events in pp collisions at \( \sqrt{s}=8 \) TeV, Journal of High Energy Physics, 2017, 131, DOI: 10.1007/JHEP10(2017)131