Search for pair production of heavy vector-like quarks decaying to high-p T W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector

Journal of High Energy Physics, Oct 2017

Abstract A search is presented for the pair production of heavy vector-like T quarks, primarily targeting the T quark decays to a W boson and a b-quark. The search is based on 36.1 fb−1 of pp collisions at \( \sqrt{s}=13 \) TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, including at least one b-tagged jet and a large-radius jet identified as originating from the hadronic decay of a high-momentum W boson. No significant deviation from the Standard Model expectation is observed in the reconstructed T mass distribution. The observed 95% confidence level lower limit on the T mass are 1350 GeV assuming 100% branching ratio to Wb. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like B quark decaying to Wt and other final states. The results are thus reinterpreted to provide a 95% confidence level lower limit on the B quark mass at 1250 GeV assuming 100% branching ratio to Wt; in the SU(2) singlet scenario, the limit is 1080 GeV. Mass limits on both T and B production are also set as a function of the decay branching ratios. The 100% branching ratio limits are found to be applicable to heavy vector-like Y and X production that decay to Wb and Wt, respectively. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

Search for pair production of heavy vector-like quarks decaying to high-p T W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector

Received: July decaying to high-pT 0 Also at University of Malaya, Department of Physics , Kuala Lumpur , Malaysia A search is presented for the pair production of heavy vector-like T quarks, primarily targeting the T quark decays to a W boson and a b-quark. The search is based on 36:1 fb 1 of pp collisions at p detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets nal state, including at least one b-tagged jet and a large-radius jet identi ed as originating from the hadronic decay of a high-momentum W boson. No signi cant deviation from the Standard Model expectation is observed in the reconstructed T mass distribution. The observed 95% con dence level lower limit on the T mass are 1350 GeV assuming 100% branching ratio to W b. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like B quark decaying to W t and other nal states. The results are thus reinterpreted to provide a 95% con dence level lower limit on the B quark mass at 1250 GeV assuming 100% branching ratio to W t; in the SU(2) singlet scenario, the limit is 1080 GeV. Mass limits on both T and B production are also set as a function of the decay branching ratios. The 100% branching ratio limits are found to be applicable to heavy vector-like Y and X production that decay to W b and W t, respectively. Exotics; Hadron-Hadron scattering (experiments) - W HJEP10(27)4 1 Introduction 2 3 4 5 Data and simulation Analysis object selection Analysis strategy Event preselection T T reconstruction Classi cation of event topologies 5.3.1 5.3.2 Signal region de nition Control region de nition 5.4 Multi-jet background estimation 6 Systematic uncertainties 5.1 5.2 5.3 6.1 6.2 6.3 7.1 7.2 7.3 Luminosity and normalisation uncertainties Detector-related uncertainties Generator modelling uncertainties Statistical interpretation Likelihood t results Limits on VLQ pair production 7 Results 8 Conclusions The ATLAS collaboration 1 Introduction The discovery of the Higgs boson by the ATLAS and CMS collaborations is a major vector-like quarks (VLQs) decaying into third-generation quarks using the pp collision data collected at the Large Hadron Collider (LHC) in 2015 and 2016 at a centre-of-mass energy of 13 TeV. { 1 { Several new mechanisms have been proposed in theories beyond the Standard Model (BSM). In supersymmetry, the cancellation comes from assigning superpartners to the Standard Model (SM) bosons and fermions. Alternatively, Little Higgs [4, 5] and Composite Higgs [ 6, 7 ] models introduce a spontaneously broken global symmetry, with the Higgs boson emerging as a pseudo Nambu{Goldstone boson [8]. These latter models predict the existence of VLQs, de ned as colour-triplet spin-1/2 fermions whose left- and right-handed chiral components have the same transformation properties under the weak-isospin SU(2) gauge group [9, 10]. Depending on the model, vector-like quarks are produced in SU(2) singlets, doublets or triplets of avours T , B, X or Y , in which the rst two have the same charge as the SM top and b quarks while the vector-like Y and X quarks have charge1 4=3 and 5=3. In addition, in these models, VLQs are expected to couple preferentially to third-generation quarks [9, 11] and can have avour-changing neutral-current decays in addition to the charged-current decays characteristic of chiral quarks. As a result, an up-type T quark can decay not only to a W boson and a b quark, but also to a Z or Higgs boson and a top quark (T ! W b, Zt, and Ht). Similarly, a down-type B quark can decay to a Z or Higgs boson and a b quark, in addition to decaying to a W boson and a top quark (B ! W t, Zb, and Hb). Instead, due to their charge, vector-like Y quarks decay exclusively to W b while vector-like X quarks decay exclusively to W t. To be consistent with the results from precision electroweak measurements a small mass-splitting between VLQs belonging to the same SU(2) multiplet is required, but no requirement is placed on which member of the doublet is heavier [12]. Cascade decays such as T ! W B ! W W t are thus assumed to be kinematically forbidden. Decays of VLQs into nal states with rst and second generation quarks, although not favoured, are not excluded [ 13, 14 ]. This search targets the T ! W b decay mode, although it is sensitive to a wide range of branching ratios to the other two decay modes as well as to vector-like B, X and Y production. Previous searches in this decay mode by the ATLAS and CMS collaborations did not observe a signi cant deviation from the SM predictions. Those searches excluded VLQ masses below 740 GeV for any combination of branching ratios and below 920 GeV for the assumption of B(T ! W b) = 1 [15, 16]. A recent search by the ATLAS collaboration s = 13 TeV sets a lower limit of 1160 GeV on the vector-like T quark mass for the pure at p Zt mode [17]. The event selection is optimised for T T production with subsequent decay to two highpT W bosons and two b-quarks, where one of the W bosons decays leptonically and the other decays hadronically. To suppress the SM background, boosted jet reconstruction techniques [18, 19] are used to improve the identi cation of high-pT W bosons decaying hadronically while rejecting events with hadronically decaying, high-pT top-quarks. The T T system is reconstructed and the mass of the semi-leptonically decaying VLQ candidate is used to discriminate between SM and VLQ events. Finally, a pro le likelihood t is used to test for the presence of a VLQ signal as a function of T and B quark masses and decay branching ratios. The results are found to be equally applicable to either singlet or doublet weak-isospin con gurations as well as applicable to the decays of X and Y . 1All charges are quoted in units of e. { 2 { The ATLAS detector [20] at the LHC is a multipurpose particle detector with a forwardbackward symmetric cylindrical geometry that covers nearly the entire solid angle around the collision point. It consists of an inner detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic eld, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner detector covers the pseudorapidity range2 j j < 2:5. It consists of a silicon pixel detector, including the insertable B-layer installed after Run 1 of the LHC [21, 22], and a silicon microstrip detector surrounding the pixel detector, followed by a transition radiation straw-tube tracker. Lead/liquid-argon sampling calorime(steel/scintillator-tile) calorimeter covers the central pseudorapidity range (j j < 1:7). The end-cap and forward regions are instrumented with liquid-argon calorimeters for both the electromagnetic and hadronic energy measurements up to j j = 4:9. The outer part of the detector consists of a muon spectrometer with high-precision tracking chambers for coverage up to j j = 2.7, fast detectors for triggering over j j < 2.4, and three large superconducting toroid magnets with eight coils each. The ATLAS detector has a two-level trigger system to select events for o ine analysis [23]. 3 Data and simulation This search utilises a data set corresponding to 36:1 1:2 fb 1 of integrated luminosity from pp collisions at p s = 13 TeV collected by the ATLAS experiment, with 3:2 fb 1 collected in 2015 and 32:9 fb 1 collected in 2016 [24]. Data are only used if all ATLAS detector subsystems were operational. In all simulated events used in this search, the top quark and Higgs boson masses were set to 172.5 GeV and 125 GeV, respectively. Simulated T T events were generated with the leading-order (LO) generator Protos v2.2 [25] using the NNPDF2.3 LO parton distribution function (PDF) set and a set of tuned parameters called the A14 tune [26] for the underlying-event description and passed to Pythia 8.186 [ 27 ] for parton showering and fragmentation. The samples were generated for an SU(2) singlet T VLQ, but with equal branching ratios of the T quark to each nal state. To check the dependence of the results on the weak-isospin of the VLQ, one sample was also generated using the SU(2) doublet model including only the T contributions. The signal samples are normalised to pair-production cross-sections computed using Top++ v2.0 [ 28 ], including next-to-next-to-leading-order (NNLO) quantum chromodynamics (QCD) corrections and soft-gluon resummation to NNLL accuracy [29{34], and using the MSTW 2008 NNLO PDF set. Their cross-sections vary from 3:38 0:25 pb (mT = 500 GeV) to 3:50 0:43 fb (mT = 1400 GeV). Theoretical uncertainties are evaluated from variations of the factorisation and renormalisation scales, as well as from un2The ATLAS Collaboration uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r; ) are used in the transverse plane, being the azimuthal angle around the beam pipe. The pseudorapidity is de ned in terms of the polar angle as = ln tan( =2). Angular distance is measured in units of R p( )2 + ( )2. { 3 { certainties in the PDFs and S. The latter two represent the largest contribution to the overall theoretical uncertainty in the signal cross-sections and are calculated using the PDF4LHC [35] prescription with the MSTW 2008 68% CL NNLO, CT10 NNLO [ 36, 37 ] and NNPDF2.3 [38] 5f FFN PDF sets. Two benchmark signal scenarios are considered, along with a full scan of the branching-ratio plane. The rst benchmark corresponds to a T quark that decays 100% to W b and the second corresponds to the SU(2) singlet T quark scenario, which predicts branching ratios of 50%, 25%, 25% to W b, Zt and Ht, respectively [ 12 ]. Samples were also generated for BB production for the reinterpretation of this search. They were produced using the same generator and normalised in the same way as T T . As with T T , two benchmark signal scenarios are considered, along with a full 6.428 [ 39, 40 ] for the parton shower and hadronisation, using the Perugia2012 tune [41] and the CT10 PDF set, and setting the hdamp parameter to the mass of the top quark. To estimate tt modelling uncertainties, described in section 6.3, additional samples were generated using Powheg-Box v2 interfaced with Herwig++ 2.7.1 [42], Powheg-Box v2 interfaced with Pythia 8.186, and MG5 aMC@NLO 2.1.1 interfaced with Pythia 8.186 [43]. Further, samples with Powheg-Box v2 interfaced with Pythia 6.428 were generated varying the factorisation and normalisation scales by 2 and 0.5, as well as the next-to-leading-order (NLO) radiation factor, hdamp, between mtop and twice mtop. The tt samples are normalised to the NNLO cross-section, including NNLO QCD corrections and soft-gluon resummation to NNLL accuracy, as done for the signal samples. Single top quark production (called `single top' in the following) in the W t- and schannels was also generated with Powheg-Box v2 interfaced with Pythia 6.428, while single top production in the t-channel was generated with Powheg-Box v1 interfaced with Pythia 6.428 for the parton shower and hadronisation. Single-top samples were generated using the Perugia2012 tune and the CT10 PDF set. The single top crosssections for the t- and s-channels are normalised to their next-to-leading-order (NLO) predictions, while for the W t-channel the cross-section is normalised to its NLO+NNLL prediction [44]. For W + jets, Z + jets, and diboson (W W , W Z, ZZ) samples, the Sherpa 2.2.1 generator [ 45 ] was used with the CT10 PDF set. The W +jets and Z +jets production samples are normalised to the NNLO cross-sections [46{48]. For diboson production, the generator cross-sections (already at NLO) are used for sample normalisation. The tt+V background is modelled using samples produced with MG5 aMC@NLO 2.1.1 interfaced with Pythia 8.186, using the A14 tune and the NNPDF2.3 LO PDF set. The tt+V samples are normalised to their respective NLO cross-sections [43]. All simulated samples were produced using the ATLAS simulation infrastructure [ 49 ], using the full GEANT4 [ 50 ] simulation of the ATLAS detector and reconstructed with the { 4 { same software as used for the data. Multiple overlaid proton-proton collisions in the same or nearby bunch crossings (pile-up) were simulated at rates matching that of the data; they were modelled as low pT multi-jet production using the Pythia 8.186 generator and tune represent massless particles coming from the primary vertex, are grouped together using the anti-kt clustering algorithm [52{54] with a radius parameter of 0.4 (1.0) for small-R (large-R) jets. Small-R jets and large-R jets are clustered independently. Small-R jets are calibrated using an energy- and -dependent calibration scheme, with in situ corrections based on data [55], and are selected if they have pT > 25 GeV and j j < 2.5. A multivariate jet vertex tagger (JVT) selectively removes small-R jets that are identi ed as having originated from pile-up collisions rather than the hard scatter [56]. Jets containing b-hadrons are identi ed via an algorithm that uses multivariate techniques to combine information from the impact parameters of displaced tracks as well as topological properties of secondary and tertiary decay vertices reconstructed within the jet. A jet is considered b-tagged if the value for the multivariate discriminant is above the threshold corresponding to an e ciency of 77% for tagging a b-quark-initiated jet. The corresponding light-jet rejection factor is 130 and the charm-jet rejection factor is 6, as determined for jets with pT > 20 GeV and j j < 2:5 in simulated tt events. Large-R jets are built using the energy clusters in the calorimeter [57, 58] and then trimmed [59] to mitigate the e ects of contamination from multiple interactions and improve background rejection. The jet energy and pseudorapidity are further calibrated to account for residual detector e ects using energy and pseudorapidity dependent calibration factors derived from simulation. The kt-based trimming algorithm reclusters the jet constituents into subjets with a ner-grained resolution (the R-parameter for subjets is set to Rsub = 0:2). Subjets that contribute less than 5% to the pT of the large-R jets are discarded. The properties (e.g. transverse momentum and invariant mass) of the jet are recalculated using only the constituents of the remaining subjets. Trimmed large-R jets are only considered if they have pT > 200 GeV and j j < 2:0. To identify large-R jets that are likely to have originated from the hadronic decay of W bosons (Whad) and not from the hadronic decay of top quarks or multi-jet background, jet substructure information is exploited using the ratio of the energy correlation functions D2 =1 [60, 61] and jet mass [58]. Selected large-R jets must pass both the substructure and mass requirements of the 50%e cient W -tagging working point [18]. To reduce the contribution from the tt background, the Whad candidate must not overlap any b-tagged small-R jets within R < 1:0. If mul{ 5 { tiple large-R jets satisfy the above requirements, the one with a mass closest to the mass of the W boson is selected as the Whad candidate. Electrons are reconstructed from energy deposits in the electromagnetic calorimeter implemented by calculating the quantity IR = P matched to inner detector tracks. Electron candidates are required to satisfy likelihoodbased identi cation criteria [62] and must have plep > 30 GeV and j j < 2:47. Electron T candidates in the transition region between the barrel and endcap electromagnetic calorimeters, 1:37 < j j < 1:52, are excluded from this analysis. A lepton isolation requirement is R(track;lep)<Rcut ptrack, where Rcut is the T d0 smaller of 10 GeV/plTep and 0.2; the track associated with the lepton is excluded from the calculation. The electron must satisfy IR < 0:06 plTep. Additionally, electrons are required to have a track satisfying jd0j < 5 and jz0 sin j < 0:5 mm, where d0 is the transverse impact parameter and z0 is the r{ projection of the impact point onto the z-axis. An overlapremoval procedure prevents double-counting of energy between an electron and nearby jets by removing jets if the separation between the electron and jet is within R < 0.2 and removing electrons if the separation is within 0.2 < R < 0.4. In addition, a large-R jet is removed if the separation between the electron and the large-R jet is within R < 1:0. Muons are reconstructed from an inner detector track matched to muon spectrometer tracks or track segments [63]. Candidate muons are required to pass quality speci cations based on information from the muon spectrometer and inner detector. Furthermore, muons are required to be isolated from detector activity using the same criterion that is applied to electrons and their associated tracks must satisfy jz0 sin j < 0:5 mm and jd0j < 3. Muons are selected if they have pT > 30 GeV and j j < 2:5. An overlap-removal procedure is also applied to muons and jets. If a muon and a jet with at least three tracks are separated by d0 R < min(0:4; 0:04 + 10 GeV=pT ) the muon is removed; if the jet has fewer than three tracks, the jet is removed. For a given reconstructed event, the magnitude of the negative vector sum of the pT of all reconstructed leptons and small-R jets is de ned as the missing transverse momentum (ETmiss) [64]. An extra term is included to account for `soft' energy from inner detector tracks that are not matched to any of the selected objects but are consistent with originating from the primary vertex. The four-momentum of the neutrino can be analytically determined in each event using the missing transverse momentum vector E~Tmiss and assuming the lepton-neutrino system has an invariant mass equal to that of the W boson. Nearly half of the events are found to produce two complex solutions. When complex solutions are obtained, a real solution is determined by minimising a 2 parameter based on the di erence between the mass of the lepton-neutrino system and the measured value of the W boson mass. In the case of two real solutions, the solution with the smaller absolute value of the longitudinal momentum is used. 5 Analysis strategy This search targets the decay of pair-produced VLQs, T T , where one T quark decays to W b and the other decays to W b, Zt or Ht. Since previous searches from ATLAS and CMS have { 6 { regions follows in section 5.3. further optimization. 5.1 Event preselection excluded VLQs decaying to W b at 95% con dence level (CL) for masses below 920 GeV, this search focuses on the decays of higher-mass VLQs. The nal state consists of a high-pT charged lepton and missing transverse momentum from the decay of one of the W bosons, a high-momentum large-R jet from the hadronically decaying W boson, and multiple btagged jets. The event preselection is described in section 5.1 and the reconstruction of the T T system is discussed in section 5.2. The classi cation of events into signal and control The search for the BB signal uses the same selection criteria, with no Events are required to pass a single-electron or single-muon trigger. The 2015 data were collected using electron triggers with ET thresholds of 24, 60, and 120 GeV. The 2016 data were collected using electron triggers with ET thresholds of 26, 60, and 140 GeV. For the 2015 electron triggers, the highest-ET trigger had a looser quality requirement on the trigger object than the triggers with lower ET thresholds. For the 2016 electron triggers, the trigger with the lowest ET threshold had stringent requirements on the quality of the trigger object, as well as requirements on its isolation from other activity in the detector. The highest and second highest ET triggers had no requirement on isolation and had progressively looser quality requirements. Muon triggers with pT thresholds of 20 (26) GeV and requirements on isolation were used in 2015 (2016). Additionally, a high-pT muon trigger with a threshold of 50 GeV and no isolation requirement was used in both 2015 and 2016 data. In addition to the trigger requirement, events must have at least one primary vertex with at least two associated tracks. Exactly one lepton candidate (electron or muon), as described in section 4, is required. Signal events are expected to have a high jet multiplicity, since they include two b-jets as well as one jet from the hadronic decay of the W boson. Therefore, at least three small-R jets are required, of which at least one must be b-tagged. At least one boosted hadronic W candidate is required and the ETmiss is required to be greater than 60 GeV. After this selection, backgrounds with large contributions include tt, W + jets, and single-top events. Other SM processes, including diboson, Z + jets, ttV and multi-jet production, make a smaller but non-negligible contribution; these small backgrounds are collectively referred to as `Others'. 5.2 After preselection, the four-momenta of the hadronic and semi-leptonic VLQ candidates are reconstructed using the selected lepton candidates, large-R jets, small-R jets, and missing transverse momentum of the event. VLQ candidates (T ! W b) are formed by pairing each W boson candidate with a b-quark candidate. If there are two or more b-tagged jets in the event, the two highest-pT b-tagged jets are selected as the b-quark candidates. Both possible pairings of the b-quark candidates with the Whad and semi-leptonically decaying W boson (Wlep) candidates are tested and the pairing that minimises the absolute value { 7 { HJEP10(27)4 n0.4 o i t a fr 0.1 0.05 0 0 tt mT = 500 GeV mT = 700 GeV mT = 900 GeV background and a few signal mass points, for the signal models B(T ! W b) = 1 (left) and for the signal models B(B ! W t) = 1 (right). In both gures, the distributions are normalised to unity for comparison of the relative shapes at each mass point. Due to the limited Monte Carlo sample size, the tt distribution has been smoothed. of the mass di erence between the semi-leptonically and hadronically reconstructed VLQ candidates, j mj, is chosen. If the event has only one b-tagged jet, that jet is used as one of the b-quark candidates and then all permutations with the remaining small-R jets are tested to nd the con guration that minimises j mj. The nal discriminating variable used in the statistical analysis is mlTep, the reconstructed mass of the semi-leptonically decaying vector-like T quark candidate. This is found to provide the best expected signal sensitivity. Figure 1 shows mlTep for benchmark T and B quark signal models and tt production in the signal region (de ned in section 5.3.1) after the reconstruction algorithm is applied. The reconstructed masses for the signal and tt background are shown to peak at the generated T and top-quark masses, respectively. The tails arise from misreconstructed T candidates. As expected, the reconstruction algorithm does not reconstruct the B mass, yet the variable nonetheless provides separation power between the signal and the tt background. 5.3 Classi cation of event topologies A tt control region is used to constrain the production rate of tt events as well as systematic uncertainties related to tt modelling. The signal and control regions are described in detail in section 5.3.1 and section 5.3.2. The scalar sum of ETmiss and the transverse momenta of the lepton and all small-R jets, ST, and the separation between the lepton and neutrino, R(lep; ), are used to de ne the two regions. These regions are shown in gure 2 after applying the event pre-selection, and described below. 5.3.1 Signal region de nition After the event pre-selection described in section 5.1, further requirements are applied to reduce the contribution of SM backgrounds relative to signal. Events in the signal region are selected based on their characteristic boosted topology with a high-pT W boson and larger separation between the W boson and the b quarks. Events are required to have { 8 { ATLAS Simulation 0.2 0.1 0 R(lep; ), overlaying the expected signal distribution for B(T ! W b) = 1 and a mass of 1.2 TeV (left) and overlaying the distribution of the dominant tt background (right). R(lep; ) < 0:7, arising from a boosted leptonically decaying W boson. In addition, ST is required to be greater than 1800 GeV. This requirement is found to maximise the expected sensitivity to VLQ masses above 1 TeV. In order to reject both the tt and single-top (mostly W t-channel) backgrounds, an additional requirement is put on the di erence between the reconstructed masses of the leptonic and hadronic VLQ candidates, j 300 GeV; this selection criterion is optimised to provide the best expected sensitivity. mj = jmhTad mlTepj < The expected numbers of events in the signal region for the background processes and signal hypothesis with mass mT = 1 TeV are shown in table 1. For a signal model with B(T ! W b) = 1, the acceptance times e ciency of the full event selection ranges from 0.2% to 4.0% for VLQ masses from mT = 500 to 1400 GeV. For the SU(2) singlet T scenario, for which B(T ! W b) is approximately 50% for the mass range of interest, the signal acceptance ranges from 0.1% to 2.0%. 5.3.2 Control region de nition In this analysis, SM tt production is the dominant background process. To constrain the rate of tt production in the signal region, as well as to constrain some uncertainties related to tt modelling, a control region is included in the statistical analysis. This region is de ned by only changing the requirement on ST to 1000 GeV < ST <1800 GeV. This window is chosen to be as close as possible to the signal region, while still retaining a large number of background events. Both the lower requirement on the control region and the requirement separating the signal and control regions were optimised to maximise the expected sensitivity to the signal with a mass of 1000 GeV and B(T ! W b) = 1. 5.4 Multi-jet background estimation The multi-jet background originates from either the misidenti cation of a jet as a lepton candidate (fake lepton) or from the presence of a non-prompt lepton (e.g., from a semileptonic b- or c-hadron decay) that passes the isolation requirement. The multi-jet shape, normalisation, and related systematic uncertainties are estimated from data using { 9 { tt regions. The yields are given before the pro le likelihood t described in section 7. The quoted uncertainties include statistical and systematic uncertainties; for the tt background no cross-section uncertainty is included. The contributions from dibosons, Z+jets, ttV and multi-jet production are included in the Others category. the matrix method (MM) [65]. The MM exploits the di erence in e ciency for prompt leptons to pass loose and tight quality requirements, obtained from W and Z boson decays, and non-prompt or fake lepton candidates, from the misidenti cation of photons or jets. The e ciencies, measured in dedicated control regions, are parameterised as functions of the lepton candidate pT and , between the lepton and jets, and the b-tagged jet multiplicity. The event selection used in this analysis signi cantly reduces the contribution of the multi-jet background in the signal and control regions, to the point where statistical uncertainties make the MM prediction unreliable. In order to obtain a reliable prediction, the requirements on ST and R(lep; ) are released to 1200 GeV and 1.5, respectively. In this region the MM prediction and the small Monte Carlo derived backgrounds (diboson, Z+jets and ttV ) are studied and their shapes are found to be compatible. This selection is thus used to determine the ratio of the multi-jet production to the small Monte Carlo derived backgrounds. The ratio is then assumed to be the same in the signal and control regions and is used to scale those small MC derived backgrounds in order to account for the additional contribution from multi-jet backgrounds. This scaling was found to be stable under small changes to the de nition of the looser selection. In the signal region, the contribution from the multi-jet background to the total background is around 6%. 6 Systematic uncertainties The systematic uncertainties are broken down into four broad categories: luminosity and cross-section uncertainties, detector-related experimental uncertainties, uncertainties in data-driven background estimations, and modelling uncertainties in simulated background processes. Each source of uncertainty is treated as a nuisance parameter in the t of the leptonic T mass distribution, and shape e ects are taken into account where relevant. Due to the tight selection criteria applied, the analysis is limited by the statistical uncertainty; the systematic uncertainties only mildly degrade the sensitivity of the search. Luminosity and normalisation uncertainties The uncertainty in the combined 2015+2016 integrated luminosity is 3.2%. It is derived, following a methodology similar to that detailed in ref. [24], from a preliminary calibration of the luminosity scale using x{y beam-separation scans performed in August 2015 and May 2016. This systematic uncertainty is applied to all backgrounds and signal that are estimated using simulated Monte Carlo events, which are normalised to the measured Theoretical cross-section uncertainties are applied to the relevant simulated samples. The uncertainties for W /Z+jets and diboson production are 5% and 6%, respectively [47, 66]. For the largest of these backgrounds, W +jets, a total uncertainty of 50% in the normalisation is included. The pre- t impact3 on the measured signal strength of the W +jets normalisation is less than 1%. Two additional shape uncertainties are also considered, related to the heavy- avour content in the W +jets background. These uncertainties are derived by varying each heavy- avour component of the W +jets background individually by a factor of 1.5, while keeping the overall normalisation xed. For single top production, the uncertainties are taken as 6% [67, 68]. The normalisation of tt is unconstrained in the t. For the data-driven multi-jet estimation, an uncertainty of 100% is assigned to the normalisation, corresponding to the maximum range obtained by varying R(lep; ) when obtaining the multi-jet contribution to the values of the cuts on ST and the `Others' background. 6.2 Detector-related uncertainties The dominant sources of detector-related uncertainties in the signal and background yields relate to the small-R and large-R jet energy scales and resolutions. The small-R and largeR jet energy scales and their uncertainties are derived by combining information from test-beam data, LHC collision data and simulation [69]. In addition to energy scale and resolution uncertainties, there are also uncertainties in the large-R mass and substructure scales and resolutions. These are evaluated similarly to the jet energy scale and resolution uncertainties and are propagated to the W -tagging e ciencies. At 2%, the uncertainty in the jet energy resolution has the largest pre- t impact on the measured signal strength, corresponding to a normalisation di erence in the signal, tt, and single top yields of 2%, 2%, and 14%, respectively. Other detector-related uncertainties come from lepton trigger e ciencies, identi cation e ciencies, energy scales and resolutions, the ETmiss reconstruction, the b-tagging e ciency, and the JVT requirement. Uncertainties related to the e ciency for tagging c-jets have 3The pre- t e ect on the signal strength parameter is calculated by xing the corresponding uncertainty at , where is the initial value of the systematic uncertainty and is its pre- t uncertainty, and performing the t again. The di erence between the default and the modi ed value of , , represents the e ect on of this particular uncertainty (see section 7.1 for further details). the largest pre- t impact on the measured signal strength ( 1%). This originates from a change in normalisation of 3% on both the signal and background yields. Modelling uncertainties are estimated for the dominant tt and single-top backgrounds. The modelling uncertainties are estimated by comparing simulated samples with di erent con gurations, described in section 3. The e ects of extra initial and nal state gluon radiation are estimated by comparing simulated samples generated with enhanced or reduced initial state radiation, changes to the hdamp parameter, and di erent radiation tunes. This uncertainty has a 12% normalisation impact on tt in the signal region, resulting in a pre- t impact of 1% on the measured signal strength. The uncertainty in the fragmentation, hadronisation and underlying-event modelling is estimated by comparing two di erent parton shower models, Pythia and Herwig++, while keeping the same hardscatter matrix-element generator. This causes an 18% shift in the normalisation of tt in the signal region, resulting in a pre- t impact of 3% on the measured signal strength. The uncertainty in the hard-scatter generation is estimated by comparing events generated with two di erent Monte Carlo generators, MG5 aMC@NLO and Powheg, while keeping the same parton shower model. This uncertainty has a 38% normalisation impact on tt in the signal region, resulting in a pre- t impact of only 4% on the measured signal strength. Modelling uncertainties in single top production are also included. In this analysis, W t-channel production is the dominant contribution and the largest uncertainty comes from the method used to remove the overlap between NLO W t production and LO tt production. The default method used is diagram removal, while the alternative method considered is diagram subtraction [70]. The full di erence between the two methods is assigned as an uncertainty. This uncertainty has a 90% normalisation impact on single top in the signal region resulting in a pre- t impact of 5% on the measured signal strength. 7 7.1 Results Statistical interpretation The distribution of the reconstructed mass of the leptonically decaying T quark candidate, mlTep, in the signal and control regions is used to test for the presence of a signal. Hypothesis testing is performed using a modi ed frequentist method as implemented in RooStats [ 71, 72 ] and based on a pro le likelihood which takes into account the systematic uncertainties as nuisance parameters that are tted to the data. The statistical analysis is based on a binned likelihood function L( ; ) constructed as a product of Poisson probability terms over all bins considered in the search. This function depends on the signal strength parameter , a multiplicative factor to the theoretical signal production cross-section, and , a set of nuisance parameters that encode the e ect of systematic uncertainties in the signal and background expectations and are implemented in the likelihood function as Gaussian constraints. Uncertainties in each bin of the mlTep distributions due to nite size of the simulated samples are also taken into account via dedicated t parameters and are propagated to . In this analysis, the normalisation of the dominant tt background is included as an unconstrained nuisance parameter; there are su cient number of events in the control regions and low mass region of the signal region, where the signal contribution is small, to obtain a data-driven estimate of the tt normalisation. Nuisance parameters representing systematic uncertainties are only included in the likelihood if either of the following conditions are met: overall impact on the normalisation is larger than 1%, or the shape of the uncertainty varies by more than 1% between adjacent bins. This is done separately for each region and for each template (signal or background). When the bin-by-bin statistical variation of a given uncertainty is signi cant, a smoothing algorithm is applied. The expected number of events in a given bin depends on and . The nuisance parameters adjust the expectations for signal and background according to the corresponding systematic uncertainties, and their tted values correspond to the amounts that best t the data. This procedure allows for a reduction of the impact of systematic uncertainties in the search sensitivity by taking advantage of the highly populated background-dominated control region (CR) included in the likelihood t. ^ The test statistic q is de ned as the pro le likelihood ratio, q = 2ln(L( ; ^ )=L(^; ^)), where ^ and ^ are the values of the parameters that maximise the likelihood function (with the constraint 0 ^ parameters that maximise the likelihood function for a given value of . The compatibility of the observed data with the background-only hypothesis is tested by setting = 0 in the ), and ^^ are the values of the nuisance pro le likelihood ratio: q0 = 2ln(L(0; ^^0)=L(^; ^)). In the absence of any signi cant excess above the expected background, upper limits on the signal production cross-section for each of the signal scenarios considered are derived by using q in the CLs method [73, 74]. For a given signal scenario, values of the production cross-section (parameterised by ) yielding CLs < 0:05, where CLs is computed using the asymptotic approximation [75], are excluded at 95% CL. 7.2 Likelihood t results The expected and observed event yields in the signal and control regions after tting the background-only hypothesis to data, including all uncertainties, are listed in table 2. The total uncertainty shown in the table is the uncertainty obtained from the full t, and is therefore not identical to the sum in quadrature of each component, due to the correlations between the t parameters. The compatibility of the data with the background-only hypothesis is estimated by integrating the distribution of the test statistic, approximated using the asymptotic formulae [75], above the observed value of q0. This value is computed for each signal scenario considered, de ned by the assumed mass of the heavy quark and the three decay branching ratios. The lowest p-value is found to be 50%, for a T mass of 700 GeV. Thus no signi cant excess above the background expectation is found. The sensitivity of the analysis is limited by the statistical uncertainty of the data. Including all systematic uncertainties degrades the expected mass limits by only around 20 GeVand for a mass of 1 TeV, the cross-section limit increases by 4%. Individual unATLAS Post­Fit tt and control regions. The uncertainties include statistical and systematic uncertainties. The uncertainties in the individual background components can be larger than the uncertainty in the sum of the backgrounds, which is strongly constrained by the data. in350 b s tn300 e 250 200 150 100 50 .1.80 in (left) the signal region and (right) the control region. The lower panel shows the ratio of data to the tted background yields. The band represents the systematic uncertainty after the maximumlikelihood t. certainties are generally not signi cantly constrained by data, except for the uncertainties associated with the tt modelling that are constrained by up to 50% of their initial size. A comparison of the post- t agreement between data and prediction in the signal region, gure 3, shows a slight de cit of data in the signal region for the mlTep distribution above 700 GeV. In this context, the observed upper limits on the T T production cross-section are slightly stronger with respect to the expected sensitivity. The post- t tt normalisation is found to be 0.93 0.16 times the Monte Carlo prediction, normalised to the NNLO+NNLL cross-section. 7.3 Upper limits at the 95% CL on the T T production cross-section are set for two benchmark scenarios as a function of T quark mass mT and compared to the theoretical prediction from Top++ v2.0 ( gure 4). The resulting lower limit on mT is determined using the central value of the theoretical cross-section prediction. These results are only valid for new particles of narrow width. Assuming B(T ! W b) =1, the observed (expected) lower limit is mT = 1350 GeV (1310 GeV). For branching ratios corresponding to the SU(2) singlet T scenario, the observed (expected) 95% CL lower limit is mT = 1170 GeV (1080 GeV). This represents a signi cant improvement compared to Run-1 searches [15, 16], for which the observed 95% CL limit was 920 GeV when assuming B(T ! W b) =1. To check that the results do not depend on the weak-isospin of the T quark in the simulated signal events, a sample of T T events with a mass of 1.2 TeV was generated for an SU(2) doublet T quark and compared to the nominal sample of the same mass generated with an SU(2) singlet T quark. Both the expected number of events and expected excluded cross-section are found to be consistent between those two samples. Thus the limits obtained are also applicable to VLQ models with non-zero weak-isospin. As there is no explicit use of charge identi cation, the B(T ! W b) = 1 limits are found to be applicable to the pair-production of vector-like Y quarks of charge 4=3, which decay exclusively to W b. Exclusion limits on T quark pair-production are also obtained for di erent values of mT and as a function of branching ratios to each of the three decays. In order to probe the complete branching-ratio plane spanned by both processes, the signal samples are weighted by the ratios of the respective branching ratios to the original branching ratios in Protos. Then, the complete analysis is repeated for each point in the B plane. Figure 5 shows the corresponding expected and observed T quark mass limits in the plane B(T ! Ht) versus B(T ! W b), obtained by linear interpolation of the calculated CLs versus mT . In this search, the acceptance for VLQ BB pair production is 3% for the B(B ! W t) = 1 scenario and 1.3% for the SU(2) singlet B scenario, which is similar to the T T nal state. Nonetheless, the sensitivity to BB production is expected to be weaker, as the reconstructed T mass distribution is used as the nal discriminant. Without any modi cations to the analysis to speci cally target BB production, observed (expected) lower limits at 95% CL are set at 1250 (1150) GeV when assuming B(B ! W t) = 1 and at 1080 (980) GeV for the SU(2) singlet B scenario. This represents a signi cant improvement compared to Run-1 [76] and recent Run-2 searches [77] when assuming B(B ! W t) =1, for which the observed 95% CL limit was 880 GeV and 1020 GeV, respectively. Being agnostic to the charge of the VLQ, the limits for B(B ! W t) = 1 are found to be applicable to vector-like X quarks of charge +5=3, which exclusively decay to W t. Figure 6 shows the corresponding expected and observed B quark mass limits in the plane B(B ! Hb) versus B(B ! W t), assuming B(B ! Hb) + B(B ! W t) + B(B ! Zb) = 1 . 8 p Conclusions A search for the pair production of a heavy vector-like T quark, based on pp collisions at s = 13 TeV recorded in 2015 (3.2 fb 1) and 2016 (32.9 fb 1) with the ATLAS detector at ATLAS Expected ±1σ Expected ±2σ All limits at 95% CL 10−2 p T 1 → ( σ10−1 10−2 TT→ Wb+X 1­lepton SU(2) singlet Theory Expected ±1σ Expected ±2σ All limits at 95% CL mT [GeV] mT [GeV] on the T T cross-section as a function of T quark mass assuming B(T ! W b) = 1 (top) and in the SU(2) singlet T scenario (bottom). The green and yellow bands correspond to 1 and 2 standard deviations around the expected limit. The thin red line and band show the theoretical prediction and its 1 standard deviation uncertainty. the CERN Large Hadron Collider, is presented. Data are analysed in the lepton-plus-jets nal state and no signi cant deviation from the Standard Model expectation is observed. Assuming a branching ratio B(T ! W b) = 1, the observed (expected) 95% CL lower limit on the vector-like quark mass is 1350 GeV (1310 GeV). For the scenario of an SU(2) singlet T quark, the observed (expected) mass limit is 1170 GeV (1080 GeV). Assuming the T quark can only decay to W b, Zt and Ht, 95% CL lower limits are derived for various masses in the two-dimensional plane of B(T ! W b) versus B(T ! Ht). This search is also reinterpreted to provide limits on B quark masses. These are found to be 0.8 T ( ℬ0.7 1300 1200 1100 1000 900 800 700 600 500 1400 1300 1200 1100 1000 900 800 700 600 500 G [ t i i l m s s a m L C % 5 9 d e t c e p x E ] V e G [ t i i l m s s a m L C % 5 9 d e v r e s b O 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ℬ(T → Wb) as a function of the decay branching ratios into B(T ! W b) and B(T ! Ht). Contour lines are provided to guide the eye. The markers indicate the branching ratios for the SU(2) singlet and doublet scenarios with masses above 0.8 TeV, where they are approximately independent of the VLQ T mass. The white region is due to the limit falling below 500 GeV, the lowest simulated signal mass. 1250 GeV (1150 GeV) assuming 100% branching ratio to W t and 1080 GeV (980 GeV) under the SU(2) singlet B quark scenario. These limits are found to be equally applicable to VLQ Y quark and X quark production, that decay to W b and W t, respectively. Mass limits are also set as a function of the decay branching ratios B(T ! Hb) versus B(T ! W t) assuming only the B ! W t, B ! Zb and B ! Hb decay modes contribute. 0.6 0.5 0.4 0.3 0.2 0.1 1 ) b H0.9 →0.8 B 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 as a function of the decay branching ratios into B(B ! W t) and B(B ! Hb). Contour lines are provided to guide the eye. The markers indicate the branching ratios for the SU(2) singlet and doublet scenarios with masses above 0.8 TeV, where they are approximately independent of the VLQ B mass. The white regions are due to the limit falling below 500 GeV, the lowest simulated signal mass. Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support sta from our institutions without whom ATLAS could not be operated e ciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and 1300 1200 1100 1000 900 800 700 600 500 1400 1300 1200 1100 1000 900 800 700 600 500 G i i l m s s a m L C % 5 9 d e t c e p x E ] V e G [ t i i l m s s a m L C % 5 9 d e v r e s b O FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [78]. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. U.S.A. (1980). (2002) 034 [hep-ph/0206021] [INSPIRE]. 229 [hep-ph/0502182] [INSPIRE]. [1] ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. [2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. [3] G. 't Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, in Recent developments in gauge theories, G. 't Hooft et al. eds., Plenum Press, New York [4] N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 [5] M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) (1984) 187 [INSPIRE]. 719 (2005) 165 [hep-ph/0412089] [INSPIRE]. Phys. B 224 (1983) 107 [INSPIRE]. [8] C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE]. [9] F. del Aguila and M.J. Bowick, The possibility of new fermions with I = 0 mass, Nucl. [10] J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [11] J.A. Aguilar-Saavedra, Mixing with vector-like quarks: constraints and expectations, EPJ Web Conf. 60 (2013) 16012 [arXiv:1306.4432] [INSPIRE]. Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [INSPIRE]. [15] ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks [arXiv:1102.1987] [INSPIRE]. in the lepton-plus-jets nal state in pp collisions at p JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE]. s = 8 TeV, Phys. Rev. D 93 (2016) 012003. [16] CMS collaboration, Search for vectorlike charge 2=3t quarks in proton-proton collisions at [17] ATLAS collaboration, Search for pair production of vector-like top quarks in events with one lepton, jets and missing transverse momentum in p detector, JHEP 08 (2017) 052 [arXiv:1705.10751] [INSPIRE]. s = 13 TeV pp collisions with the ATLAS [18] ATLAS collaboration, Identi cation of boosted, hadronically-decaying W and Z bosons in s = 13 TeV Monte Carlo Simulations for ATLAS, ATL-PHYS-PUB-2015-033 (2015). [19] ATLAS collaboration, Boosted hadronic top identi cation at ATLAS for early 13 TeV data, ATL-PHYS-PUB-2015-053 (2015). JINST 3 S08003 [INSPIRE]. (2010) [ATLAS-TDR-ADD-19]. [20] ATLAS collaboration, The ATLAS experiment at the CERN Large Hadron Collider, 2008 [21] ATLAS collaboration, ATLAS insertable b-layer technical design report, ATLAS-TDR-19 [22] ATLAS collaboration, Early inner detector tracking performance in the 2015 data at s = 13 TeV, ATL-PHYS-PUB-2015-051 (2015). 77 (2017) 317 [arXiv:1611.09661] [INSPIRE]. [23] ATLAS collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C [24] ATLAS collaboration, Luminosity determination in pp collisions at p s = 8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653 [arXiv:1608.03953] [INSPIRE]. s = 8 TeV with the ATLAS detector, [26] ATLAS collaboration, ATLAS Run 1 PYTHIA8 tunes, ATL-PHYS-PUB-2014-021 (2014). HJEP10(27)4 B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE]. all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE]. [33] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE]. [34] M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O( S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. [35] M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. [40] T. Sjostrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [INSPIRE]. 074018 [arXiv:1005.3457] [INSPIRE]. [41] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) [42] G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE]. [43] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [44] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE]. [arXiv:0811.4622] [INSPIRE]. 094008 [hep-ph/0312266] [INSPIRE]. [47] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O( s2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE]. [55] ATLAS collaboration, Jet energy measurement and its systematic uncertainty in Instrum. Meth. A 506 (2003) 250 [INSPIRE]. proton-proton collisions at p 17 [arXiv:1406.0076] [INSPIRE]. at p [arXiv:1510.03823] [INSPIRE]. ATLAS-CONF-2016-035 (2016). [60] A.J. Larkoski, I. Moult and D. Neill, Power counting to better jet observables, JHEP 12 [61] A.J. Larkoski, I. Moult and D. Neill, Analytic boosted boson discrimination, JHEP 05 (2016) [62] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, ATLAS-CONF-2016-024 (2016). [56] ATLAS collaboration, Performance of pile-up mitigation techniques for jets in pp collisions s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581 [57] ATLAS collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490 [arXiv:1603.02934] [INSPIRE]. [58] ATLAS collaboration, Jet mass reconstruction with the ATLAS detector in early Run 2 data, [59] D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] s = 7 TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) [63] ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in s = 13 TeV, Eur. Phys. J. C 76 (2016) 292 proton{proton collision data at p ATLAS in pp collisions at p colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE]. [67] P. Kant et al., HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions, Comput. Phys. Commun. 191 (2015) 74 [arXiv:1406.4403] [INSPIRE]. [68] M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE]. the ATLAS detector at p s = 13 TeV, ATL-PHYS-PUB-2015-015 (2015). [69] ATLAS collaboration, Jet calibration and systematic uncertainties for jets reconstructed in hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] (2003) MOLT007 [physics/0306116] [INSPIRE]. [64] ATLAS collaboration, Performance of missing transverse momentum reconstruction for the rst proton-proton collisions at at p s = 13 TeV, [65] ATLAS collaboration, Measurement of the top quark-pair production cross section with s = 7 TeV, Eur. Phys. J. C 71 (2011) 1577 [arXiv:1012.1792] [74] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. [75] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. at ps = 8 TeV, Phys. Rev. D 93 (2016) 112009 [arXiv:1507.07129] [INSPIRE]. [76] CMS collaboration, Search for pair-produced vectorlike B quarks in proton-proton collisions at ps = 13 TeV, JHEP 08 (2017) 073 [arXiv:1705.10967] [INSPIRE]. [77] CMS collaboration, Search for top quark partners with charge 5=3 in proton-proton collisions [78] ATLAS collaboration, ATLAS computing acknowledgements 2016{2017, ATL-GEN-PUB-2016-002 (2016). M. Aaboud137d, G. Aad88, B. Abbott115, O. Abdinov12; , B. Abeloos119, S.H. Abidi161, O.S. AbouZeid139, N.L. Abraham151, H. Abramowicz155, H. Abreu154, R. Abreu118, Y. Abulaiti148a;148b, B.S. Acharya167a;167b;a, S. Adachi157, L. Adamczyk41a, J. Adelman110, M. Adersberger102, T. Adye133, A.A. A older139, Y. A k154, T. Agatonovic-Jovin14, C. Agheorghiesei28c, J.A. Aguilar-Saavedra128a;128f, S.P. Ahlen24, F. Ahmadov68;b, G. Aielli135a;135b, S. Akatsuka71, H. Akerstedt148a;148b, T.P.A. Akesson84, E. Akilli52, A.V. Akimov98, G.L. Alberghi22a;22b, J. Albert172, P. Albicocco50, M.J. Alconada Verzini74, S.C. Alderweireldt108, M. Aleksa32, I.N. Aleksandrov68, C. Alexa28b, G. Alexander155, T. Alexopoulos10, M. Alhroob115, B. Ali130, M. Aliev76a;76b, G. Alimonti94a, J. Alison33, S.P. Alkire38, B.M.M. Allbrooke151, B.W. Allen118, P.P. Allport19, A. Aloisio106a;106b, A. Alonso39, F. Alonso74, C. Alpigiani140, A.A. Alshehri56, M.I. Alstaty88, B. Alvarez Gonzalez32, D. Alvarez Piqueras170, M.G. Alviggi106a;106b, B.T. Amadio16, Y. Amaral Coutinho26a, C. Amelung25, D. Amidei92, S.P. Amor Dos Santos128a;128c, S. Amoroso32, G. Amundsen25, C. Anastopoulos141, L.S. Ancu52, N. Andari19, T. Andeen11, C.F. Anders60b, J.K. Anders77, K.J. Anderson33, A. Andreazza94a;94b, V. Andrei60a, S. Angelidakis37, I. Angelozzi109, A. Angerami38, A.V. Anisenkov111;c, N. Anjos13, A. Annovi126a;126b, C. Antel60a, M. Antonelli50, A. Antonov100; , D.J. Antrim166, F. Anulli134a, M. Aoki69, L. Aperio Bella32, G. Arabidze93, Y. Arai69, J.P. Araque128a, V. Araujo Ferraz26a, A.T.H. Arce48, R.E. Ardell80, F.A. Arduh74, J-F. Arguin97, S. Argyropoulos66, M. Arik20a, A.J. Armbruster32, L.J. Armitage79, O. Arnaez161, H. Arnold51, M. Arratia30, O. Arslan23, A. Artamonov99, G. Artoni122, S. Artz86, S. Asai157, N. Asbah45, A. Ashkenazi155, L. Asquith151, K. Assamagan27, R. Astalos146a, M. Atkinson169, N.B. Atlay143, K. Augsten130, G. Avolio32, B. Axen16, M.K. Ayoub119, G. Azuelos97;d, A.E. Baas60a, M.J. Baca19, H. Bachacou138, K. Bachas76a;76b, M. Backes122, P. Bagnaia134a;134b, M. Bahmani42, H. Bahrasemani144, J.T. Baines133, M. Bajic39, O.K. Baker179, E.M. Baldin111;c, P. Balek175, F. Balli138, W.K. Balunas124, E. Banas42, A. Bandyopadhyay23, Sw. Banerjee176;e, A.A.E. Bannoura178, L. Barak155, E.L. Barberio91, D. Barberis53a;53b, M. Barbero88, T. Barillari103, M-S Barisits32, J.T. Barkeloo118, T. Barklow145, N. Barlow30, S.L. Barnes36c, B.M. Barnett133, R.M. Barnett16, Z. Barnovska-Blenessy36a, A. Baroncelli136a, G. Barone25, A.J. Barr122, L. Barranco Navarro170, F. Barreiro85, J. Barreiro Guimar~aes da Costa35a, R. Bartoldus145, A.E. Barton75, P. Bartos146a, A. Basalaev125, A. Bassalat119;f, R.L. Bates56, S.J. Batista161, J.R. Batley30, M. Battaglia139, M. Bauce134a;134b, F. Bauer138, H.S. Bawa145;g, J.B. Beacham113, M.D. Beattie75, T. Beau83, P.H. Beauchemin165, P. Bechtle23, H.P. Beck18;h, H.C. Beck57, K. Becker122, M. Becker86, C. Becot112, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov68, M. Bedognetti109, C.P. Bee150, T.A. Beermann32, M. Begalli26a, M. Begel27, J.K. Behr45, A.S. Bell81, G. Bella155, L. Bellagamba22a, A. Bellerive31, M. Bellomo154, K. Belotskiy100, O. Beltramello32, N.L. Belyaev100, O. Benary155; , D. Benchekroun137a, M. Bender102, K. Bendtz148a;148b, N. Benekos10, Y. Benhammou155, E. Benhar Noccioli179, J. Benitez66, D.P. Benjamin48, M. Benoit52, J.R. Bensinger25, S. Bentvelsen109, L. Beresford122, M. Beretta50, D. Berge109, E. Bergeaas Kuutmann168, N. Berger5, J. Beringer16, S. Berlendis58, N.R. Bernard89, G. Bernardi83, C. Bernius145, F.U. Bernlochner23, T. Berry80, P. Berta86, C. Bertella35a, G. Bertoli148a;148b, F. Bertolucci126a;126b, I.A. Bertram75, C. Bertsche45, D. Bertsche115, G.J. Besjes39, O. Bessidskaia Bylund148a;148b, M. Bessner45, N. Besson138, A. Bethani87, S. Bethke103, A.J. Bevan79, J. Beyer103, R.M. Bianchi127, O. Biebel102, D. Biedermann17, R. Bielski87, K. Bierwagen86, N.V. Biesuz126a;126b, M. Biglietti136a, T.R.V. Billoud97, H. Bilokon50, M. Bindi57, A. Bingul20b, C. Bini134a;134b, S. Biondi22a;22b, T. Bisanz57, C. Bittrich47, D.M. Bjergaard48, J.E. Black145, K.M. Black24, R.E. Blair6, T. Blazek146a, I. Bloch45, C. Blocker25, A. Blue56, W. Blum86; , U. Blumenschein79, S. Blunier34a, G.J. Bobbink109, V.S. Bobrovnikov111;c, S.S. Bocchetta84, A. Bocci48, C. Bock102, M. Boehler51, D. Boerner178, D. Bogavac102, A.G. Bogdanchikov111, C. Bohm148a, V. Boisvert80, P. Bokan168;i, T. Bold41a, A.S. Boldyrev101, A.E. Bolz60b, M. Bomben83, M. Bona79, M. Boonekamp138, A. Borisov132, G. Borissov75, J. Bortfeldt32, D. Bortoletto122, V. Bortolotto62a;62b;62c, HJEP10(27)4 E.V. Bouhova-Thacker75, D. Boumediene37, C. Bourdarios119, S.K. Boutle56, A. Boveia113, G.D. Carrillo-Montoya32, D. Casadei19, M.P. Casado13;j, M. Casolino13, D.W. Casper166, R. Castelijn109, V. Castillo Gimenez170, N.F. Castro128a;k, A. Catinaccio32, J.R. Catmore121, A. Cattai32, J. Caudron23, V. Cavaliere169, E. Cavallaro13, D. Cavalli94a, M. Cavalli-Sforza13, V. Cavasinni126a;126b, E. Celebi20a, F. Ceradini136a;136b, L. Cerda Alberich170, A.S. Cerqueira26b, A. Cerri151, L. Cerrito135a;135b, F. Cerutti16, A. Cervelli18, S.A. Cetin20d, A. Chafaq137a, D. Chakraborty110, S.K. Chan59, W.S. Chan109, Y.L. Chan62a, P. Chang169, J.D. Chapman30, D.G. Charlton19, C.C. Chau31, C.A. Chavez Barajas151, S. Che113, S. Cheatham167a;167c, A. Chegwidden93, S. Chekanov6, S.V. Chekulaev163a, G.A. Chelkov68;l, M.A. Chelstowska32, C. Chen67, H. Chen27, J. Chen36a, S. Chen35b, S. Chen157, X. Chen35c;m, Y. Chen70, H.C. Cheng92, H.J. Cheng35a, A. Cheplakov68, E. Cheremushkina132, R. Cherkaoui El Moursli137e, E. Cheu7, K. Cheung63, L. Chevalier138, V. Chiarella50, G. Chiarelli126a;126b, G. Chiodini76a, A.S. Chisholm32, A. Chitan28b, Y.H. Chiu172, M.V. Chizhov68, K. Choi64, A.R. Chomont37, S. Chouridou156, Y.S. Chow62a, V. Christodoulou81, M.C. Chu62a, J. Chudoba129, A.J. Chuinard90, J.J. Chwastowski42, L. Chytka117, A.K. Ciftci4a, D. Cinca46, V. Cindro78, I.A. Cioara23, C. Ciocca22a;22b, A. Ciocio16, F. Cirotto106a;106b, Z.H. Citron175, M. Citterio94a, M. Ciubancan28b, A. Clark52, B.L. Clark59, M.R. Clark38, P.J. Clark49, R.N. Clarke16, C. Clement148a;148b, Y. Coadou88, M. Cobal167a;167c, A. Coccaro52, J. Cochran67, L. Colasurdo108, B. Cole38, A.P. Colijn109, J. Collot58, T. Colombo166, P. Conde Muin~o128a;128b, E. Coniavitis51, S.H. Connell147b, I.A. Connelly87, S. Constantinescu28b, G. Conti32, F. Conventi106a;n, M. Cooke16, A.M. Cooper-Sarkar122, F. Cormier171, K.J.R. Cormier161, M. Corradi134a;134b, F. Corriveau90;o, A. Cortes-Gonzalez32, G. Cortiana103, G. Costa94a, M.J. Costa170, D. Costanzo141, G. Cottin30, G. Cowan80, B.E. Cox87, K. Cranmer112, S.J. Crawley56, R.A. Creager124, G. Cree31, S. Crepe-Renaudin58, F. Crescioli83, W.A. Cribbs148a;148b, M. Cristinziani23, V. Croft108, G. Crosetti40a;40b, A. Cueto85, T. Cuhadar Donszelmann141, A.R. Cukierman145, J. Cummings179, M. Curatolo50, J. Cuth86, S. Czekierda42, P. Czodrowski32, G. D'amen22a;22b, S. D'Auria56, L. D'eramo83, M. D'Onofrio77, M.J. Da Cunha Sargedas De Sousa128a;128b, C. Da Via87, W. Dabrowski41a, T. Dado146a, T. Dai92, O. Dale15, F. Dallaire97, C. Dallapiccola89, M. Dam39, J.R. Dandoy124, M.F. Daneri29, N.P. Dang176, A.C. Daniells19, N.S. Dann87, M. Danninger171, M. Dano Ho mann138, V. Dao150, G. Darbo53a, S. Darmora8, J. Dassoulas3, A. Dattagupta118, T. Daubney45, W. Davey23, HJEP10(27)4 R. de Asmundis106a, A. De Benedetti115, S. De Castro22a;22b, S. De Cecco83, N. De Groot108, A. De Salvo134a, U. De Sanctis135a;135b, A. De Santo151, K. De Vasconcelos Corga88, J.B. De Vivie De Regie119, R. Debbe27, C. Debenedetti139, D.V. Dedovich68, N. Dehghanian3, I. Deigaard109, M. Del Gaudio40a;40b, J. Del Peso85, D. Delgove119, F. Deliot138, C.M. Delitzsch7, A. Dell'Acqua32, L. Dell'Asta24, M. Dell'Orso126a;126b, M. Della Pietra106a;106b, D. della Volpe52, M. Delmastro5, C. Delporte119, P.A. Delsart58, D.A. DeMarco161, S. Demers179, M. Demichev68, A. Demilly83, S.P. Denisov132, D. Denysiuk138, D. Derendarz42, J.E. Derkaoui137d, F. Derue83, P. Dervan77, K. Desch23, C. Deterre45, K. Dette161, M.R. Devesa29, P.O. Deviveiros32, A. Dewhurst133, S. Dhaliwal25, F.A. Di Bello52, A. Di Ciaccio135a;135b, L. Di Ciaccio5, W.K. Di Clemente124, C. Di Donato106a;106b, A. Di Girolamo32, B. Di Girolamo32, B. Di Micco136a;136b, R. Di Nardo32, K.F. Di Petrillo59, A. Di Simone51, R. Di Sipio161, D. Di Valentino31, C. Diaconu88, M. Diamond161, F.A. Dias39, M.A. Diaz34a, E.B. Diehl92, J. Dietrich17, S. D ez Cornell45, A. Dimitrievska14, J. Dingfelder23, P. Dita28b, S. Dita28b, F. Dittus32, F. Djama88, T. Djobava54b, J.I. Djuvsland60a, M.A.B. do Vale26c, D. Dobos32, M. Dobre28b, C. Doglioni84, J. Dolejsi131, Z. Dolezal131, M. Donadelli26d, S. Donati126a;126b, P. Dondero123a;123b, J. Donini37, J. Dopke133, A. Doria106a, M.T. Dova74, A.T. Doyle56, E. Drechsler57, M. Dris10, Y. Du36b, J. Duarte-Campderros155, A. Dubreuil52, E. Duchovni175, G. Duckeck102, A. Ducourthial83, O.A. Ducu97;p, D. Duda109, A. Dudarev32, A.Chr. Dudder86, E.M. Du eld16, L. Du ot119, M. Duhrssen32, M. Dumancic175, A.E. Dumitriu28b, A.K. Duncan56, M. Dunford60a, H. Duran Yildiz4a, M. Duren55, A. Durglishvili54b, D. Duschinger47, B. Dutta45, M. Dyndal45, B.S. Dziedzic42, C. Eckardt45, K.M. Ecker103, R.C. Edgar92, T. Eifert32, G. Eigen15, K. Einsweiler16, T. Ekelof168, M. El Kacimi137c, R. El Kossei 88, V. Ellajosyula88, M. Ellert168, S. Elles5, F. Ellinghaus178, A.A. Elliot172, N. Ellis32, J. Elmsheuser27, M. Elsing32, D. Emeliyanov133, Y. Enari157, O.C. Endner86, J.S. Ennis173, J. Erdmann46, A. Ereditato18, M. Ernst27, S. Errede169, M. Escalier119, C. Escobar170, B. Esposito50, O. Estrada Pastor170, A.I. Etienvre138, E. Etzion155, H. Evans64, A. Ezhilov125, M. Ezzi137e, F. Fabbri22a;22b, L. Fabbri22a;22b, V. Fabiani108, G. Facini81, R.M. Fakhrutdinov132, S. Falciano134a, R.J. Falla81, J. Faltova32, Y. Fang35a, M. Fanti94a;94b, A. Farbin8, A. Farilla136a, C. Farina127, E.M. Farina123a;123b, T. Farooque93, S. Farrell16, S.M. Farrington173, P. Farthouat32, F. Fassi137e, P. Fassnacht32, D. Fassouliotis9, M. Faucci Giannelli80, A. Favareto53a;53b, W.J. Fawcett122, L. Fayard119, O.L. Fedin125;q, W. Fedorko171, S. Feigl121, L. Feligioni88, C. Feng36b, E.J. Feng32, H. Feng92, M.J. Fenton56, A.B. Fenyuk132, L. Feremenga8, P. Fernandez Martinez170, S. Fernandez Perez13, J. Ferrando45, A. Ferrari168, P. Ferrari109, R. Ferrari123a, D.E. Ferreira de Lima60b, A. Ferrer170, D. Ferrere52, C. Ferretti92, F. Fiedler86, A. Filipcic78, M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172, K.D. Finelli152, M.C.N. Fiolhais128a;128c;r, L. Fiorini170, A. Fischer2, C. Fischer13, J. Fischer178, W.C. Fisher93, N. Flaschel45, I. Fleck143, P. Fleischmann92, R.R.M. Fletcher124, T. Flick178, B.M. Flierl102, L.R. Flores Castillo62a, M.J. Flowerdew103, G.T. Forcolin87, A. Formica138, F.A. Forster13, A. Forti87, A.G. Foster19, D. Fournier119, H. Fox75, S. Fracchia141, P. Francavilla83, M. Franchini22a;22b, S. Franchino60a, D. Francis32, L. Franconi121, M. Franklin59, M. Frate166, M. Fraternali123a;123b, D. Freeborn81, S.M. Fressard-Batraneanu32, B. Freund97, D. Froidevaux32, J.A. Frost122, C. Fukunaga158, T. Fusayasu104, J. Fuster170, C. Gabaldon58, O. Gabizon154, A. Gabrielli22a;22b, A. Gabrielli16, G.P. Gach41a, S. Gadatsch32, S. Gadomski80, G. Gagliardi53a;53b, L.G. Gagnon97, C. Galea108, B. Galhardo128a;128c, E.J. Gallas122, B.J. Gallop133, P. Gallus130, G. Galster39, K.K. Gan113, S. Ganguly37, Y. Gao77, Y.S. Gao145;g, F.M. Garay Walls34a, C. Garc a170, J.E. Garc a Navarro170, J.A. Garc a Pascual35a, M. Garcia-Sciveres16, R.W. Gardner33, N. Garelli145, V. Garonne121, A. Gascon Bravo45, K. Gasnikova45, C. Gatti50, A. Gaudiello53a;53b, G. Gaudio123a, I.L. Gavrilenko98, C. Gay171, G. Gaycken23, E.N. Gazis10, C.N.P. Gee133, J. Geisen57, M. Geisen86, M.P. Geisler60a, K. Gellerstedt148a;148b, C. Gemme53a, M.H. Genest58, C. Geng92, S. Gentile134a;134b, HJEP10(27)4 M. Ghneimat23, B. Giacobbe22a, S. Giagu134a;134b, N. Giangiacomi22a;22b, P. Giannetti126a;126b, S.M. Gibson80, M. Gignac171, M. Gilchriese16, D. Gillberg31, G. Gilles178, D.M. Gingrich3;d, M.P. Giordani167a;167c, F.M. Giorgi22a, P.F. Giraud138, P. Giromini59, G. Giugliarelli167a;167c, D. Giugni94a, F. Giuli122, C. Giuliani103, M. Giulini60b, B.K. Gjelsten121, S. Gkaitatzis156, I. Gkialas9;s, E.L. Gkougkousis13, P. Gkountoumis10, L.K. Gladilin101, C. Glasman85, J. Glatzer13, P.C.F. Glaysher45, A. Glazov45, M. Goblirsch-Kolb25, J. Godlewski42, S. Goldfarb91, T. Golling52, D. Golubkov132, A. Gomes128a;128b;128d, R. Goncalo128a, R. Goncalves Gama26a, J. Goncalves Pinto Firmino Da Costa138, G. Gonella51, L. Gonella19, A. Gongadze68, S. Gonzalez de la Hoz170, S. Gonzalez-Sevilla52, L. Goossens32, P.A. Gorbounov99, H.A. Gordon27, I. Gorelov107, B. Gorini32, E. Gorini76a;76b, A. Gorisek78, A.T. Goshaw48, C. Gossling46, M.I. Gostkin68, C.A. Gottardo23, C.R. Goudet119, D. Goujdami137c, A.G. Goussiou140, N. Govender147b;t, E. Gozani154, L. Graber57, I. Grabowska-Bold41a, P.O.J. Gradin168, J. Gramling166, E. Gramstad121, S. Grancagnolo17, V. Gratchev125, P.M. Gravila28f, C. Gray56, H.M. Gray16, Z.D. Greenwood82;u, C. Grefe23, K. Gregersen81, I.M. Gregor45, P. Grenier145, K. Grevtsov5, J. Gri ths8, A.A. Grillo139, K. Grimm75, S. Grinstein13;v, Ph. Gris37, J.-F. Grivaz119, S. Groh86, E. Gross175, J. Grosse-Knetter57, G.C. Grossi82, Z.J. Grout81, A. Grummer107, L. Guan92, W. Guan176, J. Guenther65, F. Guescini163a, D. Guest166, O. Gueta155, B. Gui113, E. Guido53a;53b, T. Guillemin5, S. Guindon2, U. Gul56, C. Gumpert32, J. Guo36c, W. Guo92, Y. Guo36a, R. Gupta43, S. Gupta122, G. Gustavino115, B.J. Gutelman154, P. Gutierrez115, N.G. Gutierrez Ortiz81, C. Gutschow81, C. Guyot138, M.P. Guzik41a, C. Gwenlan122, C.B. Gwilliam77, A. Haas112, C. Haber16, H.K. Hadavand8, N. Haddad137e, A. Hadef88, S. Hagebock23, M. Hagihara164, H. Hakobyan180; , M. Haleem45, J. Haley116, G. Halladjian93, G.D. Hallewell88, K. Hamacher178, P. Hamal117, K. Hamano172, A. Hamilton147a, G.N. Hamity141, P.G. Hamnett45, L. Han36a, S. Han35a, K. Hanagaki69;w, K. Hanawa157, M. Hance139, B. Haney124, P. Hanke60a, J.B. Hansen39, J.D. Hansen39, M.C. Hansen23, P.H. Hansen39, K. Hara164, A.S. Hard176, T. Harenberg178, F. Hariri119, S. Harkusha95, R.D. Harrington49, P.F. Harrison173, N.M. Hartmann102, Y. Hasegawa142, A. Hasib49, S. Hassani138, S. Haug18, R. Hauser93, L. Hauswald47, L.B. Havener38, M. Havranek130, C.M. Hawkes19, R.J. Hawkings32, D. Hayakawa159, D. Hayden93, C.P. Hays122, J.M. Hays79, H.S. Hayward77, S.J. Haywood133, S.J. Head19, T. Heck86, V. Hedberg84, L. Heelan8, S. Heer23, K.K. Heidegger51, S. Heim45, T. Heim16, B. Heinemann45;x, J.J. Heinrich102, L. Heinrich112, C. Heinz55, J. Hejbal129, L. Helary32, A. Held171, S. Hellman148a;148b, C. Helsens32, R.C.W. Henderson75, Y. Heng176, S. Henkelmann171, A.M. Henriques Correia32, S. Henrot-Versille119, G.H. Herbert17, H. Herde25, V. Herget177, Y. Hernandez Jimenez147c, H. Herr86, G. Herten51, R. Hertenberger102, L. Hervas32, T.C. Herwig124, G.G. Hesketh81, N.P. Hessey163a, J.W. Hetherly43, S. Higashino69, E. Higon-Rodriguez170, K. Hildebrand33, E. Hill172, J.C. Hill30, K.H. Hiller45, S.J. Hillier19, M. Hils47, I. Hinchli e16, M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49, J. Hobbs150, N. Hod163a, M.C. Hodgkinson141, P. Hodgson141, A. Hoecker32, M.R. Hoeferkamp107, F. Hoenig102, D. Hohn23, T.R. Holmes33, M. Homann46, S. Honda164, T. Honda69, T.M. Hong127, B.H. Hooberman169, W.H. Hopkins118, Y. Horii105, A.J. Horton144, J-Y. Hostachy58, S. Hou153, A. Hoummada137a, J. Howarth87, J. Hoya74, M. Hrabovsky117, J. Hrdinka32, I. Hristova17, J. Hrivnac119, T. Hryn'ova5, A. Hrynevich96, P.J. Hsu63, S.-C. Hsu140, Q. Hu36a, S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, F. Huegging23, T.B. Hu man122, E.W. Hughes38, G. Hughes75, M. Huhtinen32, P. Huo150, N. Huseynov68;b, J. Huston93, J. Huth59, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143, L. Iconomidou-Fayard119, Z. Idrissi137e, P. Iengo32, O. Igonkina109;y, T. Iizawa174, Y. Ikegami69, M. Ikeno69, Y. Ilchenko11;z, D. Iliadis156, N. Ilic145, G. Introzzi123a;123b, P. Ioannou9; , M. Iodice136a, K. Iordanidou38, V. Ippolito59, M.F. Isacson168, N. Ishijima120, M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a, F. Ito164, J.M. Iturbe Ponce62a, R. Iuppa162a;162b, H. Iwasaki69, J.M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1, R.M. Jacobs23, V. Jain2, K.B. Jakobi86, K. Jakobs51, S. Jakobsen65, T. Jakoubek129, HJEP10(27)4 N. Javadov68;b, T. Javurek51, M. Javurkova51, F. Jeanneau138, L. Jeanty16, J. Jejelava54a;aa, F. Khalil-zada12, A. Khanov116, A.G. Kharlamov111;c, T. Kharlamova111;c, A. Khodinov160, T.J. Khoo52, V. Khovanskiy99; , E. Khramov68, J. Khubua54b;ac, S. Kido70, C.R. Kilby80, H.Y. Kim8, S.H. Kim164, Y.K. Kim33, N. Kimura156, O.M. Kind17, B.T. King77, D. Kirchmeier47, J. Kirk133, A.E. Kiryunin103, T. Kishimoto157, D. Kisielewska41a, V. Kitali45, O. Kivernyk5, E. Kladiva146b, T. Klapdor-Kleingrothaus51, M.H. Klein38, M. Klein77, U. Klein77, K. Kleinknecht86, P. Klimek110, A. Klimentov27, R. Klingenberg46, T. Klingl23, T. Klioutchnikova32, E.-E. Kluge60a, P. Kluit109, S. Kluth103, E. Kneringer65, E.B.F.G. Knoops88, A. Knue103, A. Kobayashi157, D. Kobayashi159, T. Kobayashi157, M. Kobel47, M. Kocian145, P. Kodys131, T. Ko as31, E. Ko eman109, N.M. Kohler103, T. Koi145, M. Kolb60b, I. Koletsou5, A.A. Komar98; , T. Kondo69, N. Kondrashova36c, K. Koneke51, A.C. Konig108, T. Kono69;ad, R. Konoplich112;ae, N. Konstantinidis81, R. Kopeliansky64, S. Koperny41a, A.K. Kopp51, K. Korcyl42, K. Kordas156, A. Korn81, A.A. Korol111;c, I. Korolkov13, E.V. Korolkova141, O. Kortner103, S. Kortner103, T. Kosek131, V.V. Kostyukhin23, A. Kotwal48, A. Koulouris10, A. Kourkoumeli-Charalampidi123a;123b, C. Kourkoumelis9, E. Kourlitis141, V. Kouskoura27, A.B. Kowalewska42, R. Kowalewski172, T.Z. Kowalski41a, C. Kozakai157, W. Kozanecki138, A.S. Kozhin132, V.A. Kramarenko101, G. Kramberger78, D. Krasnopevtsev100, M.W. Krasny83, A. Krasznahorkay32, D. Krauss103, J.A. Kremer41a, J. Kretzschmar77, K. Kreutzfeldt55, P. Krieger161, K. Krizka33, K. Kroeninger46, H. Kroha103, J. Kroll129, J. Kroll124, J. Kroseberg23, J. Krstic14, U. Kruchonak68, H. Kruger23, N. Krumnack67, M.C. Kruse48, T. Kubota91, H. Kucuk81, S. Kuday4b, J.T. Kuechler178, S. Kuehn32, A. Kugel60a, F. Kuger177, T. Kuhl45, V. Kukhtin68, R. Kukla88, Y. Kulchitsky95, S. Kuleshov34b, Y.P. Kulinich169, M. Kuna134a;134b, T. Kunigo71, A. Kupco129, T. Kupfer46, O. Kuprash155, H. Kurashige70, L.L. Kurchaninov163a, Y.A. Kurochkin95, M.G. Kurth35a, V. Kus129, E.S. Kuwertz172, M. Kuze159, J. Kvita117, T. Kwan172, D. Kyriazopoulos141, A. La Rosa103, J.L. La Rosa Navarro26d, L. La Rotonda40a;40b, F. La Ru a40a;40b, C. Lacasta170, F. Lacava134a;134b, J. Lacey45, H. Lacker17, D. Lacour83, E. Ladygin68, R. Lafaye5, B. Laforge83, T. Lagouri179, S. Lai57, S. Lammers64, W. Lampl7, E. Lancon27, U. Landgraf51, M.P.J. Landon79, M.C. Lanfermann52, V.S. Lang60a, J.C. Lange13, R.J. Langenberg32, A.J. Lankford166, F. Lanni27, K. Lantzsch23, A. Lanza123a, A. Lapertosa53a;53b, S. Laplace83, J.F. Laporte138, T. Lari94a, F. Lasagni Manghi22a;22b, M. Lassnig32, T.S. Lau62a, P. Laurelli50, W. Lavrijsen16, A.T. Law139, P. Laycock77, T. Lazovich59, M. Lazzaroni94a;94b, B. Le91, O. Le Dortz83, E. Le Guirriec88, E.P. Le Quilleuc138, M. LeBlanc172, T. LeCompte6, F. Ledroit-Guillon58, C.A. Lee27, G.R. Lee133;af, S.C. Lee153, L. Lee59, B. Lefebvre90, G. Lefebvre83, M. Lefebvre172, F. Legger102, C. Leggett16, G. Lehmann Miotto32, X. Lei7, W.A. Leight45, M.A.L. Leite26d, R. Leitner131, D. Lellouch175, B. Lemmer57, K.J.C. Leney81, T. Lenz23, B. Lenzi32, R. Leone7, S. Leone126a;126b, C. Leonidopoulos49, G. Lerner151, C. Leroy97, A.A.J. Lesage138, C.G. Lester30, M. Levchenko125, HJEP10(27)4 H. Li150, L. Li36c, Q. Li35a, Q. Li36a, S. Li48, X. Li36c, Y. Li143, Z. Liang35a, B. Liberti135a, A. Madsen45, J. Maeda70, S. Maeland15, T. Maeno27, A.S. Maevskiy101, V. Magerl51, J. Mahlstedt109, C. Maiani119, C. Maidantchik26a, A.A. Maier103, T. Maier102, A. Maio128a;128b;128d, O. Majersky146a, S. Majewski118, Y. Makida69, N. Makovec119, B. Malaescu83, Pa. Malecki42, V.P. Maleev125, F. Malek58, U. Mallik66, D. Malon6, C. Malone30, S. Maltezos10, S. Malyukov32, J. Mamuzic170, G. Mancini50, I. Mandic78, J. Maneira128a;128b, L. Manhaes de Andrade Filho26b, J. Manjarres Ramos47, K.H. Mankinen84, A. Mann102, A. Manousos32, B. Mansoulie138, J.D. Mansour35a, R. Mantifel90, M. Mantoani57, S. Manzoni94a;94b, L. Mapelli32, G. Marceca29, L. March52, L. Marchese122, G. Marchiori83, M. Marcisovsky129, M. Marjanovic37, D.E. Marley92, F. Marroquim26a, S.P. Marsden87, Z. Marshall16, M.U.F Martensson168, S. Marti-Garcia170, C.B. Martin113, T.A. Martin173, V.J. Martin49, B. Martin dit Latour15, M. Martinez13;v, V.I. Martinez Outschoorn169, S. Martin-Haugh133, V.S. Martoiu28b, A.C. Martyniuk81, A. Marzin32, L. Masetti86, T. Mashimo157, R. Mashinistov98, J. Masik87, A.L. Maslennikov111;c, L. Massa135a;135b, P. Mastrandrea5, A. Mastroberardino40a;40b, T. Masubuchi157, P. Mattig178, J. Maurer28b, S.J. Max eld77, D.A. Maximov111;c, R. Mazini153, I. Maznas156, S.M. Mazza94a;94b, N.C. Mc Fadden107, G. Mc Goldrick161, S.P. Mc Kee92, A. McCarn92, R.L. McCarthy150, T.G. McCarthy103, L.I. McClymont81, E.F. McDonald91, J.A. Mcfayden32, G. Mchedlidze57, S.J. McMahon133, P.C. McNamara91, R.A. McPherson172;o, S. Meehan140, T.J. Megy51, S. Mehlhase102, A. Mehta77, T. Meideck58, K. Meier60a, B. Meirose44, D. Melini170;ai, B.R. Mellado Garcia147c, J.D. Mellenthin57, M. Melo146a, F. Meloni18, A. Melzer23, S.B. Menary87, L. Meng77, X.T. Meng92, A. Mengarelli22a;22b, S. Menke103, E. Meoni40a;40b, S. Mergelmeyer17, C. Merlassino18, P. Mermod52, L. Merola106a;106b, C. Meroni94a, F.S. Merritt33, A. Messina134a;134b, J. Metcalfe6, A.S. Mete166, C. Meyer124, J-P. Meyer138, J. Meyer109, H. Meyer Zu Theenhausen60a, F. Miano151, R.P. Middleton133, S. Miglioranzi53a;53b, L. Mijovic49, G. Mikenberg175, M. Mikestikova129, M. Mikuz78, M. Milesi91, A. Milic161, D.A. Millar79, D.W. Miller33, C. Mills49, A. Milov175, D.A. Milstead148a;148b, A.A. Minaenko132, Y. Minami157, I.A. Minashvili68, A.I. Mincer112, B. Mindur41a, M. Mineev68, Y. Minegishi157, Y. Ming176, L.M. Mir13, K.P. Mistry124, T. Mitani174, J. Mitrevski102, V.A. Mitsou170, A. Miucci18, P.S. Miyagawa141, A. Mizukami69, J.U. Mjornmark84, T. Mkrtchyan180, M. Mlynarikova131, T. Moa148a;148b, K. Mochizuki97, P. Mogg51, S. Mohapatra38, S. Molander148a;148b, R. Moles-Valls23, M.C. Mondragon93, K. Monig45, J. Monk39, E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, F. Monticelli74, S. Monzani94a;94b, R.W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llacer32, P. Morettini53a, S. Morgenstern32, D. Mori144, T. Mori157, M. Morii59, M. Morinaga174, V. Morisbak121, A.K. Morley32, G. Mornacchi32, J.D. Morris79, L. Morvaj150, P. Moschovakos10, M. Mosidze54b, H.J. Moss141, J. Moss145;aj , K. Motohashi159, R. Mount145, E. Mountricha27, E.J.W. Moyse89, S. Muanza88, F. Mueller103, J. Mueller127, HJEP10(27)4 W.J. Murray173;133, H. Musheghyan32, M. Muskinja78, A.G. Myagkov132;ak, M. Myska130, B.P. Nachman16, O. Nackenhorst52, K. Nagai122, R. Nagai69;ad, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51, E. Nagy88, A.M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114, R.F. Naranjo Garcia45, R. Narayan11, D.I. Narrias Villar60a, I. Naryshkin125, T. Naumann45, G. Navarro21, R. Nayyar7, H.A. Neal92, P.Yu. Nechaeva98, T.J. Neep138, A. Negri123a;123b, M. Negrini22a, S. Nektarijevic108, C. Nellist119, A. Nelson166, M.E. Nelson122, S. Nemecek129, P. Nemethy112, M. Nessi32;al, M.S. Neubauer169, M. Neumann178, P.R. Newman19, T.Y. Ng62c, T. Nguyen Manh97, R.B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132;ak, I. Nikolic-Audit83, K. Nikolopoulos19, J.K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, N. Nishu35c, R. Nisius103, I. Nitsche46, T. Nitta174, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31, M.A. Nomura27, T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47, S. Nowak103, M. Nozaki69, L. Nozka117, K. Ntekas166, E. Nurse81, F. Nuti91, K. O'connor25, D.C. O'Neil144, A.A. O'Rourke45, V. O'Shea56, F.G. Oakham31;d, H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J.P. Ochoa-Ricoux34a, S. Oda73, S. Odaka69, A. Oh87, S.H. Oh48, C.C. Ohm16, H. Ohman168, H. Oide53a;53b, H. Okawa164, Y. Okumura157, T. Okuyama69, A. Olariu28b, L.F. Oleiro Seabra128a, S.A. Olivares Pino34a, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42, A. Onofre128a;128e, K. Onogi105, P.U.E. Onyisi11;z, H. Oppen121, M.J. Oreglia33, Y. Oren155, D. Orestano136a;136b, N. Orlando62b, R.S. Orr161, B. Osculati53a;53b; , R. Ospanov36a, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d, F. Ould-Saada121, A. Ouraou138, K.P. Oussoren109, Q. Ouyang35a, M. Owen56, R.E. Owen19, V.E. Ozcan20a, N. Ozturk8, K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138, C. Padilla Aranda13, S. Pagan Griso16, M. Paganini179, F. Paige27, G. Palacino64, S. Palazzo40a;40b, S. Palestini32, M. Palka41b, D. Pallin37, E.St. Panagiotopoulou10, I. Panagoulias10, C.E. Pandini126a;126b, J.G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52, Th.D. Papadopoulou10, K. Papageorgiou9;s, A. Paramonov6, D. Paredes Hernandez179, A.J. Parker75, M.A. Parker30, K.A. Parker45, F. Parodi53a;53b, J.A. Parsons38, U. Parzefall51, V.R. Pascuzzi161, J.M. Pasner139, E. Pasqualucci134a, S. Passaggio53a, Fr. Pastore80, S. Pataraia86, J.R. Pater87, T. Pauly32, B. Pearson103, S. Pedraza Lopez170, R. Pedro128a;128b, S.V. Peleganchuk111;c, O. Penc129, C. Peng35a, H. Peng36a, J. Penwell64, B.S. Peralva26b, M.M. Perego138, D.V. Perepelitsa27, F. Peri17, L. Perini94a;94b, H. Pernegger32, S. Perrella106a;106b, R. Peschke45, V.D. Peshekhonov68; , K. Peters45, R.F.Y. Peters87, B.A. Petersen32, T.C. Petersen39, E. Petit58, A. Petridis1, C. Petridou156, P. Petro 119, E. Petrolo134a, M. Petrov122, F. Petrucci136a;136b, N.E. Pettersson89, A. Peyaud138, R. Pezoa34b, F.H. Phillips93, P.W. Phillips133, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79, M.A. Pickering122, R. Piegaia29, J.E. Pilcher33, A.D. Pilkington87, A.W.J. Pin87, M. Pinamonti135a;135b, J.L. Pinfold3, H. Pirumov45, M. Pitt175, L. Plazak146a, M.-A. Pleier27, V. Pleskot86, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen84, R. Poggi123a;123b, L. Poggioli119, I. Pogrebnyak93, D. Pohl23, G. Polesello123a, A. Poley45, A. Policicchio40a;40b, R. Polifka32, A. Polini22a, C.S. Pollard56, V. Polychronakos27, K. Pommes32, D. Ponomarenko100, L. Pontecorvo134a, G.A. Popeneciu28d, S. Pospisil130, K. Potamianos16, I.N. Potrap68, C.J. Potter30, T. Poulsen84, J. Poveda32, M.E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16, S. Prell67, D. Price87, M. Primavera76a, S. Prince90, N. Proklova100, K. Proko ev62c, F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, A. Puri169, P. Puzo119, J. Qian92, G. Qin56, Y. Qin87, A. Quadt57, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121, V. Radeka27, V. Radescu122, S.K. Radhakrishnan150, P. Radlo 118, P. Rados91, F. Ragusa94a;94b, G. Rahal181, J.A. Raine87, S. Rajagopalan27, C. Rangel-Smith168, T. Rashid119, S. Raspopov5, M.G. Ratti94a;94b, D.M. Rauch45, F. Rauscher102, S. Rave86, I. Ravinovich175, J.H. Rawling87, M. Raymond32, A.L. Read121, N.P. Readio 58, M. Reale76a;76b, D.M. Rebuzzi123a;123b, A. Redelbach177, G. Redlinger27, R. Reece139, R.G. Reed147c, K. Reeves44, L. Rehnisch17, J. Reichert124, A. Reiss86, C. Rembser32, H. Ren35a, M. Rescigno134a, S. Resconi94a, HJEP10(27)4 R. Richter103, S. Richter81, E. Richter-Was41b, O. Ricken23, M. Ridel83, P. Rieck103, C.J. Riegel178, J. Rieger57, O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a;123b, M. Rimoldi18, L. Rinaldi22a, G. Ripellino149, B. Ristic32, E. Ritsch32, I. Riu13, F. Rizatdinova116, E. Rizvi79, C. Rizzi13, R.T. Roberts87, S.H. Robertson90;o, A. Robichaud-Veronneau90, D. Robinson30, J.E.M. Robinson45, A. Robson56, E. Rocco86, C. Roda126a;126b, Y. Rodina88;am, S. Rodriguez Bosca170, A. Rodriguez Perez13, D. Rodriguez Rodriguez170, S. Roe32, C.S. Rogan59, O. R hne121, J. Rolo 59, A. Romaniouk100, M. Romano22a;22b, S.M. Romano Saez37, E. Romero Adam170, N. Rompotis77, M. Ronzani51, L. Roos83, S. Rosati134a, K. Rosbach51, P. Rose139, N.-A. Rosien57, E. Rossi106a;106b, L.P. Rossi53a, J.H.N. Rosten30, R. Rosten140, M. Rotaru28b, J. Rothberg140, D. Rousseau119, A. Rozanov88, Y. Rozen154, X. Ruan147c, F. Rubbo145, F. Ruhr51, A. Ruiz-Martinez31, Z. Rurikova51, N.A. Rusakovich68, H.L. Russell90, J.P. Rutherfoord7, N. Ruthmann32, Y.F. Ryabov125, M. Rybar169, G. Rybkin119, S. Ryu6, A. Ryzhov132, G.F. Rzehorz57, A.F. Saavedra152, G. Sabato109, S. Sacerdoti29, H.F-W. Sadrozinski139, R. Sadykov68, F. Safai Tehrani134a, P. Saha110, M. Sahinsoy60a, M. Saimpert45, M. Saito157, T. Saito157, H. Sakamoto157, Y. Sakurai174, G. Salamanna136a;136b, J.E. Salazar Loyola34b, D. Salek109, P.H. Sales De Bruin168, D. Salihagic103, A. Salnikov145, J. Salt170, D. Salvatore40a;40b, F. Salvatore151, A. Salvucci62a;62b;62c, A. Salzburger32, D. Sammel51, D. Sampsonidis156, D. Sampsonidou156, J. Sanchez170, V. Sanchez Martinez170, A. Sanchez Pineda167a;167c, H. Sandaker121, R.L. Sandbach79, C.O. Sander45, M. Sandho 178, C. Sandoval21, D.P.C. Sankey133, M. Sannino53a;53b, Y. Sano105, A. Sansoni50, C. Santoni37, H. Santos128a, I. Santoyo Castillo151, A. Sapronov68, J.G. Saraiva128a;128d, B. Sarrazin23, O. Sasaki69, K. Sato164, E. Sauvan5, G. Savage80, P. Savard161;d, N. Savic103, C. Sawyer133, L. Sawyer82;u, J. Saxon33, C. Sbarra22a, A. Sbrizzi22a;22b, T. Scanlon81, D.A. Scannicchio166, J. Schaarschmidt140, P. Schacht103, B.M. Schachtner102, D. Schaefer32, L. Schaefer124, R. Schaefer45, J. Schae er86, S. Schaepe23, S. Schaetzel60b, U. Schafer86, A.C. Scha er119, D. Schaile102, R.D. Schamberger150, V.A. Schegelsky125, D. Scheirich131, M. Schernau166, C. Schiavi53a;53b, S. Schier139, L.K. Schildgen23, C. Schillo51, M. Schioppa40a;40b, S. Schlenker32, K.R. Schmidt-Sommerfeld103, K. Schmieden32, C. Schmitt86, S. Schmitt45, S. Schmitz86, U. Schnoor51, L. Schoe el138, A. Schoening60b, B.D. Schoenrock93, E. Schopf23, M. Schott86, J.F.P. Schouwenberg108, J. Schovancova32, S. Schramm52, N. Schuh86, A. Schulte86, M.J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher51, B.A. Schumm139, Ph. Schune138, A. Schwartzman145, T.A. Schwarz92, H. Schweiger87, Ph. Schwemling138, R. Schwienhorst93, J. Schwindling138, A. Sciandra23, G. Sciolla25, M. Scornajenghi40a;40b, F. Scuri126a;126b, F. Scutti91, J. Searcy92, P. Seema23, S.C. Seidel107, A. Seiden139, J.M. Seixas26a, G. Sekhniaidze106a, K. Sekhon92, S.J. Sekula43, N. Semprini-Cesari22a;22b, S. Senkin37, C. Serfon121, L. Serin119, L. Serkin167a;167b, M. Sessa136a;136b, R. Seuster172, H. Severini115, T. S ligoj78, F. Sforza165, A. Sfyrla52, E. Shabalina57, N.W. Shaikh148a;148b, L.Y. Shan35a, R. Shang169, J.T. Shank24, M. Shapiro16, P.B. Shatalov99, K. Shaw167a;167b, S.M. Shaw87, A. Shcherbakova148a;148b, C.Y. Shehu151, Y. Shen115, N. Sherafati31, P. Sherwood81, L. Shi153;an, S. Shimizu70, C.O. Shimmin179, M. Shimojima104, I.P.J. Shipsey122, S. Shirabe73, M. Shiyakova68;ao, J. Shlomi175, A. Shmeleva98, D. Shoaleh Saadi97, M.J. Shochet33, S. Shojaii94a, D.R. Shope115, S. Shrestha113, E. Shulga100, M.A. Shupe7, P. Sicho129, A.M. Sickles169, P.E. Sidebo149, E. Sideras Haddad147c, O. Sidiropoulou177, A. Sidoti22a;22b, F. Siegert47, Dj. Sijacki14, J. Silva128a;128d, S.B. Silverstein148a, V. Simak130, Lj. Simic14, S. Simion119, E. Simioni86, B. Simmons81, M. Simon86, P. Sinervo161, N.B. Sinev118, M. Sioli22a;22b, G. Siragusa177, I. Siral92, S.Yu. Sivoklokov101, J. Sjolin148a;148b, M.B. Skinner75, P. Skubic115, M. Slater19, T. Slavicek130, M. Slawinska42, K. Sliwa165, R. Slovak131, V. Smakhtin175, B.H. Smart5, J. Smiesko146a, N. Smirnov100, S.Yu. Smirnov100, Y. Smirnov100, L.N. Smirnova101;ap, O. Smirnova84, J.W. Smith57, M.N.K. Smith38, R.W. Smith38, M. Smizanska75, K. Smolek130, A.A. Snesarev98, I.M. Snyder118, S. Snyder27, R. Sobie172;o, F. Socher47, A. So er155, A. S gaard49, D.A. Soh153, G. Sokhrannyi78, C.A. Solans Sanchez32, HJEP10(27)4 O.V. Solovyanov132, V. Solovyev125, P. Sommer51, H. Son165, A. Sopczak130, D. Sosa60b, C.L. Sotiropoulou126a;126b, R. Soualah167a;167c, A.M. Soukharev111;c, D. South45, B.C. Sowden80, S. Spagnolo76a;76b, M. Spalla126a;126b, M. Spangenberg173, F. Spano80, D. Sperlich17, F. Spettel103, T.M. Spieker60a, R. Spighi22a, G. Spigo32, L.A. Spiller91, M. Spousta131, R.D. St. Denis56; , A. Stabile94a, R. Stamen60a, S. Stamm17, E. Stanecka42, R.W. Stanek6, C. Stanescu136a, M.M. Stanitzki45, B.S. Stapf109, S. Stapnes121, E.A. Starchenko132, G.H. Stark33, J. Stark58, S.H Stark39, P. Staroba129, P. Starovoitov60a, S. Starz32, R. Staszewski42, P. Steinberg27, B. Stelzer144, H.J. Stelzer32, O. Stelzer-Chilton163a, H. Stenzel55, G.A. Stewart56, M.C. Stockton118, M. Stoebe90, G. Stoicea28b, P. Stolte57, S. Stonjek103, A.R. Stradling8, A. Straessner47, M.E. Stramaglia18, J. Strandberg149, S. Strandberg148a;148b, M. Strauss115, P. Strizenec146b, R. Strohmer177, D.M. Strom118, R. Stroynowski43, A. Strubig49, S.A. Stucci27, B. Stugu15, N.A. Styles45, D. Su145, J. Su127, S. Suchek60a, Y. Sugaya120, M. Suk130, V.V. Sulin98, DMS Sultan162a;162b, S. Sultansoy4c, T. Sumida71, S. Sun59, X. Sun3, K. Suruliz151, C.J.E. Suster152, M.R. Sutton151, S. Suzuki69, M. Svatos129, M. Swiatlowski33, S.P. Swift2, I. Sykora146a, T. Sykora131, D. Ta51, K. Tackmann45, J. Taenzer155, A. Ta ard166, R. Ta rout163a, E. Tahirovic79, N. Taiblum155, H. Takai27, R. Takashima72, E.H. Takasugi103, T. Takeshita142, Y. Takubo69, M. Talby88, A.A. Talyshev111;c, J. Tanaka157, M. Tanaka159, R. Tanaka119, S. Tanaka69, R. Tanioka70, B.B. Tannenwald113, S. Tapia Araya34b, S. Tapprogge86, S. Tarem154, G.F. Tartarelli94a, P. Tas131, M. Tasevsky129, T. Tashiro71, E. Tassi40a;40b, A. Tavares Delgado128a;128b, Y. Tayalati137e, A.C. Taylor107, A.J. Taylor49, G.N. Taylor91, P.T.E. Taylor91, W. Taylor163b, P. Teixeira-Dias80, D. Temple144, H. Ten Kate32, P.K. Teng153, J.J. Teoh120, F. Tepel178, S. Terada69, K. Terashi157, J. Terron85, S. Terzo13, M. Testa50, R.J. Teuscher161;o, T. Theveneaux-Pelzer88, F. Thiele39, J.P. Thomas19, J. Thomas-Wilsker80, P.D. Thompson19, A.S. Thompson56, L.A. Thomsen179, E. Thomson124, M.J. Tibbetts16, R.E. Ticse Torres88, V.O. Tikhomirov98;aq, Yu.A. Tikhonov111;c, S. Timoshenko100, P. Tipton179, S. Tisserant88, K. Todome159, S. Todorova-Nova5, S. Todt47, J. Tojo73, S. Tokar146a, K. Tokushuku69, E. Tolley59, L. Tomlinson87, M. Tomoto105, L. Tompkins145;ar, K. Toms107, B. Tong59, P. Tornambe51, E. Torrence118, H. Torres47, E. Torro Pastor140, J. Toth88;as, F. Touchard88, D.R. Tovey141, C.J. Treado112, T. Trefzger177, F. Tresoldi151, A. Tricoli27, I.M. Trigger163a, S. Trincaz-Duvoid83, M.F. Tripiana13, W. Trischuk161, B. Trocme58, A. Trofymov45, C. Troncon94a, M. Trottier-McDonald16, M. Trovatelli172, L. Truong147b, M. Trzebinski42, A. Trzupek42, K.W. Tsang62a, J.C-L. Tseng122, P.V. Tsiareshka95, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze13, V. Tsiskaridze51, E.G. Tskhadadze54a, K.M. Tsui62a, I.I. Tsukerman99, V. Tsulaia16, S. Tsuno69, D. Tsybychev150, Y. Tu62b, A. Tudorache28b, V. Tudorache28b, T.T. Tulbure28a, A.N. Tuna59, S.A. Tupputi22a;22b, S. Turchikhin68, D. Turgeman175, I. Turk Cakir4b;at, R. Turra94a, P.M. Tuts38, G. Ucchielli22a;22b, I. Ueda69, M. Ughetto148a;148b, F. Ukegawa164, G. Unal32, A. Undrus27, G. Unel166, F.C. Ungaro91, Y. Unno69, C. Unverdorben102, J. Urban146b, P. Urquijo91, P. Urrejola86, G. Usai8, J. Usui69, L. Vacavant88, V. Vacek130, B. Vachon90, K.O.H. Vadla121, A. Vaidya81, C. Valderanis102, E. Valdes Santurio148a;148b, M. Valente52, S. Valentinetti22a;22b, A. Valero170, L. Valery13, S. Valkar131, A. Vallier5, J.A. Valls Ferrer170, W. Van Den Wollenberg109, H. van der Graaf109, P. van Gemmeren6, J. Van Nieuwkoop144, I. van Vulpen109, M.C. van Woerden109, M. Vanadia135a;135b, W. Vandelli32, A. Vaniachine160, P. Vankov109, G. Vardanyan180, R. Vari134a, E.W. Varnes7, C. Varni53a;53b, T. Varol43, D. Varouchas119, A. Vartapetian8, K.E. Varvell152, J.G. Vasquez179, G.A. Vasquez34b, F. Vazeille37, T. Vazquez Schroeder90, J. Veatch57, V. Veeraraghavan7, L.M. Veloce161, F. Veloso128a;128c, S. Veneziano134a, A. Ventura76a;76b, M. Venturi172, N. Venturi32, A. Venturini25, V. Vercesi123a, M. Verducci136a;136b, W. Verkerke109, A.T. Vermeulen109, J.C. Vermeulen109, M.C. Vetterli144;d, N. Viaux Maira34b, O. Viazlo84, I. Vichou169; , T. Vickey141, O.E. Vickey Boeriu141, G.H.A. Viehhauser122, S. Viel16, L. Vigani122, M. Villa22a;22b, M. Villaplana Perez94a;94b, E. Vilucchi50, M.G. Vincter31, V.B. Vinogradov68, A. Vishwakarma45, C. Vittori22a;22b, HJEP10(27)4 E. von Toerne23, V. Vorobel131, K. Vorobev100, M. Vos170, R. Voss32, J.H. Vossebeld77, N. Vranjes14, M. Vranjes Milosavljevic14, V. Vrba130, M. Vreeswijk109, R. Vuillermet32, I. Vukotic33, P. Wagner23, W. Wagner178, J. Wagner-Kuhr102, H. Wahlberg74, S. Wahrmund47, J. Walder75, R. Walker102, W. Walkowiak143, V. Wallangen148a;148b, C. Wang35b, C. Wang36b;au, F. Wang176, H. Wang16, H. Wang3, J. Wang45, J. Wang152, Q. Wang115, R. Wang6, S.M. Wang153, T. Wang38, W. Wang153;av, W. Wang36a, Z. Wang36c, C. Wanotayaroj118, A. Warburton90, C.P. Ward30, D.R. Wardrope81, A. Washbrook49, P.M. Watkins19, A.T. Watson19, M.F. Watson19, G. Watts140, S. Watts87, B.M. Waugh81, A.F. Webb11, S. Webb86, M.S. Weber18, S.W. Weber177, S.A. Weber31, J.S. Webster6, A.R. Weidberg122, B. Weinert64, J. Weingarten57, M. Weirich86, C. Weiser51, H. Weits109, P.S. Wells32, T. Wenaus27, T. Wengler32, S. Wenig32, N. Wermes23, M.D. Werner67, P. Werner32, M. Wessels60a, T.D. Weston18, K. Whalen118, N.L. Whallon140, A.M. Wharton75, A.S. White92, A. White8, M.J. White1, R. White34b, D. Whiteson166, B.W. Whitmore75, F.J. Wickens133, W. Wiedenmann176, M. Wielers133, C. Wiglesworth39, L.A.M. Wiik-Fuchs51, A. Wildauer103, F. Wilk87, H.G. Wilkens32, H.H. Williams124, S. Williams109, C. Willis93, S. Willocq89, J.A. Wilson19, I. Wingerter-Seez5, E. Winkels151, F. Winklmeier118, O.J. Winston151, B.T. Winter23, M. Wittgen145, M. Wobisch82;u, T.M.H. Wolf109, R. Wol 88, M.W. Wolter42, H. Wolters128a;128c, V.W.S. Wong171, S.D. Worm19, B.K. Wosiek42, J. Wotschack32, K.W. Wozniak42, M. Wu33, S.L. Wu176, X. Wu52, Y. Wu92, T.R. Wyatt87, B.M. Wynne49, S. Xella39, Z. Xi92, L. Xia35c, D. Xu35a, L. Xu27, T. Xu138, B. Yabsley152, S. Yacoob147a, D. Yamaguchi159, Y. Yamaguchi159, A. Yamamoto69, S. Yamamoto157, T. Yamanaka157, F. Yamane70, M. Yamatani157, Y. Yamazaki70, Z. Yan24, H. Yang36c, H. Yang16, Y. Yang153, Z. Yang15, W-M. Yao16, Y.C. Yap83, Y. Yasu69, E. Yatsenko5, K.H. Yau Wong23, J. Ye43, S. Ye27, I. Yeletskikh68, E. Yigitbasi24, E. Yildirim86, K. Yorita174, K. Yoshihara124, C. Young145, C.J.S. Young32, J. Yu8, J. Yu67, S.P.Y. Yuen23, I. Yusu 30;aw, B. Zabinski42, G. Zacharis10, R. Zaidan13, A.M. Zaitsev132;ak, N. Zakharchuk45, J. Zalieckas15, A. Zaman150, S. Zambito59, D. Zanzi91, C. Zeitnitz178, G. Zemaityte122, A. Zemla41a, J.C. Zeng169, Q. Zeng145, O. Zenin132, T. Zenis146a, D. Zerwas119, D. Zhang92, F. Zhang176, G. Zhang36a;ax, H. Zhang35b, J. Zhang6, L. Zhang51, L. Zhang36a, M. Zhang169, P. Zhang35b, R. Zhang23, R. Zhang36a;au, X. Zhang36b, Y. Zhang35a, Z. Zhang119, X. Zhao43, Y. Zhao36b;ay, Z. Zhao36a, A. Zhemchugov68, B. Zhou92, C. Zhou176, L. Zhou43, M. Zhou35a, M. Zhou150, N. Zhou35c, C.G. Zhu36b, H. Zhu35a, J. Zhu92, Y. Zhu36a, X. Zhuang35a, K. Zhukov98, A. Zibell177, D. Zieminska64, N.I. Zimine68, C. Zimmermann86, S. Zimmermann51, Z. Zinonos103, M. Zinser86, M. Ziolkowski143, L. Zivkovic14, G. Zobernig176, A. Zoccoli22a;22b, R. Zou33, M. zur Nedden17, L. Zwalinski32 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany NY, United States of America 3 Department of Physics, University of Alberta, Edmonton AB, Canada 4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, CNRS/IN2P3 and Universite Savoie Mont Blanc, Annecy-le-Vieux, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America 7 Department of Physics, University of Arizona, Tucson AZ, United States of America 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America 9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America 12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 13 Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain 14 Institute of Physics, University of Belgrade, Belgrade, Serbia HJEP10(27)4 16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America University of Bern, Bern, Switzerland 17 Department of Physics, Humboldt University, Berlin, Germany 18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, 19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey Bologna, Italy Paulo, Brazil 21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia 22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Universita di Bologna, 23 Physikalisches Institut, University of Bonn, Bonn, Germany 24 Department of Physics, Boston University, Boston MA, United States of America 25 Department of Physics, Brandeis University, Waltham MA, United States of America 26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao 27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America 28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania 29 Departamento de F sica, Universidad de Buenos Aires, Buenos Aires, Argentina 30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 31 Department of Physics, Carleton University, Ottawa ON, Canada 32 CERN, Geneva, Switzerland 33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America 34 (a) Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago; (b) Departamento de F sica, Universidad Tecnica Federico Santa Mar a, Valpara so, Chile 35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China 36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP), China 37 Universite Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 38 Nevis Laboratory, Columbia University, Irvington NY, United States of America 39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita della Calabria, Rende, Italy 41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland 43 Physics Department, Southern Methodist University, Dallas TX, United States of America 44 Physics Department, University of Texas at Dallas, Richardson TX, United States of America Grenoble, France 46 Lehrstuhl fur Experimentelle Physik IV, Technische Universitat Dortmund, Dortmund, Germany 47 Institut fur Kern- und Teilchenphysik, Technische Universitat Dresden, Dresden, Germany 48 Department of Physics, Duke University, Durham NC, United States of America 49 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy 51 Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany 53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universita di Genova, Genova, Italy 54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 55 II Physikalisches Institut, Justus-Liebig-Universitat Giessen, Giessen, Germany 56 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom 57 II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany 58 Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble-Alpes, CNRS/IN2P3, 59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States 60 (a) Kirchho -Institut fur Physik, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany 61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 63 Department of Physics, National Tsing Hua University, Taiwan 64 Department of Physics, Indiana University, Bloomington IN, United States of America 65 Institut fur Astro- und Teilchenphysik, Leopold-Franzens-Universitat, Innsbruck, Austria 66 University of Iowa, Iowa City IA, United States of America 67 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America 68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 70 Graduate School of Science, Kobe University, Kobe, Japan 71 Faculty of Science, Kyoto University, Kyoto, Japan 72 Kyoto University of Education, Kyoto, Japan Fukuoka, Japan Italy 73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, 74 Instituto de F sica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 75 Physics Department, Lancaster University, Lancaster, United Kingdom 76 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Universita del Salento, Lecce, 77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 78 Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia 79 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom 80 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom 81 Department of Physics and Astronomy, University College London, London, United Kingdom 82 Louisiana Tech University, Ruston LA, United States of America 83 Laboratoire de Physique Nucleaire et de Hautes Energies, UPMC and Universite Paris-Diderot and CNRS/IN2P3, Paris, France 84 Fysiska institutionen, Lunds universitet, Lund, Sweden 85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain 87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 88 CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France 89 Department of Physics, University of Massachusetts, Amherst MA, United States of America 90 Department of Physics, McGill University, Montreal QC, Canada 91 School of Physics, University of Melbourne, Victoria, Australia 92 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America 93 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States 94 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Universita di Milano, Milano, Italy 95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of 96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of HJEP10(27)4 97 Group of Particle Physics, University of Montreal, Montreal QC, Canada 98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia 99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia 100 National Research Nuclear University MEPhI, Moscow, Russia 101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, 102 Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany 103 Max-Planck-Institut fur Physik (Werner-Heisenberg-Institut), Munchen, Germany 104 Nagasaki Institute of Applied Science, Nagasaki, Japan 105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 106 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Universita di Napoli, Napoli, Italy 107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States 108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands 109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, 110 Department of Physics, Northern Illinois University, DeKalb IL, United States of America 111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 112 Department of Physics, New York University, New York NY, United States of America 113 Ohio State University, Columbus OH, United States of America 114 Faculty of Science, Okayama University, Okayama, Japan 115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America 116 Department of Physics, Oklahoma State University, Stillwater OK, United States of America 117 Palacky University, RCPTM, Olomouc, Czech Republic 118 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America 119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France 120 Graduate School of Science, Osaka University, Osaka, Japan 121 Department of Physics, University of Oslo, Oslo, Norway 122 Department of Physics, Oxford University, Oxford, United Kingdom 123 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Universita di Pavia, Pavia, Italy 124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America 125 National Research Centre \Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia 126 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa, Italy 127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of de Ci^encias, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F sica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 130 Czech Technical University in Prague, Praha, Czech Republic 131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia 133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom 134 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita di Roma, Roma, Italy 135 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universita di Roma Tor Vergata, Roma, Italy Roma, Italy 136 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita Roma Tre, 137 (a) Faculte des Sciences Ain Chock, Reseau Universitaire de Physique des Hautes Energies Universite Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculte des Sciences Semlalia, Universite Cadi Ayyad, LPHEA-Marrakech; (d) Faculte des Sciences, Universite Mohamed Premier and LPTPM, Oujda; (e) Faculte des sciences, Universite Mohammed V, Rabat, Morocco 138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America 140 Department of Physics, University of Washington, Seattle WA, United States of America 141 Department of Physics and Astronomy, University of She eld, She eld, United Kingdom 142 Department of Physics, Shinshu University, Nagano, Japan 143 Department Physik, Universitat Siegen, Siegen, Germany 144 Department of Physics, Simon Fraser University, Burnaby BC, Canada 145 SLAC National Accelerator Laboratory, Stanford CA, United States of America 146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa United States of America 148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden 149 Physics Department, Royal Institute of Technology, Stockholm, Sweden 150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, 151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom 152 School of Physics, University of Sydney, Sydney, Australia 153 Institute of Physics, Academia Sinica, Taipei, Taiwan 154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel Tokyo, Tokyo, Japan 156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 157 International Center for Elementary Particle Physics and Department of Physics, The University of 158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan ON, Canada 161 Department of Physics, University of Toronto, Toronto ON, Canada 162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy 163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto 164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan 165 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America 166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of 167 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Universita di Udine, Udine, Italy 168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 169 Department of Physics, University of Illinois, Urbana IL, United States of America 171 Department of Physics, University of British Columbia, Vancouver BC, Canada 172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada 173 Department of Physics, University of Warwick, Coventry, United Kingdom 174 Waseda University, Tokyo, Japan 175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 176 Department of Physics, University of Wisconsin, Madison WI, United States of America 177 Fakultat fur Physik und Astronomie, Julius-Maximilians-Universitat, Wurzburg, Germany 178 Fakultat fur Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universitat Wuppertal, Wuppertal, Germany 179 Department of Physics, Yale University, New Haven CT, United States of America 180 Yerevan Physics Institute, Yerevan, Armenia 181 Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 182 Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan a Also at Department of Physics, King's College London, London, United Kingdom b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at TRIUMF, Vancouver BC, Canada e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America f Also at Physics Department, An-Najah National University, Nablus, Palestine g Also at Department of Physics, California State University, Fresno CA, United States of America h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland i Also at II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany j Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain k Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal l Also at Tomsk State University, Tomsk, Russia n Also at Universita di Napoli Parthenope, Napoli, Italy o Also at Institute of Particle Physics (IPP), Canada m Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China United States of America p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, r Also at Borough of Manhattan Community College, City University of New York, New York City, t Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South u Also at Louisiana Tech University, Ruston LA, United States of America w Also at Graduate School of Science, Osaka University, Osaka, Japan y Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands z Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of aa Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia ab Also at CERN, Geneva, Switzerland ac Also at Georgian Technical University (GTU),Tbilisi, Georgia ad Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan ae Also at Manhattan College, New York NY, United States of America af Also at Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago, Chile ag Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of ah Also at The City College of New York, New York NY, United States of America ai Also at Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, aj Also at Department of Physics, California State University, Sacramento CA, United States of ak Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia al Also at Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, Geneva, Greece Africa Technology, Barcelona, Spain Sciences, So a, Bulgaria am Also at Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and ao Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of aq Also at National Research Nuclear University MEPhI, Moscow, Russia as Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary Deceased au Also at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France ay Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France [6] D.B. Kaplan , H. Georgi and S. Dimopoulos , Composite Higgs scalars, Phys. Lett. 136B [7] K. Agashe , R. Contino and A. Pomarol , The minimal composite Higgs model , Nucl. Phys. B [12] J.A. Aguilar-Saavedra , R. Benbrik , S. Heinemeyer and M. Perez-Victoria , Handbook of vectorlike quarks: Mixing and single production , Phys. Rev. D 88 ( 2013 ) 094010 [13] A. Atre , M. Carena , T. Han and J . Santiago , Heavy quarks above the top at the Tevatron, [14] A. Atre et al., Model-independent searches for new quarks at the LHC , JHEP 08 ( 2011 ) 080 [27] T. Sj ostrand, S. Mrenna and P.Z. Skands , A brief introduction to PYTHIA 8.1, Comput . Phys. Commun . 178 ( 2008 ) 852 [arXiv: 0710 .3820] [INSPIRE]. [28] M. Czakon and A. Mitov , Top++ : a program for the calculation of the top-pair cross-section at hadron colliders , Comput. Phys. Commun . 185 ( 2014 ) 2930 [arXiv: 1112 .5675] [INSPIRE]. [29] M. Cacciari , M. Czakon , M. Mangano , A. Mitov and P. Nason , Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation , Phys. Lett. [30] M. Beneke , P. Falgari , S. Klein and C. Schwinn , Hadronic top-quark pair production with NNLL threshold resummation , Nucl. Phys. B 855 ( 2012 ) 695 [arXiv: 1109 .1536] [INSPIRE]. [31] P. Barnreuther , M. Czakon and A. Mitov , Percent level precision physics at the Tevatron: rst genuine NNLO QCD corrections to qq ! tt + X, Phys . Rev. Lett . 109 ( 2012 ) 132001 [32] M. Czakon and A. Mitov , NNLO corrections to top-pair production at hadron colliders: the [36] H.-L. Lai et al., New parton distributions for collider physics , Phys. Rev. D 82 ( 2010 ) 074024 [37] J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys . Rev. D 89 [38] R.D. Ball et al., Parton distributions with LHC data, Nucl . Phys. B 867 ( 2013 ) 244 [39] S. Alioli , P. Nason , C. Oleari and E. Re , A general framework for implementing NLO [45] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 ( 2009 ) 007 [46] C. Anastasiou , L.J. Dixon , K. Melnikov and F. Petriello , High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO , Phys. Rev. D 69 ( 2004 ) [48] R. Gavin , Y. Li , F. Petriello and S. Quackenbush , FEWZ 2 . 0: a code for hadronic Z production at next-to-next-to-leading order , Comput. Phys. Commun . 182 ( 2011 ) 2388 [49] ATLAS collaboration, The ATLAS simulation infrastructure , Eur. Phys. J. C 70 ( 2010 ) 823 [50] GEANT4 collaboration , S. Agostinelli et al., GEANT4 | a simulation toolkit , Nucl. [51] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL- PHYS-PUB- 2012-003 [52] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [53] M. Cacciari and G.P. Salam , Dispelling the N 3 myth for the kt jet- nder , Phys. Lett. B 641 [54] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [70] S. Frixione , E. Laenen, P. Motylinski , B.R. Webber and C.D. White , Single-top [72] W. Verkerke and D. Kirkby , Roo t users manual v2.91 , https://roo

This is a preview of a remote PDF:

The ATLAS collaboration, M. Aaboud, G. Aad, B. Abbott, O. Abdinov, B. Abeloos, S. H. Abidi, O. S. AbouZeid, N. L. Abraham, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, S. Adachi, L. Adamczyk, J. Adelman, M. Adersberger, T. Adye, A. A. Affolder, Y. Afik, T. Agatonovic-Jovin, C. Agheorghiesei, J. A. Aguilar-Saavedra, S. P. Ahlen, F. Ahmadov, G. Aielli, S. Akatsuka, H. Akerstedt, T. P. A. Åkesson, E. Akilli, A. V. Akimov, G. L. Alberghi, J. Albert, P. Albicocco, M. J. Alconada Verzini, S. C. Alderweireldt, M. Aleksa, I. N. Aleksandrov, C. Alexa, G. Alexander, T. Alexopoulos, M. Alhroob, B. Ali, M. Aliev, G. Alimonti, J. Alison, S. P. Alkire, B. M. M. Allbrooke, B. W. Allen, P. P. Allport, A. Aloisio, A. Alonso, F. Alonso, C. Alpigiani, A. A. Alshehri, M. I. Alstaty, B. Alvarez Gonzalez, D. Álvarez Piqueras, M. G. Alviggi, B. T. Amadio, Y. Amaral Coutinho, C. Amelung, D. Amidei, S. P. Amor Dos Santos, S. Amoroso, G. Amundsen, C. Anastopoulos, L. S. Ancu, N. Andari, T. Andeen, C. F. Anders, J. K. Anders, K. J. Anderson, A. Andreazza, V. Andrei, S. Angelidakis, I. Angelozzi, A. Angerami, A. V. Anisenkov, N. Anjos, A. Annovi, C. Antel, M. Antonelli, A. Antonov, D. J. Antrim, F. Anulli, M. Aoki, L. Aperio Bella, G. Arabidze, Y. Arai, J. P. Araque, V. Araujo Ferraz, A. T. H. Arce, R. E. Ardell, F. A. Arduh, J-F. Arguin, S. Argyropoulos, M. Arik, A. J. Armbruster, L. J. Armitage, O. Arnaez, H. Arnold, M. Arratia, O. Arslan, A. Artamonov, G. Artoni, S. Artz, S. Asai, N. Asbah, A. Ashkenazi, L. Asquith, K. Assamagan, R. Astalos, M. Atkinson, N. B. Atlay, K. Augsten, G. Avolio, B. Axen, M. K. Ayoub, G. Azuelos, A. E. Baas, M. J. Baca, H. Bachacou, K. Bachas, M. Backes, P. Bagnaia, M. Bahmani, H. Bahrasemani, J. T. Baines, M. Bajic, O. K. Baker, E. M. Baldin, P. Balek, F. Balli, W. K. Balunas, E. Banas, A. Bandyopadhyay, Sw. Banerjee, A. A. E. Bannoura, L. Barak, E. L. Barberio, D. Barberis, M. Barbero, T. Barillari, M-S Barisits, J. T. Barkeloo, T. Barklow, N. Barlow, S. L. Barnes, B. M. Barnett, R. M. Barnett, Z. Barnovska-Blenessy, A. Baroncelli, G. Barone, A. J. Barr, L. Barranco Navarro, F. Barreiro, J. Barreiro Guimarães da Costa, R. Bartoldus, A. E. Barton, P. Bartos, A. Basalaev, A. Bassalat, R. L. Bates, S. J. Batista, J. R. Batley, M. Battaglia, M. Bauce, F. Bauer, H. S. Bawa, J. B. Beacham, M. D. Beattie, T. Beau, P. H. Beauchemin, P. Bechtle, H. P. Beck, H. C. Beck, K. Becker, M. Becker, C. Becot, A. J. Beddall, A. Beddall, V. A. Bednyakov, M. Bedognetti, C. P. Bee, T. A. Beermann, M. Begalli, M. Begel, J. K. Behr, A. S. Bell, G. Bella, L. Bellagamba, A. Bellerive, M. Bellomo, K. Belotskiy, O. Beltramello, N. L. Belyaev, O. Benary, D. Benchekroun, M. Bender, K. Bendtz, N. Benekos, Y. Benhammou, E. Benhar Noccioli, J. Benitez, D. P. Benjamin, M. Benoit, J. R. Bensinger, S. Bentvelsen, L. Beresford, M. Beretta, D. Berge, E. Bergeaas Kuutmann, N. Berger, J. Beringer, S. Berlendis, N. R. Bernard, G. Bernardi, C. Bernius, F. U. Bernlochner, T. Berry, P. Berta, C. Bertella, G. Bertoli, F. Bertolucci, I. A. Bertram, C. Bertsche, D. Bertsche, G. J. Besjes, O. Bessidskaia Bylund, M. Bessner, N. Besson, A. Bethani, S. Bethke, A. J. Bevan, J. Beyer, R. M. Bianchi, O. Biebel, D. Biedermann, R. Bielski, K. Bierwagen, N. V. Biesuz, M. Biglietti, T. R. V. Billoud, H. Bilokon, M. Bindi, A. Bingul, C. Bini, S. Biondi, T. Bisanz, C. Bittrich, D. M. Bjergaard, J. E. Black, K. M. Black, R. E. Blair, T. Blazek, I. Bloch, C. Blocker, A. Blue, W. Blum, U. Blumenschein, S. Blunier, G. J. Bobbink, V. S. Bobrovnikov, S. S. Bocchetta, A. Bocci, C. Bock, M. Boehler, D. Boerner, D. Bogavac, A. G. Bogdanchikov, C. Bohm, V. Boisvert, P. Bokan, T. Bold, A. S. Boldyrev, A. E. Bolz, M. Bomben, M. Bona, M. Boonekamp, A. Borisov, G. Borissov, J. Bortfeldt, D. Bortoletto, V. Bortolotto, D. Boscherini, M. Bosman, J. D. Bossio Sola, J. Boudreau, J. Bouffard, E. V. Bouhova-Thacker, D. Boumediene, C. Bourdarios, S. K. Boutle, A. Boveia, J. Boyd, I. R. Boyko, J. Bracinik, A. Brandt, G. Brandt, O. Brandt, U. Bratzler, B. Brau, J. E. Brau, W. D. Breaden Madden, K. Brendlinger, A. J. Brennan, L. Brenner, R. Brenner, S. Bressler, D. L. Briglin, T. M. Bristow, D. Britton, D. Britzger, F. M. Brochu, I. Brock, R. Brock, G. Brooijmans, T. Brooks, W. K. Brooks, J. Brosamer, E. Brost, J. H Broughton, P. A. Bruckman de Renstrom, D. Bruncko, A. Bruni, G. Bruni, L. S. Bruni, B H Brunt, M. Bruschi, N. Bruscino, P. Bryant, L. Bryngemark, T. Buanes, Q. Buat, P. Buchholz, A. G. Buckley, I. A. Budagov, F. Buehrer, M. K. Bugge, O. Bulekov, D. Bullock, T. J. Burch, S. Burdin, C. D. Burgard, A. M. Burger, B. Burghgrave, K. Burka, S. Burke, I. Burmeister, J. T. P. Burr, E. Busato, D. Büscher, V. Büscher, P. Bussey, J. M. Butler, C. M. Buttar, J. M. Butterworth, P. Butti, W. Buttinger, A. Buzatu, A. R. Buzykaev, S. Cabrera Urbán, D. Caforio, V. M. Cairo, O. Cakir, N. Calace, P. Calafiura, A. Calandri, G. Calderini, P. Calfayan, G. Callea, L. P. Caloba. Search for pair production of heavy vector-like quarks decaying to high-p T W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Journal of High Energy Physics, 2017, 141, DOI: 10.1007/JHEP10(2017)141